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Abstract: We introduce the problem of mining sequential patterns among timed messages in large database of sequences
using a Stochastic Approach. An example of patterns we are interested in is : 50% of cases of engine stops
in the car are happened between 0 and 2 minutes after observing a lack of the gas in the engine, produced
between 0 and 1 minutes after the fuel tank is empty. We call this pattsigisatures. Previous research
have considered some equivalent patterns, but such work have three mains problems : (1) the sensibility of
their algorithms with the value of their parameters, (2) too large number of discovered patterns, and (3) their
discovered patterns consider only "after” relation (succession in time) and omit temporal constraints between
elements in patterns. To address this issue, we present TOMA4L process (Timed Observations Mining for
Learning process) which uses a stochastic representation of a given set of sequences on which an inductive
reasoning coupled with an abductive reasoning is applied to reduce the space search. A very simple example
is used to show the efficiency of the TOMAL process against others literature approaches.

1 INTRODUCTION messages in large database of sequences. TOMA4L
process avoids also the two remains problems of
A”Monitoring Cognitive Agent” (MCA) is a software ~ Timed Data Mining techniques: the sensitivity of the
system that aims at monitoring, diagnosing and con- Timed Data Mining algorithms with the value of their
trolling dynamic processes like manufacturing pro- parameters and the too large number of generated pat-
cesses, telecommunication networks or web serversiterns. TOMA4L avoids these two problems with the
The main task of an MCA is to analyze the sensor use of a stochastic representation of a given set of
data provided by the instrumentation to inform about sequences on which an inductive reasoning coupled
the observed behavior of the process with timed mes-with an abductive reasoning is applied to reduce the
sages. Huge amounts of timed messages so collectegpace search. In the literature, the common charac-
in temporal databases (so-called "event log”). There teristic of techniques that mine sequences is the dis-
is an increasing interest in mining these timed mes- covery of patterns that are frequents (Agrawal and
sages to discover patterns that describe relations be-Srikant, 1995), (Mannila et al., 1997): the more fre-
tween the variables that govern the dynamic of the quently a pattern occurs, the more likely a pattern is
process and so improving its management. important. Mining sequential patterns was originally
In this paper, we introduce the problems of mining proposed for market analysis (Agrawal and Srikant,
such a pattern: 50% of cases of engine stops in the carl995) where the temporal relations between retail
are happen between 0 and 2 minutes after observing @ransactions are mined with tigrioriAll algorithm.
lack of the gas in the engine, produced between 0 andThis algorithm is based on a interestingness criteria
1 minutes after the fuel tank is empty. We call this pat- called the "support” of a sequential pattern, defined as
terns ‘signatures’. Finding signatures are valuablein the number of time a pattern is observed at least one
many fields, for example, when targeting markets us- time in a sequence. A pattern is then frequent when
ing DM (Direct Mail), market analysts can use signa- its support is greater than a given arbitrary threshold.
tures to learn what actions they should take and whenBecause this approach fails when there is only one
they should act to inform their customers to buy. We sequence, two principal solutions have been proposed
propose in this paper the basis of the TOMAL pro- to gets around of this problem: tidaximal window
cess (Timed Observations Mining for Learning pro- size constrainsolution and theminimal occurrence
cess) defined to discover signatures among timed solution (Mannila et al., 1997). The Maximal win-
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dow size constraint solution devises the sequence in  The table 1 provides the number of patterns dis-
set of sub-sequences so that a support can be comeovered by each algorithm with the set of parameters.
puted (Winepi algorithm). Because the cutting of the

sequence is arbitrary, Minepi algorithm is proposed Table 1: Number of discovered patterns.
that uses theninimal occurrencesolution to define Number of the discovered patterhs
the windows. The problem with these "Frequential w Winepi | AprioriAll Minepi
Approaches” is that the support allows to discover a 2 16 16 27
lot of frequently observed patterns that are not rep- 3 28 28 a1
resentative of the relations between the process vari- 2 51 51 57
ables. So "informativeness” criteria are required to 5 79 79 72
reduce the set of frequent patterns. The Stochastic 6 133 133 111
Approach proposes to reverse this sequence mining 7 211 511 145
process to first identify the potential interesting pat- 8 503 593 197
terns before looking for frequently observed patterns. 9 582 580 556
The next section presents a simple illustrative ex- 10 381 381 329
ample to show the main problems of previous ap- 111 294 297 264
proaches. Section 3 introduces the basis of the 1 805 805 £93

