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Abstract: As the support is increasing for textual domain-specific languages (DSL), the reconstruction of visual 
models from the generated textual artifacts has also come into focus. The state-of-the-art bidirectional 
approaches support reversible text generation from models using single syntax mapping. However, even 
these tools have not gone such far to facilitate the synchronization between models and generated artifacts. 
This paper presents the importance of synchronization and how these mappings can enable syntactic 
reconciliation for custom DSLs. Our approach provides algorithms for supporting incremental DSL-driven 
software development, which enables the freedom of choosing between the textual or visual editing of 
artifacts. It depends on the developer which representation is more effective for her/him at a specific 
moment. 

1 INTRODUCTION 

In the practice of model-based software 
development, the software models are usually 
represented as labeled (attributed), typed graphs. 
The modeling elements as nodes are connected to 
each other via edges. In modern modeling 
frameworks (Angyal et al, 2009) (Eclipse, 2010) 
(Xtext, 2010) visual and/or textual notations can be 
mapped to the nodes and edges of a metamodel to 
determine how its instance models should be drawn 
or written. These are referred to as the concrete 
syntax, which is required to define instance models. 

The most prevalent techniques for textual syntax 
definition of modeling elements are originated in the 
theory of parser generators. The textual model can 
be parsed into an Abstract Syntax Tree (AST), 
which can be considered as an abstract model 
conforming to the AST metamodel. Every node in 
the metamodel have an AST class representation. 
The philosophy behind reversible text generation 
approaches is that parsing the textual artifact into an 
intermediate AST can be the input to recreate the 
model. However, this is inadequate to support the 
concurrent evolution of the visual and the textual 
representations of the same model. These 
approaches consist of two unidirectional 
synchronizations, often referred to as destructive, 
which means that the target model is not modified 

incrementally and thus, the update rebuilds the new 
content, instead of modifying the existing one. 

Accordingly, the layout of the models that is 
previously defined by human effort disappears. The 
layout in both visual and textual representations 
contains valuable extra information, which is 
developed into the model. Only an incremental 
approach can preserve the layout, because the 
affected parts are updated only, while other parts 
remain unchanged. 

 

Figure 1: Outline of our approach. 

We introduced a technique (Angyal et al, 2008) 
that performs a three-way AST comparison and 
incremental change propagation in order to reconcile 
the differences between a source code file and a 
visual model. Based on the syntax mapping, that 
synchronization approach can be extended to 
support arbitrary DSLs. In this paper, we 
demonstrate how the single syntax specification can 
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be applied to implement a metamodel-specific 
incremental merge approach. (Figure 1). 

The remainder of the paper is organized as 
follows. The next section introduces the 
backgrounds. Section 3 contains an overview about 
our proposal for applying textual syntax mappings in 
an incremental synchronization approach of DSLs. 
Finally, conclusions are elaborated. 

2 BACKGROUNDS 

The initial and fundamental step in textual DSL 
development is the construction of the AST 
metamodel (the vocabulary) and the definition of the 
textual syntax for the elements. To exclude possible 
but illegal model states, constraints can be defined 
on the structure. 

Processing textual models e.g. to generate other 
artifacts, requires them to be parsed and converted 
into a format, which is supported by a model 
processor or a generator. Formerly, for textual 
languages, a grammar file defined by developers 
was used, from which a parser generator (e.g. 
ANTLR, 2010) created a parser that could be 
integrated into a custom tool. 

As the AST metamodel-based approaches have 
come into consideration in the language engineering 
researches, more and more tools and approaches are 
being developed to facilitate the definition of custom 
textual languages. 

TCS (Jounault et al, 2006) is a textual DSL 
intended to bridge the modeling and the syntax 
worlds. From a TCS model, the grammar file for 
text-to-model transformation and text generator for 
model-to-text transformation can be produced. 

Xtext (Xtext, 2010) and MontiCore (Krahn et al, 
2007) are frameworks for development of textual 
DSLs. In order to reduce the redundancy of the 
metamodel and the concrete syntax, the definitions 
of the abstract and the concrete syntaxes for the 
languages are integrated into a single grammar file. 
Their generators produce a parser, an AST-
metamodel as well as a full-featured text editor. 

Although synchronization is a well-known 
problem in the practice of software development, the 
recent researches in the context of DSL engineering 
are still not focusing on it. 

Coarse-grained file comparison approaches like 
the diff tool considers the lines as atomic building 
blocks. However, to compare two pieces of textual 
model correctly, the algorithm must take the 
grammar of the language into consideration. The 
fine-grained algorithms operate on the ASTs of the 

source code files. Hierarchical structures such as 
models should also be treated as source code. 

3 THE MERGE APPROACH 

3.1 Bidirectional Textual Syntax 
Mapping 

The metamodel itself does not determinate how its 
instance models should be drawn or written. For a 
complete language, the concrete syntax with the 
assignments to the metamodel is inevitable. Figure 2 
depicts our meta-metamodel, where the Template 
attribute holds the textual concrete syntax mapping 
belonging to that node.  

 
Figure 2: The meta-metamodel. 

The Atom node represents the self-describing 
metatype for all elements in the models. An element 
can (i) define own, (ii) inherit attributes and 
relationships from its ancestor (inheritance), (iii) 
structures can also be defined: an element can 
contain other elements (containment), and (iv) other 
existing elements can be referenced (cross-
reference), as well. Furthermore, the edges have 
multiplicity properties, which are taken into account 
in the parser and the text generator. 

