
DYNAMICAL INVARIANTS FOR CPG CONTROL IN
AUTONOMOUS ROBOTS

Fernando Herrero-Carrón, Francisco de Borja Rodrı́guez and Pablo Varona
Grupo de Neurociencia Computacional, Escuela Politécnica Superior, Universidad Autónoma de Madrid
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Abstract: Several studies have shown the usefulness of central pattern generator circuits to control autonomous rhythmic
motion in robots. The traditional approach is building CPGs from nonlinear oscillators, adjusting a connec-
tivity matrix and its weights to achieve the desired function. Compared to existing living CPGs, this approach
seems still somewhat limited in resources. Living CPGs have a large number of available mechanisms to ac-
complish their task. The main function of a CPG is ensuring that some constraints regarding rhythmic activity
are always kept, surmounting any disturbances from the external environment. We call this constraints the
“dynamical invariant” of a CPG. Understanding the underlying biological mechanisms would take the design
of robotic CPGs a step further. It would allow us to begin the design with a set of invariants to be preserved.
The presence of these invariants will guarantee that, in response to unexpected conditions, an effective motor
program will emerge that will perform the expected function, without the need of anticipating every possible
scenario. In this paper we discuss how some bio-inspired elements contribute to building up these invariants.

1 INTRODUCTION

Biology has been a source of inspiration for robot
constructors for some time now. In particular, many
works have built Central Pattern Generator circuits to
generate rhythmic motion in a robot (see (Ijspeert,
2008) for a review). Usually CPGs are regarded as
a black box dynamical system capable of generating
rhythmic patterns, in a way that is flexible enough
to accommodate external modulation and/or perturba-
tions, but robust enough to stay close to an effective
pattern.

Living CPGs have developed to perform very spe-
cific tasks involving rhythmic activity: controlling
swimming, chewing, breathing, heart beating, walk-
ing, etc (Grillner, 2006). But, not every individual
of one same species presents the same physiological
structures: due to differences in size, weight, or even
history (illnesses, lesions, etc.) CPGs must be able to
adapt to different environments (Bucher et al., 2005).
Therefore, we can conclude that underlying CPG cir-
cuits there are mechanisms that allow for a great de-
gree of flexibility while preserving its core function.

The core function of a CPG can be expressed as
a set of dynamical invariants that must be preserved.
Recent research (Reyes et al., 2008) has clearly shown

that the pyloric CPG of the lobster presents sub-
stantial differences from animal to animal, yet ro-
bustly preserves the relationship between bursting pe-
riod and phase lag between neurons. Even when one
single CPG is forced by replacing one synapse with
an artificially modified synapse, the CPG is shown to
have some mechanism by which this relationship is
preserved.

Traditional techniques to build CPG control in
robots try to solve motor control tasks by mimicking
known biological systems, in particular circuit topol-
ogy and the presence of oscillators. This approach
provides limited capability to deal with unforeseen
scenarios. The concept of the dynamical invariant al-
lows for a new design strategy in which the motor
control can be achieved in a way that is not speci-
fied a priori, but emerges from the set of biologically
inspired principles. Having a general set of invari-
ant preserving mechanisms allows for more freedom
in the process of design, providing more flexible and
general solutions to existing problems in robot con-
trol.
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2 INGREDIENTS FOR
DYNAMICAL INVARIANT
PRESERVING CPGS

In this section we discuss scientific results on the
mechanisms known to contribute to the essential flex-
ibility and robustness of CPGs, which may be directly
related to the implementation of dynamical invariants.

