
UNIFYING SOFTWARE AND DATA REVERSE ENGINEERING
A Pattern based Approach

Francesca Arcelli, Gianluigi Viscusi and Marco Zanoni
Dipartimento di Informatica Sistemistica e Comunicazione, Università degli Studi di Milano Bicocca

Viale Sarca 336, Milano, Italy

Keywords: Data reverse engineering, Design pattern detection, Persistence frameworks.

Abstract: At the state of the art, objects oriented applications use data structured in relational databases by exploiting
some patterns, like the Domain Model and Data Mapper. These approaches aim to represent data in the OO
way, using objects for representing data entities. Furthermore, we point out that the identification of these
patterns can show the link between the object model and the conceptual entities, exploiting their associations
to the physical data objects. The aim of this paper is to present a unified perspective for the definition of an
integrated approach for software and data reverse engineering. The discussion is carried out by means of a
sample application and a comparison with results from current tools.

1 INTRODUCTION

The present paper discusses a first step towards the
definition of an approach to reverse engineering, pro-
viding a unified perspectives on software and data. To
this end, we first discuss an experience and a method-
ology for a repository based approach to data reverse
engineering (DRE) (Davis and Aiken, 2000), and the
main points of convergence with a design pattern
based approach for reverse engineering (Serge De-
meyer and Nierstrasz, 2008). The discussion of both
the perspectives supports the motivations for the uni-
fied approach described in the paper.

The paper is structured as follows. Section 2 dis-
cusses related works, by focusing in particular on con-
vergence between data and software reverse engineer-
ing. Section 3 describes design pattern detection for
DRE. Section 4 discusses the proposed unified ap-
proach, by introducing an example of a real applica-
tion. Concluding remarks and future work are dis-
cussed in Section 6.

2 RELATED WORK

In enterprise systems the separation between applica-
tion and data logics is mandatory and effective only if
both of them reach the same attention.

Nevertheless databases are often considered black

boxes where applications have to act in a blind and
costly way.

As noted in (J.L. Hainaut and Englebert, 2000)
the understanding of data structures and of programs
that manipulate them are strictly tied in providing the
full functional specifications of an information sys-
tem. Nevertheless, methodologies and approaches
providing a unified perspective have been poorly in-
vestigated in the literature; while, for example, con-
sidering only DRE, at the state of the art strate-
gies, methodologies, and tools for DRE have been
proposed and discussed (J.L. Hainaut and Englebert,
2000; Mian and Hussain, 2008).

In this paper we aim to point out that DRE pro-
vides not only the conceptual schemas allowing bet-
ter data governance, but also a domain model that can
be accessible at the application layer. The analysis
of such a convergence has been investigated at the
state of the art for example i) for detecting relational
discrepancies between database schemas and source-
code in enterprise applications, and ii) correlating the
information extracted from the database schema with
the usage of the database elements within the source
code (Marinescu, 2007).

Furthermore, objects oriented applications use
data structured in relational databases by exploiting
some known patterns, like theDomain Modeland
Data Mapperpatterns (Fowler, 2002).

The identification of patterns involved in data

208
Arcelli F., Viscusi G. and Zanoni M. (2010).
UNIFYING SOFTWARE AND DATA REVERSE ENGINEERING - A Pattern based Approach.
In Proceedings of the 5th International Conference on Software and Data Technologies, pages 208-213
DOI: 10.5220/0003010202080213
Copyright c© SciTePress

management represents a way of realizing a particu-
lar and important type of application exploration. Be-
side, the conceptual schemas of the databases provide
a domain model nearest to the applications model do-
main. Unfortunately conceptual schemas represent a
rare resource within organizations, and in particular in
large organizations with different and large informa-
tion sources, including not only relational databases.
Motivations for such a rarity depends on different fac-
tors: age difference between the deployment of vari-
ous legacy systems, lack of design skills and capabil-
ities in developers, time-to-market issues leading to
a poor attention to the design phase, major focus on
applications and relevance of what we can calltrans-
action script(Fowler, 2002) attitude, etc.

Exploiting patterns likeDomain ModelandData
Mapper it is possible to represent data in the object
oriented way, using objects for representing data en-
tities. These patterns are the glue between software
and data in object oriented systems. We argue that the
identification of these patterns shows the link between
the object model and the conceptual entities, walking
through their associations to the physical data objects
(i.e. relational tables, XML entities). In this way it is
possible to infer the knowledge gained about the data
and transfer it to the application, or vice-versa.