TOMAL process and the section 4 discusses and com-
pares the results obtained by TOM4L process and oth- ~ These experimentations show the sensibility of the
ers literature approaches on the illustrative example. Winepi, AprioriAll and the Minepi algorithms with
The section 5 makes a synthesis of the paper and in-the parameters: from the first to the end experimen-
troduces our current works. tation, the number of patterns increase of more than
5156% for Winepi and AprioriAll, and more than
21961% from Minepi. The main problem is the too
large number of discovered patterns. The paradox is
2 ILLUSTRATIVE EXAMPLE then the following: to find the ideal set of parameters
that minimizes the number of discovered patterns, the
Consider a system that monitors the stopping problem user must know the system while this is precisely the
of a car. Figure 1 shows the structure of the monitored global aim of the Data Mining techniques. There is
variables that might affect the stopping of a car. There then a crucial need for another type of approach that is
are 6 variablesxl x2 x3 X7 x8x9) in the car system  able to provide a good solution for such a simple sys-

that can be assigned to following constants: {x1= tem and provide operational solutions for real world
{Blown},x2 = {Low},x3 = {Empty} x7 = {Off} x8 = systems. The aim of this paper is to propose such an
{False},x9 = {DoesNot_Start} }. approach: the TOM4L process which find only 3 re-

Let suppose that the car system was moni- lations with the example without any parameters.
tored for 30 minutes, this leads to the following
sequence of 100 observations : w = (Lowty),

(Emptyts),(Emptyts),(Falsets),(DoesNot_Start,ts), 3 STOCHASTIC APPROACH
-+, (Off,tgg), (Emptyteg), (LOW t100)}. FRAMEWORK

’T’—+ The TOMAL process is based on the Theory of Timed

o Observations of (Le Goc, 2006) that defines an in-

electric_

alimentation x9(t) ductive reasoning and an abductive reasoning on a
x2(¢) = e stochastic representation of a set of sequelizes

ainLsion | {w}, this set not necessarily a singleton. This theory

(1) D provides the mathematical foundations of four steps

Figure 1: Temporal evolution of variables. that reverses the usual Data Mining process in order

to minimize the size of the set of the discovered pat-
To illustrate the sensibility of the ApprioriAll,  terns.
Winepi and the Minepi algorithms with the parame-
ters, we defines a set of parameters and apply the al-Basic Definitions
gorithms to the sequenee. The window widthsA/
are set from 2 to 12, and for every window widi¥, A discrete eveng is a couple(x, &) wherex; is
the window movement is set tow /3. the name of a variable and is a constant. The
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Nij

constanty denotes an abstract value that can be =pij =

assigned to the variablg. The illustrative exam- é N;

ple allows the definition of a sdE of six discrete

events:E = {e; = (x1,Blown), & = (x2,Low), &3 = The transition probability matri®® = [p; j] of X
(x3,Empty, &7 = (x7,0ff), eg= (x8,False), & =  is computed from the contingency tatie= [n; j],
(x9,DoesNot Start)}. A discrete event clas§' = \wheren; ; € N is the number of couplg€' (k),Cl (k+
{a} is an arbitrary set of discrete evest= (x,4). 1)) in Q. The stochastic representation of a given
Generally, the discrete event classes are defined aset Q of sequences is then the definition of a set
singletons because when the constahtare inde- R = {Ri,j(Ci,Cj,[Ti],Tiﬂ)} where each the condi-

