
A SCALA-BASED DOMAIN SPECIFIC LANGUAGE FOR
STRUCTURED DATA REPRESENTATION

Kazuaki Maeda
Department of Business Administration and Information Science, Chubu University, 1200 Matsumoto, Kasugai, Aichi, Japan

Keywords: Data representation, Structured data, Domain specific languages, Scala, Java.

Abstract: This paper describes Sibon, a new representation written in a text-based data format using Scala syntax. The
design principle of Sibon is good readability and simplicity of structured data representation. An important
feature of Sibon is an executable representation. Once Sibon-related definitions are loaded, the representation
can be executed corresponding to the definitions. A program generator was developed to create Scala and Java
programs from Sibon definitions. In the author’s experience, productivity was improved in the design and
implementation of programs that manipulate structured data.

1 INTRODUCTION

A domain-specific language (DSL) is a program-
ming language tailored to a specific application do-
main(Mernik et al., 2005). It is a special-purpose, and
not general-purpose, programming language.

Fowler has explained the difference between ex-
ternal and internal DSLs(Fowler, 2009). An external
DSL (e.g., an XML configuration file) is a special-
purpose language with a syntax that is different from
existing programming languages. In case of an ex-
ternal DSL, the DSL developer has to reuse or build
a parser for the domain-specific description. On the
other hand, an internal DSL uses the constructs of an
existing programming language (called a “host” lan-
guage) to define the DSL. In case of an internal DSL,
the designer extends the host language to the domain
specific description, which can improve the develop-
ment time for building a DSL processor to execute the
description.

Scala is a hybrid functional and object-oriented
language(Martin Odersky, 2008). It is a simple but
powerful programming language. Scala plays an im-
portant role as a host language for an internal DSL.
One of Scala’s appealing features is the fact that
parentheses for arguments of methods are optional for
infix operator notation; therefore, the descriptions are
easier to read and understand than ones in other pro-
gramming languages.

Another feature is implicit conversion methods. It
is used in Scala to extend existing libraries. We can
use method calls, for example, capitalize and reverse,

to String objects, but these methods are not defined
in the String class. A special class RichString in the
Scala library wraps the String class, and the Scala
compiler converts the String implicitly using the im-
plicit conversion methods.

One more feature in Scala is that functions can be
passed as arguments of the methods. It represents a
group of program statements; it can be an argument of
a method in Scala. It is powerful in its representation
of structured data.

This paper describes Sibon1, an internal DSL for
structured data representation in a text-based data for-
mat using Scala syntax(Martin Odersky, 2008). An
important feature of Sibon is that it is based on Scala
and the representation is executable. If Sibon-related
definitions are loaded, the representation can be ex-
ecuted corresponding to the definitions. This is use-
ful for Java programs in reconstructing Java objects
or for traversing the structured data. Moreover, the
author believes that good readability and simplicity
of structured data representation are important for all
developers.

Section 2 explains structured data representation
and Sibon, and Section 3 summarizes this paper.

1Sibon stands for Scala Instructions Becoming Object
Notation.

296
Maeda K. (2010).
A SCALA-BASED DOMAIN SPECIFIC LANGUAGE FOR STRUCTURED DATA REPRESENTATION.
In Proceedings of the 5th International Conference on Software and Data Technologies, pages 296-299
DOI: 10.5220/0003010502960299
Copyright c© SciTePress



2 REPRESENTATION AND
MANIPULATION OF
STRUCTURED DATA

2.1 Structured Data Representation and
XML

Structured data has been widely used in many soft-
ware development projects. In the case of compiler
development, compiler front-ends build abstract syn-
tax trees (ASTs), which represent structured syntactic
information of source code(Aho et al., 2006). A va-
riety of representations for structured data have been
developed to date(Snodgrass, 1989; Franz and Kistler,
1997; Wilson et al., 1994).

An attractive alternative is XML-based struc-
tured data representation. JavaML(Badros, 2000)
is a typical XML-based source code representa-
tion for ASTs, providing syntactic and semantic in-
formation after parsing Java source code. Once
software tools are implemented using the JavaML
representation, they can easily obtain information
about Java source code without the need for anal-
ysis. XSDML(Katsuhisa Maruyama, 2004) and sr-
cML(Jonathan I. Maletic and Kagdi, 2004) are other
representations in XML that support the represen-
tation of formatting information, including white
spaces and comments, in addition to ASTs. There-
fore, the original source code is restored from the
XML representation using the formatting information
in XSDML or srcML.

