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Abstract: This paper describes the relationship between a stable process, the Levy distribution, and the Tsallis 
distribution. These two distributions are often confused as different versions of each other, and are 
commonly used as mutators in evolutionary algorithms. This study shows that they are usually different, but 
are identical in special cases for both normal and Cauchy distributions. These two distributions can also be 
related to each other. With proper equations for two different settings (with Levy’s kurtosis parameter α  < 
0.3490 and otherwise), the two distributions match well, particularly for 21 ≤≤α . 

1 INTRODUCTION 

Researchers have conducted many studies on 
computational methods that are motivated by natural 
evolution [1-6]. These methods can be divided into 
three main groups: genetic algorithms (GAs), 
evolutionary programming (EP), and evolutionary 
strategies (ESs). All of these groups use various 
mutation methods to intelligently search the 
promising region in the solution domain. Based 
upon these mutation methods, researchers often use 
three types of mutation variate to produce random 
mutation: Gaussian, Cauchy and Levy variates. 
Gaussian and Cauchy variates are special cases of 
the Levy process. Lee et al. (Lee and Yao, 2004) 
introduced the Levy process, used Mantegna’s 
algorithm (Mangetna, 1994) to produce the Levy 
variate, and showed that the algorithm is useful for 
Levy’s kurtosis parameter 0.7>α . Iwamatsu 
generated the Levy variate of the Levy-type 
distribution, which is just an approximation, using 
the algorithm proposed by Tsallis and Stariolo 
(Iwamatsu, 2002). Iwamatsu’s contribution is the 
usage of Tsallis and Stariolo’s algorithm to generate 
the Tsallis variate and apply it to the mutation in the 
evolutionary programming. The Tsallis variate is not 
the Levy stable process, but is very similar. The 
paper first introduces the stable process and Tsallis 
distribution. Equations show that these two 
distributions are generally different, but are identical 
for two special distributions, i.e. the normal and 
Cauchy distributions. This section also provides two 

equations to link the parameters in the Levy 
distribution and Tsallis distribution so that they can 
be approximated to each other. Various examples 
show that they are quite similar, but not identical. 

The Levy stable process can not only be used in 
simulated annealing, evolutionary algorithms, as a 
model for many types of physical and economic 
systems, it also has quite amazing applications in 
science and nature. In the case of animal foraging, 
food search patterns can be quantitatively described 
as resembling the Levy process. For example, 
researchers have studied reindeer, wandering 
albatrosses, and bumblebees and found that their 
random walk resembles Levy flight behavior (see 
example in Viswanathan et al. (Viswanathan and 
Afanasyev, etal, 2000), Edwards et al. (Edwards and 
Philips et al, 2007)). The strength of Levy flight in 
animal foraging is obvious, as it helps foragers find 
food and survive in severe environments. 

2 THEORETICAL DEPLOYMENT 

In probability theory, a Lévy skew alpha-stable 
distribution or even just a stable distribution is a four 
parameter family of continuous probability 
distributions. The parameters are classified as 
location and scale parameters μ and c, and two shape 
parameters β and α, which roughly correspond to 
measures of skewness and kurtosis, respectively. 
The stable distribution has the important property of 
stability. Except for possibly different shift and scale 
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parameters, a stochastic variable, which is a linear 
combination of several independent variables with 
stable distribution, has the same stable distribution. 

The Lévy skew stable probability distribution is 
defined by the Fourier transform of its characteristic 
function (t)ϕ  (Voit, 2003) 
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where (t)ϕ  is defined as: 

( )( )Φ−−= )sgn(1exp(t) tictitu βϕ α
  (2) 

where )sgn(t is just the sign of t, and Φ  is given 
by 

( )2/tan πα=Φ  

for all α  except α  = 1, in which case: 

( ) tlog/2 π−=Φ . 