pendent, two discrete event classgls= {(x, &)}

andC! = {(x;,9;)} are only linked with the vari- . g s

ablesx; andx; (LJe Goc, 2006). The illustrative ex- ©F €a¢h b|.nary relatlorF.Q.yj(E: ,CL [Ty, 7)) is not

ample allows the definition of a s&t of 6 discrete  Null. The timed constraing;, 7] is provided by a

event classescl = {C! = {g}, C2 = {e}, C3 = {e3}, function of the seD of delaysD = {dij } = {(t —
={e7},C8 = {eg},C% = {en}}. _ t, )} computed from the blnary superposition of the

An occurrence(k) of a discrete event clag = {g}, sequencee’! = w'Uw!: 17 = f~(D),1 = f¥(D).

e = (x,8), is a triple(x;, &,t) wherety is the time For example, the authors of (Le Goc, 2006) use the

of the occurrence. When useful, the rewriting rule properties of the Poissonllaw to compute the timed

o(k) = (%, &,tx) = C'(k) will be used in the follow- - ra i .

ing. A( seque)nceQ ~ [0 }tm is an ordered constraints:t; = e 0, L = ‘—J whereA; j is the Pois-

set of n occurrence£' (k) = (x,4,t). For exam-  son rate (i.e. the exponential intensity) of the expo-

tional probabilityp; j = P [C!(k) € Q|C'(k—1) € Q]

le, the illustrative example defines the following se- 4 ’ i dij
guence:Q — {(C2(1), Cg(z?, C3(3), C8(4), C¥(5), g nential law that is the average delrd;'%(oy: Céid(llg)'
C’(98), C3(99), C?(100)}. When the constani§ € A The setR of the illustrative .exa.mple is a set of 26
are independent, a sequere= {o(k)} defininga  binary relations :R= {R ;(C',C/,[1" i+ T} where
setCl = {C'} of mclasses is the superposition rof pii= i
sequencea)' = {C'(k)} (Le Goc, 2006): S
a={ok}= |J o={CK 1) 3.2 Step2:Induction of Binary
i=1.m Relations

Where each sequenag = {C'(k)} contains only the
observations of the same cla@s For example, th@
sequence of the illustrative example is then the super-
position of six sequences' = {C'(k)}.

Considering a binary relatioR; ; (C',C/, [1;;,7}]), a
sequencea defining the seCl of m classes witn
occurrences contains— 1 couples(o(k),o(k+ 1)).
Each of them is one of the four following types:
) . / (C'(k), CJ(k+ 1), (C'(k),Cl(k+ 1), (C(Kk), Cik‘i’
3.1 Step 1: Stochastic Representation 1)), and (C(K),Ci(k + 1)), whereC (resp. Cl) is

an abstract class denoting any classe€bgxcept
The stochastic representation transforms a set of seC' (resp. Ci). Then— 1 couples(o(k),o(k + 1))

quencesQ in a Markov chainX = (X(t);k > 0) can then be seen as— 1 realizations of one of the
where the state spa€@ = {qi}, i =1...m, of X is four relations linking two abstract binary variabks
confused with the set of classe€l = {C'} of Q. andY of a discrete binary memoryless channel in a
Consequently, two successive occurrer(@&— 1), communication system according to the information
C!(k)) correspond to a state transitior{n X (t_1) = theory (Shannon, 1949), whe¥gt) € {C',C'} and

g — X(t) = q;. The conditional probability
P[X(t) = qj|X(tk—1) = ¢] of the transition from a
stateq; to a stateq; in X corresponds then to the

Y(te 1) € {CI,CI} (Figure 2). To use this model, the

conditional probabilityP [Cl (k) € Q|C'(k—1) € Q] X(t,) Y (ty.)
of observing an occurrence of the cl;ﬁisat timety C i c
knowing that an occurrence of a cla@'sat timet,_; v
has been observed:
Vi, j,vke K, _ A _
P () qJ\X( 1) =G| = c n >C

