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Abstract: This position paper illustrates the use of a natural framework for the modelling, analysis, and design of 
engineering systems that involve two or more controllers, each of which has an associated objective 
function. Such systems arise when ordinary single controller systems are networked through communication 
links so that the information available to each controller may contain aspects of the other systems’ states and 
the optimization of each objective function is no longer decoupled from each other. Single controller 
optimization is no longer directly applicable. Appropriate to the study of such systems is the theory of 
games that has been developing in mathematics, economics, and engineering for the past 60 years. There are 
extensive applications in economics, but in engineering the applications are scarce. In recent years, there has 
been great attention to global problems such as the negative environmental impact of energy use, and global 
warming. These problems arise from complex systems with multiple controllers. Among the approaches for 
dealing with the problems, there should be one on a total systems approach with a game theory base. A 
natural framework for this is the subject of this policy paper. 

1 INTRODUCTION 

In this position paper we establish the benefits and 
advantages of explicitly including multiple agents in 
the modelling and control of networked engineering 
systems, when in fact, multiple agents are present in 
the application systems. The agents are not 
necessarily cooperating in a team and not necessarily 
antagonistic against each other, although in some 
applications they might be cooperating as a team. 
Some global problems with significant technological 
components are (a) integration of renewable energy 
sources (such as solar, geothermal, wind, hydro, and 
biological) with the traditional fossil energy sources, 
to reduce negative impact on the environment, (b) 
recycling of wastewater to produce clean water, to 
conserve scarce fresh water resources, (c) mitigating 
damages due to disasters such as typhoons, 
hurricanes, floods, and earthquakes. These national 
and international problems are also examples of 
complex systems. Complexity arises because of 
large numbers of smaller systems that are networked 

together, and total system behaviour is not easily 
inferred from individual behaviours of the 
component systems. These complex systems are 
characterized by the presence of many stakeholders, 
starting from the national government, to 
provincial/state governments, private enterprises of 
suppliers, industry associations, and large blocks of 
consumers. The stakeholders generally have policies 
that translate to actions affecting the system. 
Notwithstanding announced plans to the contrary, 
the complex systems typically evolve piece-meal, 
and unexpected and undesirable effects are 
addressed piece-meal. Finally, complex systems 
have numerous time lags throughout and stability is 
a crucial issue that could lead to a total collapse if 
not addressed properly.  

A specific scenario for a networked system is the 
following: we can project a boom in ethanol 
production in some countries, even exporting of 
ethanol (after meeting local needs for ethanol), using 
sugar cane. For the same country can also project a 
return to the export of sugar as well. The sugar 
industry is terribly inefficient and unkind to labour - 
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six months of work and down for 6 months. The 
ethanol industry needs sugar cane 12 months of the 
year. The options for farmers have just changed - 
what is their way of optimizing their land and/or 
labour? The government needs to figure out how to 
provide a good price of sugar for consumers, to 
protect the growing ethanol market, and to 
encourage investment by distillers moving into the 
ethanol industry through incentives such as tax 
breaks. This ecosystem is extremely rich in control 
problems to consider. Various stakeholders or agents 
need to understand various solution concepts and 
different perspectives. A decision support system 
that reflects the interactions of all the stakeholders in 
the modelling and control strategies would be highly 
useful. 

The presence of multiple stakeholders in 
complex systems can be studied through 
mathematical game theory. Much of the literature is 
for static systems with very few exceptions (Nash 
1950, Nash 1951, von Neumann and Morganstern 
1947, von Stackelberg 1952). Dynamics can be 
studied using standard methods in mathematics and 
engineering. Yet, there are no general computer-
based decision aids as tools for the design and 
analysis of dynamic complex systems. To be sure 
the challenge is not trivial and it requires significant 
research effort.  

The bulk of control theory pertains to dynamic 
systems with a single controller (Bellman 1957, 
Pontryagin, Boltyanskii, Gamkrelidze, Mischenko 
1962).  With the emergence of networked control 
systems (Wang and Liu 2008) whereby previously 
separate individual subsystems with their individual 
controls are linked through communication 
networks, the information available at each 
subsystem through the links may generally contain 
aspects of the other systems. If a subsystem 
controller were to optimize a performance criterion 
associated with that subsystem, the performance 
criterion may contain variables pertaining to the 
other subsystems because of the network links and a 
dilemma of how to proceed is encountered. 