2.1 Topologies

CPGs are known for their flexibility: they generate a
robust rhythmic activity with a recognizable pattern,
but they can be modulated by external input. The fi-
nal shape of the rhythm produced by one CPG will
depend on many factors: intrinsic properties of in-
dividual neurons and synapses, strength and sign of
the couplings and network topology, all contribute to
the function of the circuit. It is known (Huerta et al.,
2001; Stiesberg et al., 2007) that non-open topologies
maximize the quality of the rhythm produced in terms
of flexibility and regularity. A non-open topology is
that in which every neuron receives at least one con-
nection from another CPG member, in contrast to an
“open” topology, where at least one neuron does not
receive synapses from any other CPG member

In the design of an artificial CPG for robot control,
it is necessary to take this into account. All neurons
within the circuit must receive feedback from the rest
of the circuit, so that knowledge about how the CPG
is performing is distributed to all units. Of course, not
all neurons will process this information in the same
way.

Different works, both theoretical and experimen-
tal, have studied the role of synapses in the synchro-
nization of neural oscillators. However, this study
cannot be decoupled from the properties of the units
being connected. Depending on the intrinsic charac-
teristics of neurons, synaptic activity will have dif-
ferent effects. In fact, different CPGs may adopt
different combinations of neural and synaptic prop-
erties to achieve the same goal (Prinz et al., 2004).
The result is that the CPG designer has a wider va-
riety of mechanisms to choose from. For instance,
it is widely accepted that in-phase synchronization
can be achieved through excitatory interaction, but
it can also be achieved by inhibitory interaction with
the appropriate conditions (Wang and Rinzel, 1992).
And conversely, anti-phase synchronization is usu-
ally considered to happen under inhibition (Wang and
Rinzel, 1992; Rowat and Selverston, 1997) but it can
be found to happen under excitatory connections as
well (Kopell and Somers, 1995).

Usually phase relationship between modules of a
CPG is an important dynamical invariant that must
be preserved. There exist some important theoretical
studies on the mechanisms for phase locking between
oscillators. A general study based on a phase model
can be found in (Kopell and Ermentrout, 2000). How-
ever, it poses strong restrictions upon the coupling
between oscillators. More realistic approaches that
take into account synaptic dynamics for predicting the
type of synchronization among bursting neurons can
be found in (Oprisan et al., 2004) and (Elson et al.,
2002).

When building complex artificial CPGs, it is dif-
ficult to predict how the coupling of neurons within
a given topology will affect synchronization. Being
able to predict stable phase-locking regimes as in the
above mentioned works could help us design complex
CPGs, with rich dynamics and guarantee that the re-
sulting phase and frequency relationships will be the
desired ones.

2.2 Starting, Stopping and Maintenance
of Rhythm

Few studies in robotics are concerned with how CPGs
are started and stopped. There exist various mecha-
nisms underlying the starting, stopping and sustaining
of rhythm in living CPGs.

In cases like breathing or heart beating, the group
of neurons responsible for the maintenance of rhythm
cannot afford to stop. There are other cases, however,
in which a set of neurons needs to be activated and,
after some time of activity, deactivated.

In the first case, special neurons called “pace-
maker” neurons are responsible for setting the pace
at which the rest of the group will oscillate (Selver-
ston et al., 2009). Thanks to biophysical sub cellular
mechanisms, they can produce oscillations in isola-
tion, without external input. Through synaptic con-
nections, the activity of pacemakers is “distributed”
to other members of the groups.

Pacemaker neurons can usually adapt their burst
frequency over a large range. By means of external
input and feedback from other neurons in the network,
the pacemaker group will be able to decide if the cir-
cuit is working properly and, if not, set the appropri-
ate frequency. Some CPGs show redundancy mecha-
nisms in order to maintain the correct rhythm in case
of failure. Several neuron models are capable of en-
dogenous oscillation as seen in living CPG neurons:
many variations of the bio physically detailed model
by Hodgkin and Huxley (Hodgkin and Huxley, 1952);
one classical model for bursting activity (Hindmarsh
and Rose, 1984) and other recent models with less
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computational requirements (Rulkov, 2002; Aguirre
et al., 2005).

