
AUTOMATIC GENERATION OF DATA MERGING PROGRAM
CODES

Hyeonsook Kim, Samia Oussena, Ying Zhang
Model Driven Research Centre, Thames Valley University, Saint Mary’s Road, London, U.K.

Tony Clark
Department of Computing, Middlesex University, London, U.K.

Keywords: Data Merging Meta-model, Data Integration, Model Driven Engineering, Model Driven Data Integration,
Automatic Model Transformation, Automatic Program Code Generation.

Abstract: Data merging is an essential part of ETL (Extract-Transform-Load) processes to build a data warehouse
system. To avoid rewheeling merging techniques, we propose a Data Merging Meta-model (DMM) and its
transformation into executable program codes in the manner of model driven engineering. DMM allows
defining relationships of different model entities and their merging types in conceptual level and our
formalized transformation described using ATL (ATLAS Transformation Language) enables automatic
generation of PL/SQL packages to execute data merging in commercial ETL tools. With this approach data
warehouse engineers can be relieved from burden of repetitive complex script coding and pain of
maintaining consistency of design and implementation.

1 INTRODUCTION

A Data Warehouse (DW) is a collection of
integrated subject-oriented data bases designated to
support the decision making process (Kimball et al,
2002). Building a DW involves processes that
combine data with various formats and present a
unified view of the data, as well as extract data from
different sources and cleanse inappropriate data. DW
has become very popular choice for many enterprise
systems such as business intelligence and more of
enterprise systems data needed to be added to the
data warehouse. To support the growing demands of
DW development, ETL (Extract-Transform-Load)
processes have supported a systematic framework
for the extraction of the data from heterogeneous
data sources, and its transformation; cleansing,
converting, and loading them into the data
warehouse. According to (March et al, 2007), ETL
processes are not only important for design and
maintenance of DW but also key factors for the
success of DW projects. In this context, various
approaches have been proposed in order to improve
the ETL engineering.

Applying Model Driven Engineering (MDE) to
ETL processes is one of the attractive approaches.
The approach reduces the complexity of ETL design
by decoupling data and meta-data and improves
communication between domain experts and
developers by using graphical model design. It also
increases productivity due to the reduced amount of
handcrafted coding and of rework for maintenance.
This is achieved by defining an abstracted model
first and transforming it into program codes. Thus,
ETL working codes can be derived and maintained
from well defined ETL models which are described
in abstracted level and gradually mapped into
concrete level.

 A number of these MDE approaches have been
proposed either as a UML extension or as their own
graphical notation for conceptual ETL data mapping
design (Mora1 et al, 2004), (March et al, 2007). A
meta-model for process has also been proposed to
apply MDE to workflow and scheduling in DW
(Bohm et al, 2008). Muñoz et al have proposed not
just a design model but a whole conceptual data
integration framework (Muñoz et al, 2009).
However most of these works address the whole
ETL process and do not consider the problems

179
Kim H., Oussena S., zhang Y. and Clark T. (2010).
AUTOMATIC GENERATION OF DATA MERGING PROGRAM CODES.
In Proceedings of the 5th International Conference on Software and Data Technologies, pages 179-186
DOI: 10.5220/0003008301790186
Copyright c© SciTePress

which need to be addressed in each DW building
phase. Furthermore, they have rarely demonstrated
how to integrate industrial standards in their
approaches. The details of previous research works
are described in section 6.

In this paper, we mainly focus on model driven
data merging approach to address problems in data
merging domain. Based on a real case study of a
DW development project, we propose a data
merging system to generate executable merging
codes from conceptual design. A Data Merging
Meta-model (DMM) was proposed for design of
merging models at conceptual level. Common
Warehouse Meta-model (CWM), an industrial
standard for data warehouse modeling, was also
used for design of merging models at physical level
(CWM, 2008). The proposed system provides
transformation of DMM into CWM. By using the
standard, it allows not to be bound to a particular
tool but allows the use of any DW development
environment. Through this system, data warehouse
engineers can develop a unified data schema by
creating abstractions that help them program in
terms of their design intent rather than the
underlying computing environment. The executable
data merging codes can be obtained from CWM
merging models since ETL tool vendors provide
code generation from CWM.

The rest of this paper is structured as follows.
Section 2 presents model driven data warehousing
providing both the general approach and ours. The
proposed data integration framework and merging
meta-model were described in the section as well.
Section 3 shows our implementation works
illustrating the system architecture, target meta-
model; CWM and transformation rules. A case study
to which we applied the proposed model driven
approach is introduced in Section 4. Finally related
works are given in section 5 and conclusions in
section 6.

