
WEB TOOL FOR OBJECT ORIENTED DESIGN METRICS

José R. Hilera, Luis Fernández-Sanz and Marina Cabello
Department of Computer Science, University of Alcalá, Alcalá de Henares, Spain

Keywords: UML, XMI, Software metrics.

Abstract: An open source web application to calculate metrics from UML class diagrams is presented. The system can
process any class diagram encoded in XMI format. After processing the XMI document, a complete report
can be obtained in two different formats, HTML and spreadsheet file. The application can be accessed
freely in a website. Source code is available for downloading.

1 INTRODUCTION

Measurement is an essential element of any
discipline which intends to reach the level of
engineering. In the case of software engineering,
various important software attributes have been
determined as key factors for the evaluation of
application and systems: size, complexity, the
expected frequency of error occurrences or test
coverage (Fenton and Pfleeger, 1997). Metrics are a
useful resource to help developers and managers to
control if software products meet desired quality
characteristics.
There are a few CASE tools that calculate some of
the most popular OO metrics, with the aim of
evaluating the UML diagrams being created with the
tool itself (in www.objectsbydesign.com there is a
short list of them). There are also commercial
applications that offer the possibility of calculating
metrics from UML files, although they are not free
neither open source, e.g. SDMetrics
(www.sdmetrics.com). Other authors have
developed software for computing metrics from
diagrams based on the Web Application Extension
(WAE) for UML (Ghosheh and Black, 2009).
This paper presents a Web application developed by
the authors which enables automatic measure of OO
design metrics from class diagram encoded as
standard XMI format. The system generates a
complete report with detailed values of the most
common metrics. Section 2 presents the metrics
implemented in the system. Section 3 introduces the
XMI format used to represent UML models. Section
4 describes the main features of the application.

Finally, some conclusions as well as future lines of
action are presented.

2 OBJECT ORIENTED DESIGN
METRICS

Although metrics for different software lifecycle
phases have been proposed (analysis, design, testing,
maintenance, etc.), design metrics have reached a
higher level of maturity and validation due to the
interest and effort they have attracted since early
1990s. Obviously, OO design is mainly based on the
de-facto standard notation UML: the main OO
design model is the class diagram as stated in usage
surveys (Dobing and Parsons, 2006). Design metrics
have been concentrated on the exploration of basic
OO concepts like encapsulation, inheritance,
polymorphism and class complexity. As required for
optimizing applicability, our web system only
considers design metrics applicable to UML class
diagrams. A total of 32 different metrics described
below were implemented.

2.1 Classical Metrics

A set of 20 classical metrics ranked into four
categories of metrics have been considered. The first
category includes the well-known CK metrics set
(Chidamber and Kemerer, 1994) aimed at defining a
measure of the design complexity in relation to their
impact on external quality attributes such as
maintainability, reusability, etc. These metrics are
useful for predicting the frequency of changes
through classes during the maintenance phase,

300
R. Hilera J., Fernández-Sanz L. and Cabello M. (2010).
WEB TOOL FOR OBJECT ORIENTED DESIGN METRICS.
In Proceedings of the 5th International Conference on Software and Data Technologies, pages 300-303
DOI: 10.5220/0003011003000303
Copyright c© SciTePress

detecting possible design flaws or violations of
design philosophy. The metrics implemented in the
system are the following:

 WMC: Weighted Methods per Class
 DIT: Depth of Inheritance
 NOC: Number Of Children.

The second group of metrics are the ones proposed
by Briand et al. (1997) as measure of coupling
between classes:

 IC_Attr: Import Coupling with Class-Attribute
interaction between a class and the rest

 EC_Attr: Export Coupling with Class-Attribute
interaction between a class and the rest

 IC_Par: Import Coupling with Class-Method
interaction between a class and the rest

 EC_Par: Export Coupling with Class-Method
interaction between a class and the rest.