P[Ci(k) eQIC'(k—1) Q] . . . .
Figure 2: Two abstract binary variables connected by a dis-
crete memoryless channel.
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number of occurrences of the abstract clasesnd

Cl can not be the number of the occurrences of the

—C' andCI —C/ but an average value:
* njj is the number of couple€' (k),C! (k+1)) in
Q.

classe<l|

*nj is the average number of couples
(Ci(k),Cl(k+1)) in Q:
1
LN B z M|
vCleCl
*n; is the average number of couples
(Ci(k), Cj(k+ 1))in Q:
(N 1 Z i j
vCle
e Ny s the average number of couples
(Ci(k),Ci(k+1)) in Q:
1
e 2 M
vCleCl vCfeCl

This leads tan- (m— 1) binary contingency tables
of the form of the Table 2.

Table 2: Contingency table fot andY.

> cl Ci 3
| ..

C n|’] nlj = 27 Niy
_ vedi b

c LN M3 m= D My
veli-ib

> M= 3 MgN= My
XG{ij} XE{iJ} xe{i.itye{j,i}

These contingency tables allow computing
two conditional probabilities matrix PS (i.e.
P(Y(tk+1)[X(t))) and PP (i.e.  P(X(t)[Y (tcr1))-
These two matrix allow the definition of the BJ-
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D(p(Y[X =C)[|p(Y)) =

) . _CiX—Ci
p(Y =Cl[x =C')  xlog, (PG

. ) T —Ci
p(Y =CTX=C)  xlogs (PEEEL) (g

In order to remove the symmetry introduced when
evaluating the relatiom j(C',C!) andR -(C',CJ) ,
we propose to use an orlented KuIIbacL Leibler dis-
tance, calledJL

Definition 1. The BJL-measure BJC',C/) of binary
relation RC',C!) is the right part of the Kullback-
Leibler distance Dp(Y|X =C")||p(Y)):

* p(Y=CI|X=C) < p(Y=Cl)=BJLC'C) =
0

* p(Y =Cl|X=C') > p(Y =CJ) = BIL(C',CI) =
D(p(Y|X =C')[|p(Y))

TheBJL(C',C)) is the information brought by the
occurrences of the cla€3 about the occurrences of
the clas€C! . The Kullback-Leibler distance can be
written as the sum of two BJL as follow:

D(p(Y[C)|Ip(Y)) = BILC',C)+BILC',CI) (3)

Contrary to  Kullback-Leibler  distance,
BJL(C',C!) is an asymmetric measure which
differently evaluates the binary relatiofs(C',C!)
and Rin(Ci,CJ') . The same reasoning can be done
when considering the information distribution be-
tween the predecessoXgty) = C' or X(t) = C' of
the assignatiolY (tx.1) = C!:

Definition 2. The BJW-measure BJW',C!) of
binary relation RC',C)) is the right part of the
Kullback-Leibler distance Dpo(X[|Y = C!)|| p(X)):

measure to build a criterion to evaluate the interest of g(x =ClY =CJ) < p(X =C') = BIW(C',C!) =

a binary relatiorR, j(C',C/, [t 7).

ij 2 tij

3.2.1 |Interestingness of Binary Relations

The idea for defining an efficient interestingness
criterion to induce binary relations is that if know-

ing C(k) increases the probability of observing
Cl(k+1) (i.e. p(C![C") > p(C))), then the ob-
servation C'(k) provides some information about

an observatiorCl(k + 1) (Blachman, 1968). We
propose then to use the distance of Kullback-Leibler

D(p(Y|X = CH|p(Y)) to evaluate the relation
between the priori distributionp(C!) of an observa-
tion C! (k) and the conditional distributiop(C!|C'):