2 MODEL DRIVEN DATA
INTEGRATION

The whole data warehousing processes can be
divided into four phases; (1) analyzing and
understanding data in the different data sources, (2)
preparing and collecting data into staging area;
usually one physical platform, (3) combining data
through data cleansing, merging, and transformation,
which covers most ETL processes, (4) and finally,
customizing data into different presentation
according to application purposes (Rahm et al,

2000). Through each data process, data sources are
gradually reformatted and moved into target
schemas. The processes can be easily executed and
maintained by controlling data from models within a
model driven approach.

In this section, we introduce general model
driven approach with two representative methods
and discuss our own approach which is implemented
utilising the general approach.

2.1 General Model Driven Approach

Model Driven Engineering (MDE) is a software
engineering methodology uses models as primary
artefacts that drive the whole development process
through model transformations. Over the years
model based development has gained rapidly
increasing popularity across various engineering
disciplines. The representative two approaches are
presented in this section.

2.1.1 Model Driven Architecture

Model Driven Architecture (MDA) is the first
initiative of MDE which uses UML as modeling
language and OCL (Object Constraint Language)
and QVT (Query/View/Transformation) as model
transformation language (OCL, 2008), (Kleppe et al,
2003). It is launched by the Object Management
Group (OMG) in 2001 and mainly focuses on
forward engineering like producing code from
abstract and human-elaborated modeling diagrams
separating design from architecture.

 MDA uses the Platform Independent Model
(PIM) which represents a conceptual design to
realize the functional requirements. PIM is translated
into one or more Platform Specific Models (PSMs)
that computer can run. Accordingly, model
transformations which support conversion between
PIM and PSM are particularly important for the
realization of MDA.

Most software development IDEs support MDA
by providing UML modeling and code generation
from the UML models but there are many critics that
UML is too generic to describe domain specific
problems. Another direction is to develop domain
specific languages designed to solve common model
transformation tasks. Indeed, this approach has been
widely taken recently by the research community
and software industry. As a result, a number of
model transformation languages have been proposed
(Marcos et al, 2006), (Greenfield, 2004).

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

180

2.1.2 Eclipse Modeling Framework

Eclipse is one of the most popular IDEs. It provides
convenient pluggable architecture. It also provides a
meta-meta-model called ecore and its own modeling
framework for MDE (Dave et al, 2008). This
framework generates the model development
environment automatically. Developers can design
their own models and transform them into target
models once a specific domain model is designed as
a meta-model based on ecore.

In addition to this, there are several open source
plug-ins that facilitate model driven development
based on Eclipse modeling framework with various
functionality. For example, ATLAS Model Weaver
(AMW) extends eclipse modeling framework for
model to model conversion Macros, 2006). It
enables to combine different models together and
generate new one by establishing relationships
between models using their weaving meta-model.
For model transformation, it also provides a
transformation language, called ATL, correspondent
to QVT (Query/View/Transformation) of OMG
(Allilaire et al, 2006).

2.2 Our Approach

We applied MDA to the whole data integration
processes by designing PIM models in each DW
development phase. PIM models then transformed
into PSM models and real codes. Since existing ETL
tools do not provide PIM modeling for data merging,
we proposed a data merging PIM meta-model which
allows conceptual design and model transformation
into existing ETL standard. The ATLAS
transformation language and toolkit have been used
for the implementation of the transformation.

2.2.1 Data Integration Framework

It is well known that conceptual models (PIM)
provide not only guidance how to integrate actual
data but automated generation of real code which is
ready for execution according to MDA viewpoints.
In this context, transformations between PIMs and
PSMs, and between PSMs and real codes are
necessary for each modeling phase of DW. For data
integration, it is also required to define and use
different models for each data integration phase;
data source model, extraction model, merging model
and customized model.

In general, modeling starts from the highest
abstraction layer and goes down to concrete codes
layer. However, most Data Source PIMs and PSMs
can be derived from real data sources through

reverse transformation since existing data sources
have their own schema or structure by which PSM is
drafted. Extraction PIMs are usually designed on the
basis of Data Source PIMs analysis and transformed
into PSMs and program codes in turn later. Merging
PIMs are commonly designed after building data
cleansing strategy and then transformed into PSMs
and merging execution codes. Based on unified data
model, Customized PIMs are also built in order to
present data in different way.