The third category includes MOOD metrics (Brito
and Melo, 1996). The objective of these metrics is to
define a measure of the use of mechanisms of OO
design such as inheritance (MIF and AIF metrics),
information hiding (MHF and AHF-metric) and
polymorphism (the PF metric):

 MHF: Method Hiding Factor
 AHF: Attribute Hiding Factor
 MIF: Method Inheritance Factor
 AIF: Attribute Inheritance Factor
 PF: Polymorphism Factor

Finally, we have implemented the classical metrics
proposed by Lorenz and Kidd (1994), both related to
size (PIM, NIM, NIV, NCV, and NCM) and to
inheritance (NMO, NMI, and NMA):

 PIM: Public Instance Methods
 NIM: Number of Instance Methods
 NIV: Number of Instance Variables
 NCM: Number of Class Methods
 NCV: Number of Class Variables
 NMO: Number of Methods Overridden
 NMI: Number of Methods Inherited
 NMA: Number of Methods Defined

2.2 Classification Metrics

We have also considered other 18 metrics, classified
in three different categories, most of them described
at (Genero et al. 2005). The first category is related
with the size of the elements of a class:

 NumAttr: Number of attributes in a class
 NumOps: Number of operations in a class
 NumPubOps: Number of public operations in a

class
Other group of metrics is focused on inheritance:

 NOC: Number Of Children (or direct
descendents of a class)

 NumDesc: Number of descendents of a class
 NumAnc: Number of ancestors of a class
 DIT: Depth of Inheritance
 CLD: Class to Leaf Depth
 OpsInh: Number of inherited operations
 AttrInh: Number of inherited attributes

And a set of metrics related with coupling:
 Dep_Out: Number of elements on which a class

depends
 Dep_In: Number of elements that depend on a

class
 NumAssEl_ssc: Number of associated elements

in the same scope (namespace) as a class
 IC_Attr: Import Coupling with Class-Attribute

interaction between a class and the rest
 EC_Attr: Export Coupling with Class-Attribute

interaction between a class and the rest
 IC_Par: Import Coupling with Class-Method

interaction between a class and the rest
 EC_Par: Export Coupling with Class-Method

interaction between a class and the rest.

3 XMI FORMAT TO REPRESENT
UML CLASS DIAGRAMS

A UML modeling tool is a software application that
supports some or all of the notation and semantics
associated with the Unified Modeling Language
(OMG, 2009). One of the features that should be
considered when choosing and UML tool is the
possibility of importing and exporting models using
the XMI format. XMI (XML Metadata Interchange)
is the format for UML model interchange (OMG,
2007).
XMI is a XML dialect that incorporates tags to
represent UML diagrams. For class diagrams, listing
1 presents a code extract which corresponds to
figure 1 class diagram (exported as a
ClassDiagram.xmi file). Tags
<packagedElement> with the attribute
type=Class are used to represent classes, while
<ownedOperation>, <ownedAttribute>
and <generalization> tags represent
attributes, operations and inherence associations.

WEB TOOL FOR OBJECT ORIENTED DESIGN METRICS

301

Figure 1: Class diagram example.

<?xml version="1.0" encoding="UTF-8"?>
<xmi:XMI
 xmlns:xmi="http://schema.omg.org/spec/
 XMI/2.1"
 xmlns:uml="http://schema.omg.org/spec/
 UML/2.1.2" xmi:version="2.1">
 <uml:Package xmi:id="Root" name="Root">
 <packagedElement xmi:type="uml:Package"
 xmi:id="ComponentView" name="Component
 View" visibility="public"/>
 <packagedElement xmi:type="uml:Class"
 xmi:id="Solid" name="Solid"
 visibility="public">
 <ownedAttribute
 xmi:type="uml:Property"
 xmi:id="density" name="density"
 visibility="protected"/>
 <ownedOperation
 xmi:type="uml:Operation"
 xmi:id="getVolume" name="getVolume"
 visibility="public"/>
 <ownedOperation
 xmi:type="uml:Operation"
 xmi:id="getWeight" name="getWeight"
 visibility="public"/>
 </packagedElement>
 <packagedElement xmi:type="uml:Class"
 xmi:id="Cube" name="Cubo"
 visibility="public">
 <generalization
 xmi:type="uml:Generalization"
 xmi:id="Gen1" general="Solid"/>
 <ownedAttribute
 xmi:type="uml:Property" xmi:id=""
 name="sideLong"
 visibility="protected"/>
 <ownedOperation
 xmi:type="uml:Operation"
 xmi:id="getVolume" name="getVolume"
 visibility="public"/>
 </packagedElement>
...