« p(X=Clly=Cl)>p(X=C')=BIW(C',C)) =
D(p(X[Y =C)[[p(X))
Both theBJL(C',C!) andBIJW(C',C}) measures
are combined in a single measure calBM(C',C!):

Definition 3. The BIM-measure BJ{@',C/) of a
binary relation RC',C/) is the norm of the vector

<BJL(C'_ CJ.)) _

BJW(C',Cl) ) -

* (pCIC) > p(C)) v (p(C'[C)) > p(C)) =
BJM(C',Cl) = \/BJL(CT,CI)2+ BIW(C',CI)2

* (pCIC) < p(C)) v (p(C'[C)) < p(C)) =
BIM(C',Cl) = f\/BJL(Ci,a)ZJr BJW(C/,Ci)2
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The minus sign is used to build a monotonous 3.3 Step 3: Deduction of n-ary Relations
measure that distinguishes the position of a relation

R(C',C}) around the independence point. The BIM- The set of binary relations contains then the minimal

measureBIJM(C',C!) of a relationR(C',Cl) is then
simply:

BIM(C',CJ) \/BILC.CI)2 + BIW(C!,CI)2

\/BJL

The maximum valueBIJM(C',C!)max (obtained
whenn; j = min(n;,nj)) and the minimum value of
BIM(C', CJ)m.n (obtained whem; j = 0) depend on

ni
the ratio 6 ; = n—' The comparison of two BIM-

2.4 BJW(CI,Ci)2

j
measures is not possible. To avoid this problem, the

BJM-measuréBJM(C',C!) is made linear with a M-
measuréM (C',C!) defined as follows:

Definition 4.

1 BJIM(C,Cl)
2 BIM(C,C1) max
1
2

3 ifp(Cic) > pc)
BIM(C,C)) 1
2

+
M(C',C)) =
else

"BIMC.Ch i

Whatever is the rati@ j, the M-measuréV(C',Cl)
as the following properties:
« M(C',Cl) =1« BIM(C',Cl) =
(ideal crisscross)

BIM(C',Cl)max

« M(C',Cl) =0,5< BIM(C',Cl) =0 (C' andC!
are independent)
« M(C',Cl) =0& BIM(C',Cl) = BIM(C',C!)min

(C' andC! are not linked)

For example, the values of the M-measure of the 26

binary relations oR of the illustrative example are
given in table 3. The measuk& can finally used as

Table 3: MatrixM.

M| ct c? c3 cF ,.cB» C°
cl | o056 0 0 0.8 0 0
cz| o 0 0 064 0 0
c3| 0 052 049 0 054 O
c’|o 0 0501 O 0 059
c8| 0 0501 051 O 0 059
cHl o 051 054 0 051 O

interestingness criterion for inducing binary relations
as follows :

M(C',C!) >0.5= R ;(C',C)) e 4)

For example, the set of binary relations that
can be induced fromR of the illustrative ex-
ample contains 13 binary relations | =
{R(C,C [114,194]),RCCLCY, [T, T4]), - )
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subset oR where each relatioR j(C',C)) presents

a potential interest. From this set, we can build a
set of n-ary relations having some potential to be ob-
served in the initial se@ of sequences. To this aim,
an heuristich(m") can be used to guide an abduc-
tive reasoning to build a minimal sét = {m‘"} of
n-ary relations of the forrm" = {R,;,1(C',C'*1)},
i=k,---,n—1, thatis to say paths leading to a partic-
ular final observation clags". The heuristich(m"")
makes a compromise between the generality and the
quality of a pathm'":

h(mt") = card(m") x BIL(M™) x P(t")  (5)

In this equationgard(m'") is the number of relations

in m:", BJL(m'") is the sum of the BJL-measures
BJL(C*1,CX) of each relationR,_1(C*1,C¥) in
m'" and P(m'") corresponds to the Chapmann-
Kolmogorov probability of a path in the transition ma-
trix P = [p(k— 1,k)] of the Stochastic Representation.
The interestingness heuriskigm'") being of the form
®-In(g), it can be used to build all the pating"
whereh(m'") is maximum (Benayadi and Le Goc,
2008a). For the illustrative example, let suppose that
we are interested by explaining observations of the
classC® (C° = {e&y = (x9,DoesNot_Start)}). So, the
deduction step found three n-ary relations leading to
the clasCo(Figure 3).