In the second case, initiation and termination are
usually caused by external forces. A silent group
of neurons may be “recruited” by an external exci-
tatory force. Such is the case in (Arshavsky et al.,
1998), where neuron group IN 12 is recruited by neu-
ron group IN 8 and inhibited by neuron group IN 7.
This a very good example in which neurons that do
not generate a rhythm autonomously contribute to the
proper functioning of the CPG.

Interestingly, this CPG presents another important
feature. Depending on the intensity of the swimming,
an early group of neurons is recruited for weak swim-
ming and if more powerful strokes are needed, a neu-
ron group with higher activation threshold will also
be recruited. This is the delayed group of neurons.

Another mechanism found in some neurons is
known as “post-inhibitory rebound”. This feature is
widely observed, in particular again in (Arshavsky
et al., 1998). A neuron with this feature will remain
silent while inhibited. If inhibition is suddenly re-
leased, the neuron will respond with a spike or burst
of activity.

It is believed that the selection of motor programs
may be subject to an inhibitory mechanism (Grillner
et al., 2005). Each possible motor program is kept
under inhibition, until upper control centers decide to
activate it. At this point, inhibition is released. By
the mechanism of post-inhibitory rebound, a motor
program could immediately start upon lifting of inhi-
bition. Note that this is not equivalent to activation
by excitation. The difference is that in a normal state,
the circuit responsible of the motor program will not
spontaneously activate because of noise, since inhibi-
tion will keep it forcibly silent.

The mechanism for termination of activity will de-
pend on the goal of the CPG. If neurons in the CPG
are not capable of endogenous oscillation, they may
just go silent by themselves after activity has been
elicited by one of the mechanisms mentioned earlier.
If the activity needs to be sustained, then mutual ex-
citatory connections within a group of neurons will
keep them firing. This is known as a “pool” of neu-
rons.

So the repertoire for how activity is elicited, main-
tained and stopped is really ample. However, each
mechanism has different subtleties, depending on the
underlying cellular characteristics, on whether inhibi-
tion or excitation should be preferred, etc.

2.3 Motor Command Coding

Individual CPG neurons display a mainly bursting ac-
tivity. Motor commands are encoded in some aspect
of the neuron’s activity, for instance in the frequency
of the spikes, or on the precise timing between them.
How information is extracted from this activity is not
trivial (Brezina et al., 2000), but simple mechanisms
can be used in robots.

The fact that rhythmic motor commands are en-
coded using bursting neurons has an advantage over
the classical view of CPGs in robotics: the mecha-
nisms that encode motor commands and those used
for synchronization are decoupled. In the traditional
view, one non-linear oscillator represents a whole
CPG. Then, one variable of the oscillator is used as
output to the controlled joint and to other oscillators
that need to be synchronized. Bursting neurons have
the ability to flexibly adapt the timing between bursts
and still produce robustly reproducible bursting pat-
terns. With this decoupling, the system gains simul-
taneously in robustness and flexibility. In addition,
some bursting neurons have the ability to encode in-
formation relative to their identity and their context
and send messages to neighbouring neurons, as we
discuss in the following section.

2.4 Neural Signatures

Recent experiments have shown that CPG individual
cells have neural signatures that consist of neuron spe-
cific spike timings in their bursting activity (Szucs
et al., 2003). Model simulations indicate that neural
signatures that identify each cell can play a functional
role in the activity of CPG circuits (Latorre et al.,
2006). These signatures coexist with the information
encoded in the slow wave rhythm of the CPG which
results in a neural signal with multiple simultaneous
codes. Readers of this signal (muscles and other neu-
rons) can take advantage of the multiple simultaneous
codes and process them one by one, or simultaneously
in order to perform different tasks. The sender and the
content of the signals can also be used separately to
discriminate the information received by a neuron by
distinctly processing the input as a function of these
codes. These mechanisms can contribute to build dy-
namical invariants through a self-organizing strategy
that includes non supervised learning as a function of
local discrimination. Artificial CPG networks built
with neurons that display neural signatures allow for
a new set of learning rules that include not only the
modification of the connections, but also the parame-
ters that affect the local discrimination.
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2.5 Homeostasis: Self-regulation
Mechanisms