3 DESIGN PATTERN
DETECTION FOR DRE

The development of an enterprise system is a very
complex task; for this reason software engineers de-
cide to use architectural patterns for the design phase.
In the literature several architectural patterns have
been proposed (Fowler, 2002) and in particular there
are some architectural patterns designed for the inter-
action between the application and persistent data.

In this kind of applications the most common view
is the Data-centered view (Avgeriou and Zdun, 2005)
that sees the system as a persistent, shared data store
that is accessed and modified by a certain number of
elements. In this view we can find at least three archi-
tectural patterns:Shared Repository, Active Reposi-
tory andBlackboard.

The identification of this kind of patterns allows us
to identify the link between the application and per-
sistent data and through it we can increase the knowl-
edge on both the application and the persistent data.

A well-known and widely used Enterprise De-
sign Pattern has been proposed as a specialization of
the Shared Repository architectural pattern, and it is
very interesting in the Reverse Engineering phase: the
Data Access Object Pattern (DAO) (Alur et al., 2001).

It is defined as a way to abstract and encapsulate all
access to the data source. It manages the connection
with the data source to obtain and store data.

If engineers know about the presence and the lo-
cation of that pattern instance, he can directly know
the connected domain entity (business object). The
identification of the pattern instances is not very com-
plex because DAO patterns are often organized using
a Factory Methodor Abstract Factorydesign pattern,
so they belong to well-organized structures and look-
ing at factories it is possible to know all of them.

In the context of data-oriented patterns other pat-
terns have been proposed, for example in (Fowler,
2002), the author addresses many type of problem and
defines a set of patterns which are currently used in
many widely adopted persistence layer frameworks.
The identification of those framework instances can
be a good hint about the identification and manage-
ment of persistent entities; in addition a deeper analy-
sis can also reveal which type of technology has been
used in order to implement the persistence layer.

4 THE UNIFIED APPROACH

The detection of data-related patterns or frameworks
(see Section 3) in the application can lead to the iden-
tification of the domain model entities, looking at the
upper application layer, and to the connection of each
of those entities to the underlying relational table/s (in
the case of a relational database physical data layer).
Combining the gained knowledge carried out with
data reverse engineering techniques (seee Section 2),
that abstracts a relational database to a conceptual
schema, it is possible to associate conceptual data en-
tities to the object model entities, putting together the
knowledge about the two separated layers. A conse-
quence of these merging is for example the transfer
of the abstraction hierarchy defined on schemas to the
domain model, permitting an higher-level view of the
model itself. More generally this approach will bring
us towards an integrated view of application entities
and data entities, and their interdependencies. An ex-
ample of the approach is represented in Figure 1, that
shows how the entitye5 is recognized to be associ-
ated to the domain objectdo5, because they are both
associated to tablet4.

In this Section we discuss the steps of the pro-
posed unified approach. Considering the information
system of an hypothetical organization, the starting
input are (i) the available classes (software perspec-
tive), and (ii) the legacy database(s) (data perspec-
tive). Data and Software Reverse Engineering look
for similar concepts in data and software schemas, in

UNIFYING SOFTWARE AND DATA REVERSE ENGINEERING - A Pattern based Approach

209

Domain Model

do1

do2 do3

do4

do5 do6

 Data Mapper
DAO

6

DAO

1

DAO

2

DAO

5

DAO

3

DAO

4

SCHEMA DB

e1

e2 e3

e4

e5 e6

t1

t2

t3

t4

Figure 1: An example of integrated analysis.

order to evaluate their completeness and modify the
overall information system.

In order to provide a unified representation at con-
ceptual level, the proposed approach includes the fol-
lowing steps:

1. Code analysisin order to retrieve the software
structure and patterns.

1.1. Extract structurein order to retrieve software
classes, methods, generalizations, references.

1.2. Extract patternsthat represent potential use of
data entities,(e.g DAO, persistence layer, ecc.).

2. Extract data entities and relationshipsfrom log-
ical/physical schemas analysis, producing a first
skeleton of conceptual schema.

3. Compareclasses representing potential data enti-
ties with data entities, producing a unified schema
(see Figure 1).

3.1. Fill the gapbetween data and application layer
adding additional knowledge gained on the data
to the application and viceversa.

Once the conceptual schemas have been reengi-
neered it is possible to build the abstract schemas by
applying methods such as, for example, the ones de-
scribed in (Batini et al., 2005).