Note that the range of each parameter is the kurtosis 
]2 ,0(∈α , the skewness [ ]1 ,1−∈β , the scale 

0>c , and the location ),( ∞−∞∈μ . Assuming 
that the distribution is symmetric ( )0=β , the center 
of its location is zero ( )0=μ , then Eq. (2) can be 
simplified as 

( )αϕ ct-exp(t) = .                       (3) 

Inserting Eq. (3) into (1) produces 
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Let  

αγ c=                           (5) 

and using the Euler formula  

θθθ sincos iei +=                       (6) 

and considering only the real part of Eq. (6), it is 
easy to show that 
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This equation is identical to )(L , yγα  in Lee’s and 
Mantegan’s paper, though the current study changes 
the variable y to x.  

When α =2, the stable process in Eq. (3) becomes a 
normal distribution. Using the characteristic function 
of a normal distribution with a zero mean and a 
variance of 2

1σ  (Papoulis, 1990), which is 
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ϕ −= , it is easy to show that the variance 

2
1σ  of Eq. (3) is 22c . As for the Cauchy 

distribution (α =1), its characteristics function is 
)exp()( ctt −=ϕ  and the corresponding probability 

density function is  
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The Tsallis distribution (Tsallis and Stariolo, 1996) 
in one dimension is written as follows 

)1/(1

)3/(2

2

)3/(12/1

)1(12
1

1
1

1
1

1),;( −

−

−−

⎭
⎬
⎫

⎩
⎨
⎧

−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
Γ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

Γ

⎟
⎠
⎞

⎜
⎝
⎛ −

= q

q

q

T
xq

T

q

qqTqxg
π

.(9) 

Note that the ranges of parameters q  and T  are 
)3,1[∈q  and 0>T , respectively. The follow 

section investigates the relationship between the 
parameters α , c  of )0,,0,;( cxf α  in Eq. (1) and 
the q  and T  of ),;( Tqxg  in Eq. (9). 

According to Iwamatsu, when +→1q , the Tsallis 
distribution becomes a normal distribution 

))/(exp(1),1;( 2

21 σ
πσ

xTqxg −=→ + ,   (10) 

and when q =2, it becomes the Cauchy distribution 
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Note that )3/(1 qT −=σ  is a scale parameter, and is 
not the usual meaning of standard deviation in a 
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normal distribution. The scale parameter σ  is a 
function of q  and T , and with different q  it has 
different function forms of T . For example, if 
q =1, then T=σ , whereas if q =2, then T=σ . 
The true standard deviation of the normal 
distribution in Eq. (10) is 

22
1

1
T

==σσ  , which 

renders the standard form of normal distribution as 
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As indicated above, the variance of normal 
distribution as a special case of Levy distribution is 

22c  and the variance of normal distribution as a 
special case of Tsallis distribution is 

2
T . Therefore, 

if the two normal distributions are identical, the 
parameters between the Levy distribution and Tsallis 
distribution must satisfy the following constraint, 

2
2 2 Tc = .                          (13) 

By the same token, apply the equality of the Cauchy 
distribution and compare Eq. (8) and (11). It is clear 
that  

Tc == σ .                         (14) 

Equations (13) and (14) establish the link between 
parameter c  of the Levy stable process in Eq. (7) 
and the parameters q  and T  of the Tsallis 
distribution in Eq. (9) for the special cases of normal 
(α =2, q =1) and Cauchy distributions (α =1, q =2). 
Since this is derived only from special cases of α =1 
or 2, this study proposes a general model between 
parameters c  and α  in Eq. (7) and parameters  q  
and T  in Eq. (9) as follows 

)3/(1 qTc −=α .                         (15) 