2.2.2 Data Merging

In this paper, we concentrate on model driven data
merging. Data merging in data warehousing includes
combining and moving data into target schema as
well as creation of new data schema in order to
provide a unified view. In terms of MDE, data
schemas and data combing rules can be model
entities which describe attributes of each data entity
and relationships of the entities. In particular, a data
merging model has to depict how to move data from
existing source data entities into new target data
entities. Since a data entity is a set of data attributes,
not only relationships between data entities but also
relationships between data attributes should be
addressed for data merging.

Data merging modeling starts from investigating
overlapped data from each data source. Once
corresponding pairs of duplicated data are identified,
a number of design issues lead to concerns including
whether preserve the duplicated data or how to keep
data consistency between indirect references as well
as direct ones. However, once decision of how to
merge the data is made, the actual merging can be
simple repetitive routines in abstraction. The
abstractions can be represented as three patterns;
Join, Union, and Association. Join keeps all data
from one leading data source and copies data
excluding duplicated parts with the leading one from
the other data sources. Union combines all data from
each data sources without discarding any data.
Association updates only relationship constraints
between data sources and target. They are described
as DMType model element in the proposed
conceptual data merging model.

2.2.3 Proposed Data Merging Meta-model

We propose a Data Merging Meta-model (DMM) to
support data merging design in the early stage of
DW development. It describes merging models at
conceptual level based on UML and rule description.
A model includes model elements from different
data sources and their relationships. These

AUTOMATIC GENERATION OF DATA MERGING PROGRAM CODES

181

relationships of meta-data realize data mappings that
describe how to move each source data to target one.
Figure 1 describes our DMM.

Figure 1: Data Merging Meta-model.

The root element of the model, DMModel, is
composed of several elements; DMType,
DMElement, and DMLink. The full description of
each element is provided in (Kim et al, 2009).

Figure 2: An Example of Data Merging PIM.

Using this model, data merging in DW can be
designed abstractly. As an example, a simple data
merging between two meta-data is presented in
Figure 2. In this example, two school model
elements from a student record management system
and a course marketing system respectively are
shown. They have exactly same data structure but
they are differentiated by the reference to faculty
object named CM_Faculty. It means that not only
data itself but also the other things such as the object
reference and data constraints have to be considered
when the two elements are merged. We merged
them using DMJoin defining UE_School as a
leading data source and describing detailed attribute
mapping as a rule shown below. This rule can be
expressed with graphic notation such as arrow in
more advanced graphic editor.

The ruleCreateElment_MG_School describes
how to map the attributes of source elements;
UE_School and CM_School, to the target element;

MG_School. The rule has a set of {sources, targets}
and targets has a set of {target element name, a set
of attributes mapping}. An attribute mapping is
expressed with arrow directing from a source
attribute to a target attribute. In this example,
DMJoin moves only overlapped data sets of
CM_School. If the merging type is DMUnion, it
would move the first source element into a target
element on the ‘insert’ basis and the others on the
‘update and insert’ basis. All data from UE_School
inserted into MG_School then CM_School data
updated School_ID attribute of existing data set only
if the same Name attribute data is found in existing
data. As <CM_Faculty> is an object reference, not
only data value but also an object constraint has to
be changed. The reference object is change from
CM_Faculty to MG_Faculty in this example.

3 IMPLEMENTATION

In our approach, data merging process is launched
by designing a conceptual merging model in DMM.
This model is then automatically converted into a
CWM model by executing the implemented
transformation engine. After then, the executable
merging program is finally created through
importing the generated CWM model into an ETL
tool. In this section, we discussed the
implementation detail including system architecture,
CWM specification and transformation rules.

3.1 System Architecture

We implemented a data merging system including
the transformation engine based on ATL toolkit and
the engine exports generated CWM models as file
format. All processes and architecture are illustrated
in Figure 3.

The DMM Editor takes DMM model as input
and generates CWM model. For this, both DMM
meta-model and CWM meta-model were interpreted
and deployed as ecore format. Based on these ecore
models, transformation rules have been
implemented. Rule component of Transformation
Engine container consists of rules for mapping of
DMM into CWM while Help Context component
comprises functions and utilities for type checking,
condition management and etc. Details of
transformation rules are presented in Section 3.3.2.

DMM Editor exports the CWM model according
to interchangeable CWM model specification which
DW vendors can import. The imported model
contains both skeletons and logics inside to execute

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

182

Figure 3: Data Merging System Architecture.

data merging but is not bound with actual schemas
of data sources. Therefore the additional work to
bind it with physical data schemas and make
synchronization between them is necessary. After
that, the merging code are generated, deployed an
executed into target platform.