5 TOOL EXPERIMENTATION

In order to better explain our approach we experiment
three tools on a sample application, comparing the re-
sults of these tools with the results of our method-
ology. The sample application uses DAO to access
to a database. The target conceptual schema of the
database is shown in Figure 2.

Support

Center

Workstation

Unregistered
Customer

Registered
Customer

Game

Customer

Maintenance

Booking

(0,n)

(0,n)

(0,n)

(1,n)

(0,n)

name

telephone

surname

name

ID

date

cost

business

name

telephone

email

start

end

ID

expiration

date

Figure 2: The conceptual schema of the example.

The logical schema (see Figure 3) we use for the
example, derived from the conceptual schema, has
two important characteristics:

• the generalization was implemented using three
tables: this is a reasonable choice, because
the Unregistered Customer entity has no at-
tributes, whileRegistered Customer has two
attributes, and theCustomer entity is involved in
theBooking relationship;

• the foreign key between workstation
and maintainance and the one between
supportcenter andmaintainance are omitted:
this choice makes the example nearer to a real
scenario that can miss some foreign key.

In order to perform the experiment we used a
mysql RDBMS version 5.1 on a windows xp system.
The tools we experimented are:

• CA ERwin Data Modeler. Version 7.3

• IBM Rational Data Architect. Version 7.5

• Embarcadero ER/Studio.Version 8.0

Next we describe the results of the three tools, the
results of the application of our methodology showing
the steps of our approach on this example and a brief
comparison of the results.

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

210

Figure 3: The logical schema of the example.

5.1 Tools Results

The performance of the three tools are similar, they
are able to reconstruct only the logical schema and
they perform foreign key elicitation under very strong
assumptions: primary key and foreign key must have
same names and types; presence of indexes.

For this reason (as shown in Figure 5 (ERwin),
4 (Rational Data Architect) and 6 (ER/Studio)) the
tools were not able to reconstruct hierarchy rela-
tionships and they also were not able to recon-
struct the relationships betweenworkstation and
maintainance and the one betweensupportcenter
andmaintainance. The bold relationships in Figure
5 and 4 are the ones that not exist in the real schema.
In the following we discuss results for the considered
tools.

Rational Data Architect. This tool found some non-
existent relationship (see Figure 4): for exam-
ple it found every combination of relationships
betweencustomer, registered customer and
unregistered customer because all the three
table have the columnname andsurname.

ERwin. This tool found, like Rational Data Archi-
tect, some non-existent relationship (see Figure 5)
but they were only four. It found for example,
like Rational Data Architect, the relationship be-
tweenworkstation andregistered customer
becauseworkstation has the columnID as pri-
mary key andregistered customer has the

Figure 4: Rational Data Architect reverse engineering.

Figure 5: ERwin reverse engineering.

columnID as an attribute.

ER/Studio. This tool reconstructed only the declared
relationships, even enabling foreing key inference
by names and indexes (see Figure 6).

5.2 A Unified Methodology

In this Section we show our methodology applied to
the same example used above.

UNIFYING SOFTWARE AND DATA REVERSE ENGINEERING - A Pattern based Approach

211

Figure 6: ER/Studio reverse engineering.

5.2.1 Code Analysis

We apply static analysis techniques to reconstruct the
structure of the source code, following steps.

Extract Structure. This step collects source code
elements, exploiting static analysis. Many tools and
techniques are available to make this kind of anal-
ysis at this detail level, i.e. Doxygen1, Rational
Software Architect2, Moose3. Through this analy-
sis we are able to reconstruct the UML diagram of
the system. In Figure 7 is visible the reconstructed
domain entities’ UML class diagram that con-
tains: the relationships betweenWorkstation and
Maintainance and the one betweenSupportCenter
and Maintainance; the generalization between
Unregistered Customer andCustomer and the one
betweenRegistered Customer andCustomer.

Extract Pattern. This step uses the collected data and
recognizes the use of the DAO pattern. In this exam-
ple we perform a “manual” identification of the pat-
tern because the aim of our example is not the identi-
fication of pattern but showing a metodology for data

1http://www.stack.nl/ dimitri/doxygen/
2http://www-01.ibm.com/software/awdtools/swarchi-

tect/websphere/
3http://www.moosetechnology.org/

Figure 7: The domain entities’ reconstructed UML class
diagram.

and software reverse engineering. More in general
using pattern matching techniques, like the ones we
developed in our project Marple (Arcelli et al., 2008)
for design pattern detection, it is possible to imple-
ment recognition rules for this pattern.