An XML representation is just static data, while
the representation in Sibon is dynamic, executable
code. Once a representation in Sibon is successfully
loaded, the parsing of the data is already done and the
representation can be executed. It is useful in recon-
structing Java objects from the representation.

2.2 Sibon as an Object Notation

The representation of structured data in Sibon is com-
posed of several elements. Each element has a value
and a name. Basically, one element ends with semi-
colon at the end of line, according to Scala syntax.
For example,

"April 1" .date;

which represents the value as “April 1” and the name
of the element asdate. The element is not just a data
representation, but internally, it is also an executable
method invocation without parentheses in Scala. The
methoddata can be executed using implicit conver-
sion methods.

In Sibon, a structure is represented using func-
tions as arguments. For example, Figure 1 shows that
theconfigwithout the value has three child elements:
time, drink, andplace. The time element’s value is
“programming,” thedrink element’s value is “coffee,”
and theplaceelement’s value is “coffee stand.”

We can use multiple elements in one line. This
action is not recommended, however, since the author
believes that simplicity is very important in represent-
ing structured data in Sibon.

config {
"programming" .time;
"coffee" .drink;
"coffee stand" .place;

}

Figure 1: An element with three child elements.

config {
pay {
340 .price;
0.05 .tax;
true .togo;
"April 1" .date;

}
"programming" .time;
"coffee" .drink;
"coffee stand" .place;
options {
"grande" .option;
"hot" .option;
"double-shot" .option;

}
}

Figure 2: Elements including primitive data types and a col-
lection.

Sibon supports nine primitive data types:byte,
char, short, int, long, float, double, boolean, and
string. For example, Figure 2 shows that thepayel-
ement has four child elements:price, tax, togo, and
date. Theprice element has an integer value 340, the
tax element has a float value 0.05, thetogo element
has a boolean value true, and thedateelement has a
string value “April 1.”

Basically, an element in Sibon cannot have more
than one child element with the same name. Recall
that a Java class has no more than one field with the
same name. An element in Sibon is a similar con-
struct as a Java class. In comparison, an element to
represent a collection can have more than one element
with the same name. In Figure 2, theoptionselement

A SCALA-BASED DOMAIN SPECIFIC LANGUAGE FOR STRUCTURED DATA REPRESENTATION

297



has three child elements with the nameoption. The
first option element’s value is “grande,” the second
optionelement’s value is “hot,” and that of the last is
“double-shot.”

If we need to represent an element linked to an-
other element across the structure, a unique iden-
tifier is given to the element, and another element
refers to the element using the identifier. Fig-
ure 3 shows that a uuid element with the identifier
u1da16a5ec767ddc7b5077855 is given to theplace
element. The identifier in the figure is calculated us-
ing java.util.UUID, which is represented using a sym-
bol in Scala; theplace element has a reference to
the unique identifier. This means that Sibon supports
graph-structured data. In the case that a Java pro-
gram writes graph-structured data to a file, after an-
other Java program reads the data from the file and
it constructs a graph data structure, bothplace ele-
ments become only one Java object. The value of the
uuid element can be freely modified using a prede-
fined method.

shops {
place {

’u1da16a5e_c767_ddc7b5077855 .uuid;
"Seattle, Washington" .location;

}
}
config {
"programming" .time;
"coffee" .drink;
’u1da16a5e_c767_ddc7b5077855 .place;

}

Figure 3: Elements including a uuid and the reference.

2.3 Definition of Structured Data

Structured data is defined using symbols in Scala and
predefined keywords as shown in Table 1. Figure 4
shows the definitions of the representation in Figure 2.
The definitions are as follows:

• configelement has five child elements:pay, time,
drink, place, andoptions.

• optionselement is a collection ofoptionelements

• pay element has four child elements:price, tax,
togo, anddate

• priceelement has an integer value

• taxelement has a float value

• togoelement has a boolean value

• dateelement has a string value

Table 1: Keywords to define structured data.

keyword meaning of the keyword
is child of composition of elements
is elementin seq collection of elements
is a specialization of an element
is type of primitive data type

(int, float, bool, string, et al.)

(’pay,’time,’drink,’place,’options)
.is_child_of ’config;

’option .is_element_in_seq ’options;
(’price,’togo,’tax,’date)

.is_child_of ’pay;
’int .is_type_of ’price;
’float .is_type_of ’tax;
’bool .is_type_of ’togo;
’string .is_type_of ’date;

Figure 4: An example of Sibon definitions.