3.2 Common Warehouse Meta-model

CWM is a specification describing objects and
relationships in the context of data warehousing.
Since data warehouses pull in data from many
different digital sources, CWM includes a
comprehensive set of data models for data structures
such as relational databases, flat files, and XML.

OMG announces MOF bridges the gap between
dissimilar meta-models by providing a common
basis for meta-models. Consequently, the models
described by DMM can be interchanged with the
models conform to CWM since both are MOF-
conformant.

Figure 4: Part of Common Warehouse Meta-model.

CWM was designed in line with aim of providing
interchange of all warehouse meta-data that
describes all warehouse data element including data
sources, transformations and data targets, and all
warehouse processing element including scheduling,

status reporting and history recording. Thus the
meta-model specification of CWM cover all
warehousing area, from the foundation of data types
and type mapping, to management of warehouse
process and operation. Among the whole meta-
model, we have only referenced the parts related to
data merging. For example, Figure 4 shows
relational meta-model of CWM to describe data
sources and data targets. It presents the attributes of
tables, columns and data types, and the relationships
between them (CWM, 2008).

3.3 Model Transformation

MDE can be completed through constant model
transformations from abstract level to concrete one.
As mentioned in Section 2.1, there are several MDE
initiatives that suggest their own meta-model and
transformation language. (Frédéric et al, 2006)
summarizes the main characteristics of
representative transformation languages; QVT and
ATL, comparing their technology and functionality
in architectural view to help software developers
compare and select the most suitable languages and
tools for a particular problem. The reasons we
settled upon ATLAS architecture are; abundant data,
steady maintenance, and support of transformation
development toolkit, although QVT is considered as
an industrial standard in MDA. This section presents
ATL and transformation of DMM into CWM using
ATL.

3.3.1 ATLAS Transformation Language

ATL provides both the language for description of
model transformations and the toolkit for execution
of the model transformations. The architecture for
ATL toolkit is shown in Figure 5. It was developed
on the top of Eclipse platform aiming to offer ways
to produce a set of target models from a set of source
models. Source meta-model and target meta-model
should be defined first subsequently target instance

AUTOMATIC GENERATION OF DATA MERGING PROGRAM CODES

183

model is generated from input source model by
ATL. The transformation rule between source model
and target should be written in ATL language.

Figure 5: ATLAS Toolkit Architecture.

ATL language is used to create an ATL module that
describes and executes transformation in the toolkit.
Besides its header, an ATL module is composed of a
set of ATL rules. Each rule defines the way of
transforming an input element into a target element.
A rule is composed of an InPattern and OutPattern.
The InPattern declares a typed variable which
corresponds to the rule input element. During the
execution of the ATL transformation, this variable
will correspond to the source element currently
being matched. The OutPattern declares a typed
variable which corresponds to the rule output
element. The OutPattern also specifies a set of
Binding elements. A Binding describes how a given
feature (an attribute or a reference) of the target
element is initialized. This initialization must be
specified as an OCL expression (Allilaire et al,
2006).

3.3.2 DMM2CWM Transformation

Converting DMM into CWM means that
DMElements are mapped to a relational data
element. For example, source DMElement references
existing data table while a target DMElement creates
new data schema. The full description of
transformation rule is listed in Table 1.

To automate this model transformation, we
implemented a transformation module using ATL.
At first we created both of input and output ecore
models from DMM and CWM in UML. These ecore
models are recognized as meta-model of input and
output respectively, for the transformation. Then the
transformation rules in Table 1 were implemented in
ATL language as partly shown in Figure 6.
DMElement is converted into Table element,
DMType to Transforamtion element, and An
Assocation to Link element, for example.

Table 1: Transformation Rule.

DM Transformation Rule

DMEle
ment

-If DMElement is connected with
DMSource link, generate a reference to an
existing table.
- If DMElement is connected with
DMTarget link: create new table schema
including primary key and foreign key
constraints.
-If an attribute of DMElement is not a
primitive type, change table constraints on
foreign key to reference a proper element.

DMUni
on

-Create data mappings as much as the
number of DMSource links.
-According to the mapping order in rule
script, each data mapping from a source to a
target is transformed into each attribute
connection between source and target
elements in turn.
- If attributes of source and target are not
same type, insert data type change function
before mapping data.