 
Figure 3: The metamodel of the template language. 

We designed a simple template language (Figure 
3) that expresses the textual appearance of abstract 
elements. These templates are considered as input 
artifacts for the template compiler, which produces 
the text generator and rules for the text parser. 

The abstract TemplateElement is a word in that 
textual template, which can be a reference, a string 
literal or a condition. The words are concatenated 
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into a template with the Concatenate operator. 
Additionally, each attribute has a data type with 
predefined regular expression (a primitive template), 
which can be overridden to determine the values 
allowed in that attribute. This regular expression is 
used by the parser to recognize the attributes. 

3.2 Realizing the Incremental Update 

3.2.1 Edit Scripts 

A merge approach can be operation-based or state-
based (Mens, 2002). The operation-based one 
requires recording the committed edit operations, 
while the state-based one derives the changes after 
they occur by a comparison. The sequence of these 
operations is referred to as an edit script. Our change 
propagation approach executes the edit scripts on 
other artifacts to obtain the same state. 

3.2.2 Update Visual Model 

The structure of our proposed incremental update 
component for the visual model is depicted in Figure 
4. Since the underlying data types and classes are 
metamodel-specific, all of these components are 
generated and operate only on a specific model. 
Furthermore, these classes are grouped into larger 
logical units. 

 
Figure 4: The incremental model update unit. 

The Database I/O connector provides access to 
the model elements stored either in a database or in a 
file. The Tree producer reads the model from the 
database and produces the AST in a form required 
for the difference analysis. The Edit script execution 
submodule performs the incremental database 
update controlled by an edit script. 

3.2.3 Update Textual Model 

The component for the incremental textual update 
(Figure 5) includes the layout preserving logic. It 
contains a tree producer (denoted by Parser), which 
stores trace information linked to the AST nodes to 
facilitate the restoration of the original layout and 
comments. The AST patch module executes the edit 
script obtained from outside. After the incremental 
update, the reworked AST is pretty-printed 

considering the trace information and the original 
textual content. 

 
Figure 5: The incremental textual update unit. 

3.2.4 Retaining the Textual Layout 

The layout preservation is a crucial requirement to 
artifact regeneration: overwriting a customized 
layout with a generated one could be unacceptable 
for the developers. 

The edit operations manipulate directly the AST, 
but while the reworked AST nodes or subtrees are 
printed, the trace links are taken into account to 
restore the original layout with comments in their 
original positions. Following the approach of 
(Fritzson et al, 2008), every operation in the edit 
script is converted into an equivalent text 
manipulation operation, which is applied on the 
original text file: 
• Insertion: the new node is pretty-printed and its 

text is inserted into the text stream. 
• Deletion: characters belonging to that node are 

removed. 
• Update: a substring is replaced. 
• Move: remove a substring and insert into an 

other position. 

3.3 Composing the Techniques 
Together into a Sync Engine 

Figure 6 illustrates our proposed synchronization 
engine (SE) with the three input models: M0, M1, and 
M2. SE realizes an incremental three-way 
differencing-based merge, where the two modified 
artifacts (M1, M2) are compared to the last 
synchronized state (M0) in order to unambiguously 
detect and propagate the committed refinements. 
The synchronization is performed with the help of 
intermediate artifacts, the ASTs. 

 
Figure 6: The synchronization engine (SE). 
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SE can be separated into four independent parts: 
(i) the difference analysis unit (DAU), which can be 
considered the heart of the SE, (ii) a simple parser 
unit (U1), (iii) the complex incremental textual 
update unit (U2), and (iv) the visual model 
manipulation unit (U3). The last mentioned three 
units (U1, U2, and U3) serve as language-specific 
glue units for the metamodel independent DAU. 

 
Figure 7: The synchronization approach in the details. 

The algorithms in the DAU (Figure 7) operate on 
the ASTs. The procedures denoted by Diff based on 
the algorithms elaborated in (Chawathe et al, 1996) 
and have been customized for source code (AST) 
difference analysis. A general tree matching 
algorithm tries to find the correspondence between 
the two trees; the nodes that remained unmatched 
compose the differences. The edit scripts can 
reconcile the differences between the trees. 

The modifications in the two artifacts can affect 
each other, since the nodes are identified by their 
path. An inserted node can shift the indices and may 
cause that an edit operation from the opposite edit 
script can address a different node. To avoid this, we 
transform (by incrementing or decrementing the 
indices) the paths in the operations if they affect 
each other. Finally, to propagate the changes, the 
transformed edit scripts are executed on the other 
side by the generated glue units (U2, and U3). At the 
end of the synchronization we obtain two 
syntactically equivalent artifacts. 

4 CONCLUSIONS 

The accelerated spread of the DSLs requires the 
development of tools to support the evolution of 
both the visual and textual languages. This means 
just the beginning towards the round-trip 
engineering and incremental synchronization 
between independently, and concurrently evolved 
DSL models. 

The presented synchronization technique 
involves structural syntactic model-text differencing 

and three-way AST merging. The main advantage is 
that in contrast to typical text generation approaches, 
it permits modifying the generated textual artifacts 
and instead of losing the changes, they will be 
synchronized back to the models. The modular 
design allows the model-model and in addition the 
text-text synchronization. On models where 
semantic conflicts never occur, this approach can be 
used efficiently. 
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