PERFORMANCE OPTIMIZATION OF EXHAUSTIVE RULES IN
GRAPH REWRITING SYSTEMS

Tamas Mészaros, Mark Asztalos, Gergely Mezei and Hassan Charaf
Department of Automation and Applied Informatics, Budapest University of Techology and Economics
Goldmann Gyorgy tér 3, Budapest, Hungary

Keywords:

Abstract:

Model transformation, Graph rewriting, Model-driven engineering, Exhaustive matching.

Graph rewriting-based model transformation is a well known technique with strong mathematical background

to process domain specific models represented as graphs. The performance optimization techniques realized
in today’s graph transformation engines usually place focus on the optimization of a single execution of the
individual rules, and do not consider the optimization possibilities in the repeated execution. In this paper
we present a performance optimization technique called deep exhaustive matching for exhaustively executed
rules. Deep exhaustive matching continues the matching of the same rule from the next possible position after
a successful rewriting phase, thus we can achieve noticeable performance gain.

1 INTRODUCTION

Domain-specific modeling (DSM) is a powerful
technique to describe complex systems in a well-
understandable yet precise way. The strength of DSM
lies in its property, that the language itself is special-
ized for a concrete application domain, therefore it
can efficiently describe systems in the domain.

Such models may be the source of other mod-
els, source code or even documentation, therefore, ef-
ficient tools are required to perform the conversion
between the different formats. As domain-specific
models are often represented by directed, attributed
graphs, a possible method to perform the conversion
is graph transformation (Ehrig et al., 2006). Latest
modeling environments also start to incorporate graph
transformation engines for model processing. It is es-
sential however, to reduce the execution time of the
transformations to save development time.

A graph transformation system in the mathemat-
ical sense consists of a set of graph production rules
that describe the individual modification steps on the
host graph. A production rule consists of two parts:
the left-hand side (LHS) pattern that must be found in
the host graph, and the right-hand side (RHS) that re-
places the found pattern during the execution. Search-
ing for the LHS pattern is usually called the matching
phase of the rules, while the replacement of the LHS
is often referred to as the rewriting phase.

The execution time of the rewriting phase can be

292

Mészaros T., Asztalos M., Mezei G. and Charaf H. (2010).

considered constant (i.e. it does not depend on the
size of the host graph). Thus, the bottleneck of a rule
application is the matching phase: it determines the
speed of the overall transformation. Unfortunately,
the problem of matching an isomorphic subgraph is
NP complete in the size of the subgraph. However,
heuristic methods produce reasonably fast solutions.

Although, there are several different graph trans-
formation tools available (Varré et al., 2006; Geil3
et al., 2006; Ziindorf, 1996), they follow the same rule
application principle: the execution of the production
rules is completely separated. After the execution of a
production rule, the information regarding the match
is thrown away, the matching phase of the same or
next production rule starts from scratch.

In this paper, we present a novel approach, that op-
timizes the execution speed of exhaustively executed
rules. Deep exhaustive matching optimizes the exe-
cution of a rule by not restarting the matching from
scratch after a successful rewriting, but continuing it
from the next potential point. Exhaustive execution
means, that the same rule is executed as long as a
match can be found. In our approach, we assume
deterministic rule application: the rules follow each
other according to a strict order while the matches of
an individual rule are chosen arbitrarily.

PERFORMANCE OPTIMIZATION OF EXHAUSTIVE RULES IN GRAPH REWRITING SYSTEMS.
In Proceedings of the 5th International Conference on Software and Data Technologies, pages 292-295

DOI: 10.5220/0003008402920295
Copyright © SciTePress

PERFORMANCE OPTIMIZATION OF EXHAUSTIVE RULES IN GRAPH REWRITING SYSTEMS

2 BACKGROUND

In this section, we present the necessary definitions
and the execution semantics of graph rewriting rules.
The basic definitions of typed-graphs, E-graphs, at-
tributed typed graphs are understood according to
(Ehrig et al., 20006).