5.2.2 Extract Data Entities and Relationships

The database schema is analyzed in order to build a
model keeping track of all the tables, with their at-
tributes, keys, and foreign keys. In the database model
there will be the two tables. For our purposes no in-
ference is needed but it’s sufficient to reconstruct only
the existent relationship like in Figure 3.

5.2.3 Compare

This task focuses on the mapping of tables to enti-
ties. In this particular case we must find the rela-
tionships between DAO implementations and tables
in the database. This phase depends on the way this
mapping is done: for example we can use some per-
sistence framework or directly the JDBC APIs (like in
the example). However the identification of the used
table is quite simple, through an automated or manual
inspection of the DAO implementation.

Fill the Gap. Finally it is possible to see if the defini-
tion of the application model satisfies the data model
constraints and viceversa. In this way we are able to
detect the inconsistencies in the table definitions ex-
plained above:

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

212

• the relationships between workstation
and maintainance and the one between
supportcenter andmaintainance are missing;

• the generalization between
unregisteredcustomer and customer and
the one betweenregisteredcustomer and
customer are missing.

6 CONCLUSIONS

In conclusion the example we described emphasizes
the usefulness of our approach. This approach seems
to be promising in the context of an integrated reverse
engineering process of both data and software.

Furthermore, the detection of data related pat-
terns could be done exploiting different tools for de-
sign pattern detection (DPD). We are working on
the development of a tool for DPD called Marple
(Metrics and Architecture Reconstruction PLugin for
Eclipse)(Arcelli et al., 2008), where the detection of
patterns is based on the recognition of micro struc-
tures that give useful hints of the presence of de-
sign patterns; the actual state of pattern detection
technologies brings poorer information than the one
extracted through the analysis of known persistence
frameworks, due to the higher explicitly of the repre-
sentation of the mappings, but this is the only fallback
in absence of known libraries.

In future work we will provide an architecture for
the proposed approach, implemented in Marple, as a
first prototype integrating DAO and other data related
patterns detection, and DRE techniques in order to ex-
ploit also the knowledge from available logical and
conceptual schemas.

ACKNOWLEDGEMENTS

We acknowledge Christian Tosi for support in early
application of the approach. We also acknowledge
Prof. Carlo Batini for suggestions and discussion of
the issues related to data reverse engineering.

REFERENCES

Alur, D., Crupi, J., and Malks, D. (2001).Core J2EE Pat-
terns: Best Practices and Design Strategies, 1/e. Pren-
tice Hall.

Arcelli, F., Tosi, C., Zanoni, M., and Maggioni, S. (2008).
The marple project - a tool for design pattern detection

and software architecture reconstruction. InProceed-
ings of the WASDeTT Workshop, co-located event with
ECOOP 2008 Conference, Cyprus.

Avgeriou, P. and Zdun, U. (2005). Architectural patterns
revisited - a pattern language. InProceedings of the
10th European Conference on Pattern Languages of
Programs (EuroPLoP 2005), Irsee, Germany.

Batini, C., Garasi, M. F., and Grosso, R. (2005). Reuse
of a repository of conceptual schemas in a large scale
project. InAdvanced Topics in Database Research.
Idea Book.

Davis, K. H. and Aiken, P. H. (2000). Data reverse en-
gineering: A historical survey.Reverse Engineering,
Working Conference on, 0:70.

Fowler, M. (2002).Patterns of Enterprise Application Ar-
chitecture. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA.

J.L. Hainaut, J. Henrard, J. H. D. R. and Englebert, V.
(2000). The nature of data reverse engineering. In
Data Reverse Engineering Workshop (DRE2000).

Marinescu, C. (2007). Discovering the objectual meaning
of foreign key constraints in enterprise applications.
In Proceedings of WCRE 2007: 14th Working Confer-
ence on Reverse Engineering, pages 100 –109.

Mian, N. A. and Hussain, T. (2008). Database reverse engi-
neering tools. InSEPADS’08: Proceedings of the 7th
WSEAS International Conference on Software Engi-
neering, Parallel and Distributed Systems, pages 206–
211. World Scientific and Engineering Academy and
Society (WSEAS).

Serge Demeyer, S. D. and Nierstrasz, O. (2008).Object-
Oriented Reengineering Patterns. Square Bracket As-
sociates.

UNIFYING SOFTWARE AND DATA REVERSE ENGINEERING - A Pattern based Approach

213