There have been design approaches that ignore 
the presence of the links in the network. 
Subsequently the systems are analyzed to check 
robustness against the neglected connections. In the 
case of two interconnected control systems, worst 
case scenarios have been assumed in the design, in 
the sense that the controller of the other subsystem is 
assumed to make the performance criterion of the 
system as bad as possible while the controller of the 
system maximizes the performance of the resulting 
worst case. The theory of maxmin (or minmax) 

optimization is applied. In many applications the 
performance criteria of the two control systems are 
not opposite of each other, so that the minmax 
design is overly conservative.  Furthermore, when 
the system is dynamic and the controls involve 
feedback, the structure of the feedback control of the 
other system needs to be known, in order to perform 
a correct minmax optimization with the correct total 
system dynamics. Thus the minmax approach could 
be problematic unless the other system including its 
feedback structure is modelled properly. 

When the agents are cooperating, the individual 
performance criteria may be combined as a single 
convex linear combination using the Pareto-optimal 
concept, and once again the theory for single 
controller systems may be used. In applications, 
there is the additional task of choosing the weights 
in the convex linear combination. A special case 
arises when the performance criteria are identical 
and the choice of weights is immaterial. This is the 
team-optimal problem. 

Unlike engineering systems, economic systems 
are modelled, analyzed, and optimized using 
multiple agents. In fact in the ideal case, there is an 
infinite number of consumers and an infinite number 
of suppliers interacting in a market. However, the 
bulk of the literature is for static systems with very 
few exceptions. The bulk of the literature in the field 
of operations research with respect to multiple 
agents is likewise for static systems. 

2 NETWORKED STATIC 
CONTROL SYTEMS 

To focus on the effects of multiple agents in a 
networked control system, let us initially consider 
static systems to eliminate one dimension of 
complexity induced by dynamics.  

Furthermore, even the static area could be 
utilized to great advantage in dealing with large 
complex systems. Suppose we have two networked 
control systems of producers of renewable energy. 
The productions are modelled by 

 

ଵݔ ൌ ଵ݂ሺݑଵ (1)
 

ଶݔ ൌ ଶ݂ሺݑଶሻ (2)

where ݔଵ and ݔଶ are quantities of renewable energy 
produced by Companies 1 and 2 respectively, and 
 ଶ  are resources (controls) used to produceݑ ଵ  andݑ
ଶ respectively. The functionsݔ ଵ andݔ ଵ݂ and ଶ݂  are 
monotonically increasing so their unique inverses 
exist. The renewable energy products are sold in a 
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market and the price ܲ  is determined from a supply 
curve that relates price to total demand ܺ  
 

ܲ  = ݉ଵ ܺ + ܾଵ  (3)
 

and the total demand X is equal to the total supply 
 

ଶ (4)ݔ + ଵݔ =  ܺ
 

The parameters ݉ଵ  and ܾଵ  are given and ݉ଵ  > 0, 
ܾଵ  < 0. The costs for producing the renewable 
energy products are 
 

C1 = ଵ݃(ݔଵ) (5)
 

C2 = ݃ଶ(ݔଶ) (6)
 

where ଵ݃ and ݃ଶ are nonlinear functions. Each 
company wants to maximize its profit, which is 
revenue minus cost. For Company 1 the profit is 
 

– ଵݔܲ= 1ݐ݂݅ݎܲ ଵ݃(ݔଵ) (7)
 

(8) (ଶݔ)ଶ  – ݃ଶݔܲ= 2ݐ݂݅ݎܲ 
 

It is not a simple matter for Company 1 to 
maximize its profit Profit1 with respect to ݔଵ 
because ܲ  in Profit1 contains ݔଶ, which is not under 
its control. Similarly for Company 2, it is not a 
simple matter to maximize Profit2 with respect to ݔଶ 
because ܲ  contains ݔଵ.   

This illustrates the intrinsic difference between a 
single controller problem and a problem with 
multiple controllers or multiple agents, such as the 
example above where the two static control systems 
are networked through the market mechanism where 
their outputs are sold. From the point of view of 
single controller theory, for example in the design of 
  ଶݑ ଵ , Company 1 may simply assume a value forݑ
or ݔଶ and proceed to maximize Profit1 with respect 
to ݔଵ. Except for some very lucky choice of ݑଶ  by 
Company 1, when Company 2 chooses ݑଶ  using an 
assumed value of ݑଵ , Company 2 will obtain a value 
of ݑଶ  different from the one assumed by Company 
1, posing a dilemma for both companies.  