Definition 2.1. (Match). The match m of L subgraph
in the G host graph is an injective morphism m : L —
G.

We transform graphs with attributes, thus instead
of graph productions we use typed attributed graph
productions. These productions consist of graphs at-
tributed over a term algebra Tpgs;g(X) with variables
X (Ehrig et al., 2006).

Definition 2.2. (Graph Production). Given an at-
tributed type graph AT G with a data signature DSIG.

A typed attributed typed graph production p = (L L

K 5 R, X) consists of typed attributed graphs L, K, R
with a common DSIG-algebra Tpsi(X) and a set of
constraints X. Also, we have injective L, r.

A production p = (L Ly R, X) is applicable
to a typed attributed graph G via the match m if there
exists a context graph D such that (1) is a pushout
and m satisfies constraints X, i.e. m = X;.

L<-+—K——R

o
G=</—D

In our implementation the set of constraints Xj
is expressed using the Object Constraint Language
(OCL) (OMG, 2006).

In the following we illustrate traditional matcher
and rewriting algorithms for single and exhaustive
rule execution. Recall that the matching phase can
be considered as an isomorphic subgraph searching
problem, with the extension, that the nodes and the
edges of the graph are typed and attributed, further-
more, constraints (e.g. OCL (OMG, 2006)) can be
assigned to both the individual elements and to the
entire match as well.

The matching algorithm itself is usually very sim-
ple. It iterates through the elements of the pattern
graph in an appropriate order, and searches for a
matching element satisfying the following conditions
for each of them. (i) The type of the matched ele-
ment should be equal to (or compatible with - in case
of inheritance) the type of the pattern element, (ii) it
should satisfy the individual constraints of the related
pattern element, and (iii) of course, the found element
should be connecting to the already matched parts to
ensure the edge preserving property of the mapping

between the host graph and the pattern graph. Con-
dition (iii) expresses, that if a node and an edge is
connecting in the pattern graph, then their images in
the host graph should be connecting as well.

The execution of a typical exhaustive rewriting
rule is illustrated by Algorithm 1.

Algorithm 1. Exhaustive rewriting rule execution.
1: while EXECUTE,(G) do

2: nop

3:

4: function EXECUTE,(G)

5: forall e; € T](G) Z'Ypl(el) do

6: for all e; € T5(G) : y,2(e2) do

7:

8: for all e, € 7,,(G) : 7y (e,) do
9: ify,(<ei,...,e, >) then
10: REWRITE,(G,< ey,...,e, >)
11: return true

12:

13: return false
14: end function

EXECUTE, implements the p rewriting rule ex-
ecuted over the G host graph. The algorithm consists
of nested cycles: one cycle is assigned for each p'
element in the pattern graph. T7;(G) denotes those
elements of the G host graph, the type of which is
compatible with the p' pattern element in the p rule.
Y,i(ei) summarizes the conditions (i) and (iii). I.e.
it returns frue, if e; satisfies the individual constraint
assigned to it in the p rule, and if ¢; .. e; elements
preserve the edges of p. If a matching element has
been found for each element of the pattern graph,
then the global constraint for the pattern is verified
(vp(< e1,...,en >), and the rewriting is performed
(REWRITE,(G,< el,...,e, >)). In case of exhaus-
tive execution, the rewriting algorithm is applied in a
loop as long as a match can be found.

Recall that most graph transformation engines ap-
ply an algorithm similar to the presented one. The
main differences in the implementations are the data
structures they use to represent the graphs, and the
order of the pattern elements processed during the
matching. The order of the pattern elements is often
referred to as the search plan of the rule. The search
plan highly influences the overall speed of the match-
ing phase.

293

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

3 DEEP EXHAUSTIVE
EXECUTION

A drawback of Algorithm 3 is that after finding a
match for p, and performing the rewriting phase,
the EXECUTE), function immediately returns, and
the current state of the forall cycles is dropped. A
straightforward idea is to discover, when and which
cycles could continue searching provided that the re-
maining matches are still valid matches in the host
graph.