DMJoin

-Create a data mapping using joiner entity
to merge source elements
-From rule script, joining condition and
mapping sequence are determined.

DMAsso
ciation

-Change target table schema
-Update target table schema to reference a
source table with foreign key constraint.

DMLSo
urce/D

MTarget

- No correspondent transformation. Just
indicate whether a linked DMElement is a
source element or a target one.

Once an input merging model is designed, the

correspondent output model is generated
automatically by executing the transformation in
ATL runtime toolkit.

Figure 6: DMM to CWM Transformation.

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

184

4 A CASE STUDY

We have applied the model driven data integration
approach to a data warehouse development project
in Thames Valley University. Different data sources
from current university systems (such as the library
system, student administration, or e-learning) have
been integrated into data warehouse system to
provide a unified data view for personalised student
academic intervention system based on data mining.
In the project, we have collected 3 years institutional
historical data to build a DW and to predict
individual student performance and dropout as well
as the suitability of the course or module for student
intervention. The details of the case study were
introduced in (Kim et al, 2009).

Figure 7: An Example of Data Merging PSM.

Based on the case study, we designed our DMM
meta-model, and applied the model and its model
transformation to the case study experimentally. In
this section, we demonstrate our data merging
approach throughout the example of merging two
school data entities in Figure 2. The model in Figure
3 was entered into DMMtoCWM transformation
engine and then the output CWM model was
generated by the engine. The converted CWM is
shown in Figure 7. According to the
ruleCreateElment_MG_Faculty, UE_School element
and CM_School are mapped to MG_School.
DMJoin is mapped into Joiner operation as well. The
platform we used is Oracle Warehouse Builder.

Figure 8: An Example Merging Code.

Once PSM is imported into ETL tool, each model
has to be bound with actual data table manually.
Through this process the actual data type is
determined and additional conditions and logics can
be added. Then executable codes are derived from
the PSM. The following script in Figure 8 shows a
part of PL/SQL packages which is generated from
Oracle Warehouse Builder.

5 RELATED WORKS

Several researches have been proposed to overcome
the challenges in designing of data integration in the
context of MDE. In this section, we present a brief
discussion about some relevant approaches.

In (March et al, 2007), MD2A (Multi
Dimensional Model Driven Architecture) is
suggested as an approach for applying the MDA
framework to one of the stages of the DW
development: multidimensional (MD) modeling.
The authors defined MD PIM, MD PSM and
necessary transformations. Although the suggested
framework and models covers formalized MDDI,
the designed models do not properly address data
merging.

For conceptual modeling of data mapping,
(Vassiliadis et al, 2002) suggests an ETL mapping
model with their own graphic notation. on the other
hand, (Mora1, Vassiliadis, and Trujillo, 2004)
extends UML to model inter-attribute mapping at the
attribute level. A conceptual model can be identified
with a PIM in the context of MDA since it describes
the necessary aspects of the application
independently of the platform on which it will be
implemented and executed (Kleppe et al, 2003).
Although both of works presents the mapping
between data source and target in different levels of
granularity, they do not cover linking to PSM which
is usually transformed from PIM.

 (Muñoz et al, 2009) proposes the model-driven
generation and optimization of integration tasks
using a process-based approach. The approach
models data integration process in high abstraction
level in order to raise portability and lower
maintenance effort. Although it provides modeling
whole integration process rapidly, it does not
consider details of each integration process
modeling such as data mapping.

Furthermore, several automated data merging
approaches are also researched in order to reduce
human intervention for data merging through
extraction of combined meta-data from source data
or source meta-data in (Konigs, 2005) and (Embley

…. INSERT
INTO
 "MG_SCHOOL"
 ("SCHOOL_ID", "NAME", "FACULTY_ID")
 (SELECT
 "UE_SCHOOL"."SCHOOL_ID" "SCHOOL_ID",
 "UE_SCHOOL"."NAME" "NAME",
 "CM_SCHOOL"."FACULTY_ID" "FACULTY_ID"
FROM
 "UE_SCHOOL" "UE_SCHOOL",
 "CM_SCHOOL" "CM_SCHOOL"
WHERE
 ("UE_SCHOOL"."NAME" =

"CM SCHOOL"."SCHOOL NAME")……

AUTOMATIC GENERATION OF DATA MERGING PROGRAM CODES

185

et al, 2004). Particularly, (Fabro et al, 2008) and
(Marcos et al, 2006) describes semi-automated
model transformation using matching
transformations and weaving models which can be
applied on generation of merging model as well.