Next let us consider each company’s worst-case 
design whereby Company 1 assumes that Company 
2 chooses  u2 to minimize Profit1.  Then Company 1 
maximizes Profit1 resulting in its maxmin (or worst-
case) design. Similarly Company 2 may proceed to 
calculate its worst-case design. When both apply 
their worst-case designs, their resulting profits will 
be generally higher but in any case no worse than 
the worst-case profits they previously calculated. 
The pair of separately calculated worst-case controls 
will generally not lead to the worst case for either 
company. Still, in general their designs would be 
conservative because the companies are not trying to 

destroy each other by making each other’s profit as 
small as possible. 

In the theory of games that applies to systems 
with multiple agents, there are many solution 
concepts that go beyond single controller 
optimization. For example, one may consider the 
Nash equilibrium concept (Nash 1950, Nash 1951) 
whereby when (ݑଵܰ,ݑଶܰ) is a Nash solution pair 
and Company 1 chooses a control u1 that is different 
from ݑଵܰ, but Company 2 still uses ݑଶܰ, the 
resulting profit of Company 1 can not be higher than 
that when both use their Nash controls. There is also 
a Stackelberg (von Stackelberg 1952) or Leader-
Follower solution concept whereby one subsystem 
controller is dominant or more powerful than the 
others. The leader’s control is announced in advance 
and all other controllers know what the leader’s 
control is before they choose their own controls. In 
the case of Stackelberg games, it is of particular 
interest to determine the role of the dominant player 
in inducing desirable behaviour from low-level 
players through incentives or disincentives. The 
implications of such mechanisms are clearly evident 
for situations in which, for example, it is desired to 
determine government policies to facilitate 
environmentally beneficial behaviour from the 
private sector (e.g., Aviso et al 2010). The 
Stackelberg hierarchy may have more than two 
levels. 

3 NETWORKED DYNAMIC 
CONTROL SYSTEMS 

A system that is more general than the class 
considered in Section 2 is one where the individual 
control systems are dynamic.  If the systems are 
discrete-time the individual models may be of the 
form 

 

ሺ݇ݔ  1ሻ ) = ݂ሺݔሺ݇ሻ, ,ሺ݇ሻݑ ݇ሻ (9)
 

݅ ൌ 1,… ,ܰ, ݇ ൌ 0,…    is the stateݔ  where  ,ܯ,
vector of system ݅, with dimension  ݊ଵ;  ݑ  is the 
control vector of system ݅, with dimension  ݉, and 
݇  is discrete time with integer values from 0 to M. 
The vector functions ݂  are mappings from the 
spaces of the arguments to the space of ݔ and  ݊, 
 ݉, ܰ  and ܯ  are given. The network connections 
may be modelled by an algebraic equation 
 

,ଵݔሺܩ … , ሻݔ ൌ 0 (10)
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where ܩ  may be a scalar or vector of a given 
dimension. Associated with each system  ݅, may be a 
scalar performance index or cost function 

1

0

( ( )) ( ( ), ( ))
M

i i i i i i
j

J C x M L x j u j




  (11)

If ܬ  represents total cost for the entire horizon 
from 0 to M, then ܥ൫ݔሺܯሻ൯ represents the 
incremental cost at the terminal time, and 
,ሺ݆ሻݔ൫ܮ  ሺ݆ሻ൯ represents the incremental costݑ
during time  ݆. As in the static case, there will be a 
dilemma in a simple dynamic optimization of  ܬ, in 
Equation (11) with respect to the control vector 
 ሺ݆ሻ sequence because the control may be inݑ
feedback form and even if only ݔሺ݆ሻ is used for 
feedback at time  ݆, ݔ  is not independent of the 
other system states because of the network coupling 
modelled by Equation (10). 