The rewriting phase (REWRITE)) of a rule may
modify the host graph in the following six ways, or in
their combination:

1. Create a new element, that cannot be matched by
either p' pattern element. (¢;)

2. Modify the attributes of an existing e; element
without influencing the evaluation of either v,; or

Yp- (¢2)
3. Delete an e; element from the host graph. (¢3)

4. Modify the attributes of a matched e; element, and
changing thus 7, or Y, from frue to false. (¢4)

5. Creat¢ a new element, that can be matched by ei-
ther p'. (@s)

6. Modify the attributes of a matched e; element,
with the possibility to change either y,,; or Y, that
was previously false to true (not only for the cur-
rent match, but all the other matches as well). (@¢)

Note, that @, properties are verified not for a spe-
cific < eq,...,e;, > match and G host graph, but in-
dependently from them. The matcher algorithm is
created based on the transformation definition only,
thus, no further overhead is necessary at runtime.
However, it will not be able to exactly evaluate each
property without the host graph and the match. We
have created a reference implementation that verifies
the @, properties. It is capable of handling primi-
tive cases only (with simple attribute modifications,
and attribute relations). If the heuristics cannot eval-
uate @, unambiguously, then in case of @Q4,9s5,@¢
we assume, that REWRITE), has those properties.
This is important not to loose matches or find invalid
matches.

¢; and @, are irrelevant for the matcher algo-
rithm. Cases @3 and @4 express, that the current
< ey,...,e;, > match became invalid, because e; has
been changed (or deleted) in a way, that it cannot
be part of a valid match anymore. Thus, because
eit1...e, are matched after e;, they are considered to
be invalid as well. If there are several such e; ele-
ments, and the one with the smallest i index is ey,

294

then < ey, ...,emuin—1 > partial match can still be ex-
tended to a valid < ey, ..., epin—1, €min’, ..., €, > match.
This idea is called deep matching and is illustrated by
Algorithm 2.

Algorithm 2. Exhaustive rewriting rule execution
with deep matching.

1: while EXECUTE,(G) do

2: nop

3:

4: function EXECUTE,(G)

5: foundOne := false

6: foralle; € T1(G): 7, (e1) do

7.

8: for all e, € Tin(G) : Y i (emin) do
9:
10: for all e, € T,,(G) : 7 (e,) do
11: ify,(<ei,...,e, >) then
12: REWRITE,(G,< e1,...,e, >)
13: foundOne := true
14: goto nextTurn
15:

16: label nextTurn:
17:

18: return foundOne
19: end function

The difference with the original exhaustive algo-
rithm is, that after performing the rewriting phase, in-
stead of leaving the function, the control jumps to the
end of the forall cycle body for matching e,;;,. The
< eq,...,emin—1 > partial match is kept, and the match-
ing continues with the following element for p"".

®s and Qg express, that the modification of the
host graph may produce further matches by creating
new elements or modifying attributes of existing el-
ements. If REWRITE, has the @5 or Qg properties,
then no further modification of Algorithm 2 is needed,
as the possible new matches are discovered in the next
turn of the top level while cycle.

3.1 Example

Let us consider the hostgraph and the rewriting rule
illustrated on Figure 1.

The rule matches a p' element of type A con-
nected to a p> element of type B (for the sake of sim-
plicity, the edges are not typed and labeled in this
case), and deletes the p? node and the connecting
edge. This rule is executed in an exhaustive manner.
Using Algorithm 1, the cycle for p! would match e.g.
ai, the cycle for p2 would match /; finally, p3 would
match b;. Then, after deleting /; and b;, the match-
ing would start from scratch, and pl would match a;

PERFORMANCE OPTIMIZATION OF EXHAUSTIVE RULES IN GRAPH REWRITING SYSTEMS

plLA

al:A a2:A
11 12 14
b1:B b2:B b3:B b4:B b5:B
G:Host graph Rewriting rule

Figure 1: Deep exhaustive execution example.

again. In contrast, Algorithm 2 does not exits the
EXECUTE function, instead, it continues the cycle
matching the p? edge, and finds e.g. /> and so on.