6 CONCLUSIONS

In this paper, we have presented a data merging
system that aims to provide consistency between
design and implementation, and automatic codes
generation by creating abstract models in early stage
of project and generating physical models and
executable codes from the abstracts. Through model
transformation into CWM, the proposed conceptual
modeling does not end up in isolation from
commercial systems, instead, it shows a possibility
to be extended and integrated with existing industrial
standard. The proposed meta-model and merging
system was evaluated through a case study in
Thames Valley University and a graphic modeling
tool is under the work to improve user interface by
converting rule scripts into graphic notations.

With this approach, data warehouse engineers
can easily focus on data merging design being
separated from concerns of physical environments,
then integrate the design into ETL tool considering
physical infrastructure at this stage. Executable
program codes then can be derived from ETL tool
finally. In this way, ETL design can be supported
and well maintained systematically in model driven
framework promising the success of DW
development project.

REFERENCES

Allilaire, F., Bzivin, J., Jouault, F., and Kurtev, I., 2006.
ATL: Eclipse Support for Model Transformation. In
Proceeding of the Eclipse Technology eXchange
Workshop (eTX) at ECOOP.

Bezivin, J., 2005. Model-based Technology Integration
with the Technical Space Concept, In Metainformatics
symposium 2005.

Bohm, M., Habich, D., Lehner, W., and Wloka, U., 2008.
Model driven development of complex and data
intensive integration processes, MBSDI 2008, CCIS 8,
pp.31-42

CWM, 2008. Common Warehouse Metamodel, Object
Management Group. http://www.omg.org/technology/

documents/modeling_spec_catalog.htm
Dave Steinberg, Frank Budinsky, Marcelo Paternostro, Ed

Merks, 2008. Eclipse Modeling Framework. Addison-
Wesley Professional

Embley, D.W., Xu, L., and Ding, Y., 2004. Automatic
Direct and Indirect Schema Mapping: Experiences
and Lessons Learned, SIGMOD Record, Vol. 33, No.
4

Fabro, D.D.M. and Valduriez, P., 2008. Towards the
efficient development of model transformations using
model weaving and matching transformations,
Conference of Software and Systems Modeling.

Frédéric Jouault and Ivan Kurtev, 2006. On the
Architectural Alignment of ATL and QVT

Greenfield, J., 2004. Software factories: Assembling
applications with patterns, models, frameworks and
tools. In GPCE, page 488.

Kim, H., Zhang, Y., Oussena, S., and Clark, T., 2009. A
Case Study on Model Driven Data Integration for
Data Centric Software Development, In Proceedings
of ACM First International Workshop on Data-
intensive Software Management and Mining.

Kimball, R. and Ross, M., 2002. The Data Warehouse
Toolkit, John Wiley & Sons. 2nd edition.

Kleppe, A., Warmer, J. and Bast,W., 2003. MDA
Explained. The Model Driven Architecture: Practice
and Promise. Addison-Wesley, Reading.

Konigs, A. 2005. Model Transformation with Triple
Graph Grammars. Model Transformations in Practice
Satellite Workshop of MODELS 2005. Montego Bay,
Jamaica.

Marcos, D.D.F., Jean B. and Patrick V., 2006. Weaving
Models with the Eclipse AMW plugin, Eclipse
Modeling Symposium.

MOF, 2008. Meta Object Facility, Object Management
Group. http://www.omg.org/mof.

Mora1, L.S., Vassiliadis, P., and Trujillo, J., 2004. Data
Mapping Diagrams for Data Warehouse Design with
UML, volume 3288 of Lecture Notes in Computer
Science, pp 191-204.

Muñoz, L., Mazón, J., and Trujillo, J., 2009. Automatic
generation of ETL processes from conceptual models.
In Proceeding of the ACM Twelfth international
Workshop on Data Warehousing and OLAP.

OCL, 2008. Object Constraint Language. Object
Management Group. http://www.omg.org/technology/

documents/formal/ocl.htm.
Rahm, E., and Do, H. H., 2000. Data Cleaning: Problems

and Current Approaches, Journal of IEEE Data
Engineering Bulletin, volume 23.

March, S. and Hevner, A., 2007. Integrated decision
support systems: A data warehousing perspective.
Decision Support Systems, 43(3):1031-1043.

Vassiliadis, P., Simitsis, A,. and Skiadopoulos, S., 2002.
Conceptual Modeling for ETL Process, ACM Fifth
International Workshop on Data Warehousing and
OLAP 2002.

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

186