2.4 Program Generation for Scala and
Java

Sibgen reads a Sibon definition, and it generates a
Scala program and Java programs. Figure 5 shows
the specification as follows;

is java package specifies the path “test.sibon” for
the Java package

is java prefix specifies addition of a prefix “Sbn” at
the beginning of the Java class name

is generated specifies generation of a programming
language

is generatedsibonsetup specifies generation
of Sibon-related programs to the file name
“setup.scala”

is generateddiagram specifies generation of a
class diagram for generated Java classes to the file
name “mydiagram.dot”

"test.sibon" .is_java_package;
"Sbn" .is_java_prefix;
"java" .is_generated;
"setup.scala" .is_generated_sibonsetup;
"mydiagram.dot" .is_generated_diagram;

Figure 5: Specification to generate Scala and Java pro-
grams.

Sibon is designed to map the representation to
Java classes. The SbnBase class is a base class for all
classes generated by Sibgen; it provides three fields:

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

298



value, nameanduuid. The Sibon representation and
related programs can be compiled and executed. The
Scala programs trigger instantiation one after another
and instantiate all Java objects.

2.5 Current Implementation

The implementation work has been performed on an
Apple MacBook with Mac OS X 10.6.3, Scala 2.7.7,
and Java 1.6.017. The program generator Sibgen is
written in Scala. It reads a Sibon definition file, gen-
erates a Scala program to set up, and generates Java
classes corresponding to all elements.

The Sibon representation changes to graph-
structured data using unique identifiers and refer-
ences. When a Java program, using Sibon APIs,
writes graph-structured objects to a file, the objects
with cyclic paths need only be written once. Sibon
APIs correctly serialize and deserialize them using the
algorithm mentioned in the paper(Birrell et al., 1993).

3 SUMMARY

This paper describes the development of Sibon, a new
data representation for graph data structures that uses
Scala syntax. One of its important features is that
the representation is executable. A program gener-
ator Sibgen for Sibon was also developed to create
programs from data definitions. It is useful for the
development of Java programs to read/write Java ob-
jects from/to persistent storage media, or to traverse
the structured data.

In the author’s experience, Sibon improves pro-
ductivity in the design and implementation of pro-
grams that manipulate graph data structures. Sibon
and its related tools are now being used for the devel-
opment of commercial products, including a compiler
front end. Research and development of Sibon will
continue to support creation other commercial soft-
ware products. The results will be published in a fu-
ture paper.

ACKNOWLEDGEMENTS

This research has been supported by the Kayamori
Foundation of Informational Science Advancement.

REFERENCES

Aho, A. V., Lam, M. S., et al. (2006).Compilers : Princi-
ples, Techniques, and Tools. Pearson Education, 2nd
edition.

Badros, G. (2000). JavaML: A Markup Language
for Java Source Code. In9th International
World 9th International Wide Web Conference,
http://www9.org/w9cdrom/index.html.

Birrell, A., Nelson, G., et al. (1993). Network objects. In
14th ACM Symposium on Operating Systems Princi-
ples, pages 217–230.

Fowler, M. (2009).MF Bloki: Domain Specific Language.
http://martinfowler.com/dslwip/.

Franz, M. and Kistler, T. (1997). Slim Binaries.Communi-
cations of the ACM, 40(12):87–94.

Jonathan I. Maletic, M. C. and Kagdi, H. (2004). Lever-
aging XML Technologies in Developinging Program
Analysis Tools. In4th International Workshop on
Source Code Analysis and Manipulation, pages 80–
85.

Katsuhisa Maruyama, S. Y. (2004). A CASE Tool Platform
Using an XML Representation A CASE Tool Platform
Using an XML Representation of Java Source Code.
In 4th International Workshop on Source Code Analy-
sis and Manipulation, pages 158–167.

Martin Odersky, Lex Spoon, B. V. (2008).Programming in
Scala: A Comprehensive Step-by-step Guide. Artima.

Mernik, M., Heering, J., and Sloane, A. M. (2005). When
and How to Develop Domain-Specific Languages.
ACM Computing Surveys, 37(4):316–344.

Snodgrass, R. (1989).The Interface Description Language:
Definition and Use. Computer Science Press.

Wilson, R. P., French, R. S., et al. (1994). SUIF: an Infras-
tructure for Research on Parallelizing and Optimizing
Compilers.SIGPLAN Notices, 29(12):31–37.

A SCALA-BASED DOMAIN SPECIFIC LANGUAGE FOR STRUCTURED DATA REPRESENTATION

299