4 RELATED WORK

Incremental pattern matching (Varr6 and Varro,
2004) is an online technique implemented in VIA-
TRA2 (Varr6 et al., 2006) to store parts of matches
and to reuse them in another rewriting rules within
the same transformation. Their approach uses sophis-
ticated data structures and algorithms to store matches
and to efficiently update the data structures during
the transformation. The drawback of this approach is
that it performs much computation at runtime, and the
overhead of maintaining these data structures in com-
plex cases may make the transformation even slower
compared to the non-optimized version. VIATRA2
uses a cost model to generate a search plan for the
execution of a rule. Cost calculation is based on the
creation of a search graph, which models the basic
operations of the matching as nodes, and the weight
of the connecting edges is derived from the number
of potential backtracks during matching an element.
The search plan is calculated by finding a minimum
directed spanning tree in the search graph.

The cost model of GrGen.NET (Geil} et al., 2006)
extends the solution of VIATRA2 by considering the
cost of performing a primitive step in the matching as
well. Furthermore, instead of optimization by search-
ing for a minimum directed spanning tree in the plan
graph, the solution searches for a minimum multi-
plicative directed spanning tree, minimizing thus, the
product of the costs instead of their sum, thus, they
can reach more accurate solutions.

The PROGRES (Ziindorf, 1996) approach is sim-
ilar to that of VIATRA2 and GrGen.NET. However,
cost calculation does not take into account the statis-
tics of the current host graph or the properties of the
metamodel of the host graph, but uses the assump-
tions based on a typical domain the tool is planned to
be used on.

S CONCLUSIONS

In this paper, we have presented an optimization tech-
nique for exhaustively executed rewriting rules. Deep
exhaustive execution accelerates the matching phase
of a single rule. It is based on the idea, that if the same
rule is executed repeatedly, in certain circumstances
the matching can be continued from a later point in
the algorithm without starting the complete process
anew. Although, we cannot present the measurement
results due to space limitations, depending on the type
of the host graph and the transformation rules we have
achieved even more than an order of magnitude de-
crease of the execution time. Our future research in-
terest includes elaborating more precise heuristics to
discover the applicability of the technique: deep ex-
haustive execution requires more sophisticated solu-
tions to evaluate the still valid parts of the match after
the rewriting phase.

REFERENCES

Ehrig, H., Ehrig, K., Prange, U., and Taentzer, G. (2006).
Fundamentals of Algebraic Graph Transformation
(Monographs in Theoretical Computer Science). An
EATCS Series. Springer-Verlag New York, Inc., Se-
caucus, NJ, USA.

Geif3, R., Batz, G. V., Grund, D., Hack, S., and Szalkowski,
A. (2006). Grgen: A fast spo-based graph rewriting
tool. In ICGT, pages 383-397.

OMG (2006). Object Constraint Language, version 2.0.
http://www.omg.org/technology/documents/formal/
ocl.htm.

Varrd, G. and Varrd, D. (2004). Graph transformation with
incremental updates. In Proc. GT-VMT 2004, Interna-
tional Workshop on Graph Transformation and Visual
Modelling Techniques, volume 109 of ENTCS, pages
71-83. Elsevier.

Varré, G., Varrd, D., and Friedl, K. (2006). Adaptive
graph pattern matching for model transformations us-
ing model-sensitive search plans. In Karsai, G. and
Taentzer, G., editors, GraMot 2005, International
Workshop on Graph and Model Transformations, vol-
ume 152 of ENTCS, pages 191-205. Elsevier.

Ziindorf, A. (1996). Graph pattern matching in progres. In
Selected papers from the 5th International Workshop
on Graph Gramars and Their Application to Com-
puter Science, pages 454468, London, UK. Springer-
Verlag.

295