CPG research has also shown the presence of
many homeostatic mechanisms to self-regulate and
to deal with unexpected circumstances at the cellu-
lar and neural network levels and in multiple time
scales (Marder and Goaillard, 2006). Dynamical in-
variants that work in short time scales can be built
with the above mentioned mechanisms that involve
neuron and synapse dynamics and specific topolo-
gies. However other types of invariants working in
longer time scales can use mechanisms of adapta-
tion and learning (including sub cellular plasticity)
to generate rhythms even in the absence of the in-
put that sustains this rhythm under normal circum-
stances (Thoby-Brisson and Simmers, 1998). Long
scale dynamical invariants arise from self-regulatory
mechanism that involve tightly regulated synaptic and
intrinsic properties. Models could implement this self
regulation through specific synaptic and sub cellular
learning paradigms.

Implementing already known sub cellular and net-
work learning mechanisms (Marder and Prinz, 2002),
CPGs may easily accommodate the degradation pro-
cess of a working robot. If a joint loses torque, if
pieces begin to wear off, a CPG implementing these
mechanisms could adjust its function to reflect the
natural evolution of the mechanical parts. Even if
some part suddenly stops working or is disconnected
from the main body of the robot, the CPG could still
keep its original function.

3 CONCLUSIONS

Central Pattern Generator neural circuits are well
known for their ability to generate and sustain rhyth-
mic activity. And they do so in a robust manner, tol-
erant to perturbations, but with flexibility, being able
to adjust their working regime to the requirements of
the environment.

We have presented recent results that extend the
idea of a CPG. Results from which the robotics field
will surely benefit. To begin with, we have intro-
duced a new design idea, termed dynamical invari-
ant. The key aspect of designing an artificial CPG
should be specifying what restrictions must be kept
under any condition. So, the presence of one or sev-
eral dynamical invariants will guarantee the effective-
ness of motor control in unknown or changing envi-
ronments. Living CPGs use different strategies to im-
plement their invariants, we have reviewed some of
them in this paper.

First, we have reported on studies that conclude
that those topologies that maximize rhythm quality
are non-open topologies. That is, every neuron in the
circuit receives at least one input from the rest of the
circuit. Following this, we review those mechanisms
that are responsible for rhythm start, stop and suste-
nance. Few works known to the authors have con-
cerned themselves with the issue of initiation and ter-
mination of CPGs in robotics. We believe that the
works mentioned here will be of great inspiration to
robot designers. Then, we discuss the mechanism by
which living motor neurons are believed to code mo-
tor commands. Studying it, robotic CPGs can gain
greater flexibility and robustness by decoupling syn-
chronization and coding mechanisms. Next, a re-
cently discovered property of bursting neurons is pre-
sented: neural signatures. This mechanism increases
the computing capabilities of a CPG. It allows neu-
rons to code context specific information so that re-
ceivers of different neural messages may discriminate
their input according to the identity of the sender, cir-
cumstances on which a message occurs, etc. We be-
lieve that this result will widen the view of CPGs from
simple pattern generators to information processing
capable circuits. And finally, we present reports on
the ability of long term adaptation of CPGs. Several
results indicate that CPGs can satisfy their dynamical
invariants despite differences from animal to animal,
or development of the animal from young to adult or
changes in function and/or size due to illnesses and
injuries. Understanding the mechanisms underlying
this ability will allow designers to construct CPGs that
will adapt over a range of “robot families” and to the
consequences of long time operation like loss of per-
formance and degradation of the parts.

To conclude, we believe that biology has still
many secrets to reveal. We have pointed out key
issues that robotics has not yet explored, but with
promising potential. We are beginning to imple-
ment some of these ideas in our own robots (Herrero-
Carrón et al., 2010), and look forward to the next gen-
eration of CPGs.
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