Battery=low

Fuel Tank=empty

Figure 3: The discovered three n-ary relations.

3.4 Step 4: Find Representativeness
n-ary Relations

Given a setM = {m"} of paths m" =
{Rji+1(C,C*YH}, i = k,---,n—1, the TOM4L
process uses two representativeness criteria to build
the subsetS C M containing the only pathsn"
being representative according the initial $2tof
sequences. These criteria are a timed version of
support and confidence notions:

Definition 5. Anticipation Rate. The anticipation
rate Tgm'") of a n-ary relation m" is the ratio
between the number of instances df'rm Q with



the number of occurrences of the'm! (i.e. the
n-ary relation mM" without the last binary relation

Ro1n(C™1,C).

Definition 6. Cover Rate. The cover rate T@n'") of

a n-ary relation m" is the ratio between the number
of occurrences of ht with the number of occurrences
of the final class € of the n-ary relation .

When an n-ary relatiom'" satisfies these crite-
ria, " is called asignature (Benayadi and Le Goc,
2008b). ForTa= 25% andT ¢ = 20%, all the n-ary
relations of the seM of the illustrative example are
signatures$= M). These signatures are the only re-
lations (patterns) that are linked with the car system.

4 DISCUSSION

To evaluate the performance of TOMA4L process, we
will report on the results obtained on the car exam-
ple (section 2) by TOM4L process and the three pop-
ular timed data mining algorithms Winepi(Mannila
et al., 1997), AprioriAll (Agrawal and Srikant, 1995)
and Minepi (Mannila et al., 1997). It shows that the
TOMAL process outperforms Winepi, AprioriAll and
Minepi in terms of the number of discovered patterns

and theirs accuracy. As we can see from the table

1 and the figure 3, TOMAL process outperforms the
three algorithms Winepi, AprioriAll and Minepi in

terms of number of the discovered patterns. Further-

more, TOMA4L discovers patterns witch are consis-
tent with the structural model of the car system, while
most of the patterns discovered by Winepi, AprioriAll
and Minepi contradict this structural model.

Also, the three algorithms Winepi, AprioriAll and

Minepi require the setting of a set of parameters, so
the discovered patterns depend therefore on the val-

ues of this parameters (Mannila, 2002). To obtain an

interesting patterns, we must found the ideal set of pa-

rameters witch need to have sompriori knowledge
about the car system while this is precisely the global
aim of the Data Mining techniques.

Others experiments were made on sequences gen-
erated by complex dynamic process as blast furnace
process where they show that TOM4L approach con-
verges towards a minimal set of operational relations

and outperforms Winepi, AprioriAll and Minepi.

5 CONCLUSIONS

This paper presents the basis of the TOMA4L process

for discovering temporal knowledge from timed mes-

MINING TIMED SEQUENCES TO FIND SIGNATURES

TOMA4L process is based on four steps: (1) a stochas-
tic representation of a given set of sequences from
which is induced (2) a minimal set of timed binary
relations, and an abductive reasoning (3) is then used
to build a minimal set of n-ary relations that is used to
find (4) the most representative n-ary relations accord-
ing to the given set of sequences. The induction and
the abductive reasoning are based on an interesting-
ness measure of the timed binary relations that allows
eliminating the relations having no meaning accord-
ing to the given set of sequences. Our experiment
on a very simple illustrative process, the car system
shows that TOMA4L process outperforms literature ap-
proaches.
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