A more general effect of the network connection 
represented by Equation (10) may be a change in the 
individual control system model from Equation (9) 
to Equation (12) 

 

ሺ݇ݔ  1ሻ = ݂ሺݔଵሺ݇ሻ, … ,ேሺ݇ሻݔ ሺ݇ሻ (12)ݑ
 

݅ ൌ 1,… ,ܰ, ݇ ൌ 0,…  ܯ,

and the constraint represented by Equation (10) may 
remain.  

For systems that are modelled as continuous-time 
processes a typical description in state variable form 
is given by the vector differential equation 

  dx
i
(t) / dt  f

i
(x

1
(t),...,x

N
(t),u

i
(t))

 
(13)

where ݔ is the state vector of system ݅, with 
dimension  ݊ଵ;  ݑ  is the control vector of system  ݅, 
with dimension  ݉, and t is continuous time with 
values in the interval [0,T], and  T is a specified real 
number. Instead of the cost function in Equation (11) 
the continuous time version is an integral analogous 
to the sum in Equation (11) 
 

ܬ ൌ  ߶൫ݔሺܶሻ൯    ,ሻݐሺݔሺܮ ,ሻݐሺݑ ݐሻ݀ݐ
்

 t)dt (14)
 

Because of the links in the network there may be 
a constraint as in Equation (10). The standard 
dynamic optimization of the integral cost functional 
with respect to the vector functions ݑሺݐሻ ) for t in 
the interval [0,T] poses a dilemma because the 
functional may depend on the states of the other 
subsystems through the constraint in Equation (10). 

In general, the direct application of dynamic 
optimization for single controllers becomes a 
problematic issue. The field of dynamic game theory 

offers potential benefits in the design and analysis of 
such systems (Isaacs 1955, Basar and Cruz 1982, 
Basar and Olsder 1998, Starr and Ho 1969a, Starr 
and Ho 1969b, Chen and Cruz 1972, Simaan and 
Cruz 1973a-c, Cruz 1975, Castanon and Athans 
1976). Macroeconomics has completely adopted 
concepts from dynamic game theory. For multiple 
agent dynamic engineering systems the application 
of multi-agent models and equilibrium theories of 
dynamic games would be beneficial also. 

4 ILLUSTRATIVE EXAMPLE 

In this section we consider a single, simplified 
composite energy system with only one state 
variable (xt) but two decision-makers, each with a 
control variable. We consider only finite states of 
zero, 1, and 2 and finite controls 0 and 1, and two 
time stages. For each controller there will be an 
associated incremental cost at each time stage and a 
total cost for the two time stages. We will analyze 
the network using some of the solution concepts in 
dynamic game theory.  

Table 1: State Transitions in Period 1. (Simaan and Cruz 
1973b). 

 Controllers’ Decisions 
(0, 0) (0, 1) (1, 0) (1, 1) 

x0 = 1 x1 = 1 x1 = 2 x1 = 0 x1 = 1 
 

Controller 1 is assumed to be the upstream 
agricultural sector of a biofuel supply chain, similar 
to that considered in Cruz, Tan, Culaba, and 
Balacillo 2009, while Controller 2 is the downstream 
sector comprised of the biofuel processing sector. In 
each time period, each controller is faced with the 
option of expanding (u = 0) or maintaining (u = 1) 
current production capacity. The composite system 
is described by a trivalent state variable which 
indicates upstream (agricultural) deficit (x = 0), 
balanced production (x = 1), or upstream surplus (x 
= 2). This is a biofuel supply chain interpretation of 
the numerical example that appeared in Starr and Ho 
1969 a,b and Simaan and Cruz 1973a,b.  Tables 1 
and 2, which are based on the game described in 
Simaan and Cruz 1973b, show the possible state 
transitions arising from decisions in this stylized 
energy system. As each controller is faced with a 
binary decision in a given time period, over the 
entire planning horizon each will have four possible 
decisions, namely, (0, 0), (0, 1), (1, 0) and (1, 1). For 
open-loop control structure, i.e., the controls are 
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functions of time (stage) only,  each of the two 
controllers have four possible decision sequences, 
and the two-stage game may be expressed in bi-
matrix form as in Table 3,  wherein the first and 
second entries are the cumulative costs borne by the 
two controllers over the entire time horizon. See 
Simaan and Cruz 1973b for the incremental costs. 

Table 2: State Transitions in Period 2 (Simaan and Cruz 
1973b). 