 </packagedElement>
 </uml:Package>
</xmi:XMI>

Listing 1: Extract of the XMI file representing the class
diagram in figure 1.

4 A WEB APPLICATION TO
CALCULATE METRICS FOR
UML CLASS DIAGRAMS

The developed system (figure 2) is basically an open
source web application in C#. It includes two classes
and an aspx web server page (figure 3). There is a
class that manages the XMI files representing a
UML class diagram; the other class implements the
calculation of the metrics explained in section 2.

Figure 2: System architecture.

The first step when using the system to obtain a
metrics report is the selection and uploading of the
XMI file containing the UML class diagram to be
measured (figure 4). After processing the XMI
document, a complete report in two different
formats, HTML (figure 5) and XLS (figure 6) is
available so the user can observe and store the
values of metrics.

Figure 3: Basic application design.

The two principal classes of the application are:
 XmiModel: This class contains all the

functionality for processing XMI files. It uses
the standard classes XmlDocument and
XPathNavigator from the .NET Framework
libraries System.Xml and System.Xml.XPath.

 MetricsCalculator: This class includes the
functionality related with the evaluation of the
object oriented metrics. It contains an
XmiModel object necessary to explore the
XMI fie with the class diagram to be
evaluated.

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

302

Figure 4: Part of the Web interface to upload the UML
class diagram, encoded in XMI, to be evaluated.

Figure 5: Extract of the metrics report in HTML format.

Figure 6: Extract of the report in spreadsheet format.

5 CONCLUSIONS

Many software metrics to measure OO designs in
general, and class diagrams in particular are
available. Studies have checked their usefulness for
developers in order to control important features
such as inheritance and coupling as well as also
those related with size, complexity, encapsulation
and polymorphism.
In this paper we have presented a web application to
evaluate 32 metrics for UML class diagrams. The
application can analyze any class diagram in XMI
format so any diagram created using almost any of
the main current CASE tools could be used. XMI is
a very important standard because allows UML
models interchange between CASE tools in form of
plain text files.
Our application now is being improved, adding more
metrics as well as additional functionality to

visualize graphically UML class diagrams (using
SVG format supported by browsers) to help
developers to check diagrams before staring
analysis. This software has been developed as open
source and it is available for downloading from [to
be included in the final paper version].

REFERENCES

Briand L., Devanbu W., Melo W., 1997. An investigation
into coupling measures for C++, 19th International
Conference on Software Engineering, pp. 412-421.

Brito e Abreu F., Melo W., 1996. Evaluating the Impact of
Object-Oriented Design on Software Quality, 3rd
International Metric Symposium, pp. 90-99.

Chidamber S., Kemerer C., 1994. A Metrics Suite for
Object Oriented Design, IEEE Transactions on
Software Engineering, vol. 20, no. 6, pp. 476-493.

Dobing, B. and Parsons, J., 2006. How UML is used,
Communications of the ACM, vol. 49, no. 5, pp. 109-
113.

Fento, N. E., Pfleeger, S. L., 1997. Software metrics: a
rigorous and practical approach, PWS.

Genero M., Piattini, M., Calero, C., 2005. A Survey of
Metrics for UML Class Diagrams, Journal of Object
Technology, vol. 4, no. 9, Nov.-Dec. 2005, pp. 59-92.
www.jot.fm/issues/issue_2005_11/article1/.

Ghosheh, E., Black, S., 2009. WapMetrics: A tool for
computing UML design metrics for Web applications,
7th ACS/IEEE International Conference on Computer
Systems and Applications, pp.682-689.

Lorenz M., Kidd J., 1994. Object-Oriented Software
Metrics: A Practical Guide, Prentice Hall, Englewood
Cliffs, New Jersey.

OMG, 2007. XML Metadata Interchange (XMI). Object
Management Group, 2007. www.omg.org/spec/XMI/.

OMG, 2009. Unified Modeling Language (UML). Object
Management Group, 2009. www.omg.org/spec/UML/.

WEB TOOL FOR OBJECT ORIENTED DESIGN METRICS

303