 Controllers’ Decisions 
(0, 0) (0, 1) (1, 0) (1, 1) 

x1 = 0 x2 = 2 x2 = 1 x2 = 0 x2 = 0 
x1 = 1 x2 = 1 x2 = 2 x2 = 0 x2 = 1 
x1 = 2 x2 = 2 x2 = 2 x2 = 1 x2 = 0 

Table 3: Cumulative Cost for Open-Loop Bi-Matrix Game 
(Simaan and Cruz, 1973b). 

 Controller 2 
(0, 0) (0, 1) (1, 0) (1, 1) 

C
on

tr
ol

le
r 

1 

(0, 0) 8, 8 11, 6** 10, -2 11, 0 

(0, 1) 6, 4 12, 3 7, 2 12, 4 

(1, 0) 5, 12 20, 15 5, 11 8, 9* 

(1, 1) 6, 5*** 16, 7 3, 7 9, 6 

*Nash equilibrium 
**Open-loop Stackelberg equilibrium with Controller 2 
as leader 
***Open-loop Stackelberg equilibrium with Controller 
1 as leader 

 
If we assume that neither the upstream nor 

downstream sectors of the energy supply chain 
dominate the game, the system naturally tends 
toward the Nash equilibrium as indicated in Table 3. 
In this case, each decision maker identifies his 
rational reaction, which is the response that 
minimizes his cost for any possible action by the 
other player. The Nash equilibrium is the 
intersection of the rational reactions of the two 
decision makers. They both commit to an open-loop 
sequence at the beginning of the horizon. The 
upstream sector maintains production capacity in the 
first time period, and expands production in the 
second period, while the downstream sector 
maintains its capacity throughout. As a result, the 
energy system is at a state of surplus farm 
production at the end of the time horizon analyzed. 
Note that this state is reached without any 
centralized direction, and emerges purely from the 
self-interested action of the two agents.  

The energy system evolves differently if either  

sector were dominant. For instance, if the 
downstream (fuel processing) sector acted as the 
leader, the system reaches the open-loop Stackelberg 
equilibrium indicated in Table 3. In this scenario, the 
dominant decision-maker selects his action so as to 
minimize his cost, having anticipated that the 
follower’s response is the latter’s rational reaction as 
in the Nash case. It would commit in advance that it 
would increase production capacity in the first 
period, but maintain it in the second period. The 
agricultural sector, the follower, would increase 
production in both periods. The energy supply chain 
thus also reaches a state of surplus upstream 
production capacity (i.e., excess biofuel feedstock) 
as in the Nash game, except that the cost burden of 
the farmers would have increased while those of the 
processors would have gone down. Note that the 
leader’s Stackelberg solution can be no worse than 
his corresponding Nash solution (Simaan and Cruz, 
1973a,b). 

A similar analysis can be made for the case 
wherein the upstream sector dominates and acts as 
leader. In this case, an alternative Stackelberg 
solution is reached, as shown in Table 3, with the 
supply chain ending in a state of deficit in upstream 
production capacity. Note that in this case, both 
controllers incur lower cumulative costs than they do 
in either of the two previous scenarios. Thus, from 
the system-level standpoint, this solution is superior 
for the given transitions and payoffs.  

For a closed loop structure the sectors have 16 
decision choices that depend on time and the state, 
see Simaan and Cruz (1973b). In particular, Simaan 
and Cruz (1973b) showed through the examples  that 
the leader solutions violate Bellman’s principle of 
optimality (Bellman, 1957). In economics, this 
violation is known as time-inconsistency (Kydland 
and Prescott 1977).  

5 CONCLUSIONS 

In this position paper we provide a discussion of the 
need to use modelling and control methods that are 
more appropriate than those for single controller 
systems when we have a networked system of 
control systems whereby the individual systems that 
are networked have their individual controls and 
individual objective functions. This need arises 
because the network that may involve 
communication links induces interaction and 
complicates the choice of control strategies for the 
various subsystems. There are methodologies that 
could be applied now for multi-agent systems but 
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there remains further need for research to address 
issues such as estimation, adaptation, stability, and 
robustness, to name a few. Global complex systems 
such as reduction of the external costs of negative 
environmental impacts of the use of various energy 
sources, mitigation of natural disasters, and 
consideration of global warming in technological 
planning, are prime areas where these networked 
control systems methods could be beneficially 
applied. 
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