This model establishes the first relationship 
between two sets of parameters ( )c ,α  and ( )Tq  , . 
Note that when α =2 (which implies q =1), Eq. 
(15) reduces to Eq. (13), whereas when α =1 (which 
implies q =2), Eq. (15) reduces to Eq. (14). The 
second relationship between ( )γα ,  and ( )Tq,  is 
inspired by Mantegna’s equation, 
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which describes the probability density in Eq.  (7) 
with scale parameter c =1（implying γ =1, through 
Eq. (5)）at 0=x . Recall that when 0=x , the 
probability density for Tsallis distribution renders 
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Combining Eq. (16) and (17) leads to 
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Equation (18) gives another constraint between 
parameter α  in Eq. (7) and parameters  q  and T  
in Eq. (9) when γ =1. Since this equation (18) is 
derived from the special case of γ =1, this study 
proposes a general model between parameters α  
and γ  in Eq. (7) and parameters  q  and T  in Eq. 
(9) as follows 
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Note that when γ =1, Eq. (19) reduces to Eq. (18). 
Therefore, by combining Eq. (5), (15) and (19) and 
making some substitution in the parameters, this 
study obtains two equations to define the 
relationship between ( )γα ,  and ( )Tq,  as 
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Substituting Eq. (5) into Eq. (20), the similar 
relationship  between  ( )c,α   and  ( )Tq,   leads  to 
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Equation (21) states that two constraints are 
required to establish the relationship between the 
Levy stable process parameters ( )c,α  and the 
Tsallis distribution parameters ( )Tq,  so that the two 
distributions will be equal in the special cases of two 
categories. The first category includes the normal 
and Cauchy distributions, in which the Levy and 
Tsallis distributions are identical. In the second 
category, the scale parameter c =1, and the Levy 
and Tsallis distributions coincide only at the peak of 
the distribution. We do not know how close these 
two distribution match in other regions of the variate 
domain in the second category. To determine the 
relationship between these two X, apply equation 
(21) as follows. For the special case of normal 
equation（for stable process α =2 and for Tsallis 

distribution +→1q ） we obtain 
 

ππ
11

2 2/1

=

= Tc
.                         (22) 

 
The first constraint in Eq. (22) states that 

2
2 2 Tc = , which is exactly the same as Eq. (13). This 

shows that the two distributions are equal in the 
special case of a normal distribution. For the special 
case of a Cauchy equation（for stable process α =1 
and for Tsallis distribution q =2）, Eq. (21) yields  

 

ππ
11
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= Tc
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The first constraint in Eq. (23) equals Eq. (14), 

which shows that the two distributions are identical 
in the special case of a Cauchy distribution. As 
above, Eq. (20) can be substituted for α =2 and 1 to 
obtain the following equations 

 

ππ
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and 

ππ

γ
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Equations (24) and (25) define the constraints 
between ( )γα ,  and ( )Tq,  for normal and Cauchy 
distributions. Next, this study verifies a normal 
distribution case using a graph. Let α =2 and 

8.0=c , and by Eq. (22) we have 
 

24cT = =2.56.                       (26) 
 

The probability density of Eq. (7) can be 
calculated through numerical integration. 
Fortunately, John Nolan has developed a program, 
stable.exe, to perform the required calculations and 
made it available on his website. Using the 
stable.exe program from Nolan (Nolan, 1998) to 
evaluate the probability density function (pdf) of 
Eq., (7) with α =2 and 8.0=c , this study 
compares it with the Tsallis pdf of +→1q  and 
T =2.56. Figure 1 shows the results of this graph 
comparison, indicating that the pdfs are identical. 
The blue line represents the stable.exe program and 
the green squares represent the Tsallis pdf. This 
study selects the 0S  stable process in the stable.exe 
and sets its gamma value at the 8.0=c  to calculate 
its probability density function. In other words, the 
gamma value in stable.exe is not γ  but c  in our 
definition on the stable process in Eq. (1) and (5).  
 

 
Figure 1: The comparison between Levy and Tasllis with 
α =2 and c =0.8. 

This study also tests the Cauchy distribution with 
α =1 and c =0.75, and compares it with the Tsallis 
pdf with 2=q  and T =0.75. Figure 2 shows these 
results, which are clearly also identical. 

 

RELATIONSHIP BETWEEN LEVY DISTRIBUTION AND TSALLIS DISTRIBUTION

363



 

 

Figure 2: The comparison between Levy and Tasllis with 
α =1 and c =0.75. 

Comparing the general cases of α =2/3 and c =2.4 
and substituting them into Eq. (21) leads to 
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The right hand side of the second constraint in Eq. 
(27) is clearly a monotonically decreasing function 
of q . Thus, the solution for q  is uniquely 
determined. Solving q  first in the lower part of Eq. 
(27) produces q =2.1263. Substituting this value 
into the upper part of Eq. (27) then leads to 
T =1.5078. Figure 3 compares the Levy distribution 
with parameters α =2/3 and c =2.4 and the Tsallis 
distribution with q =2.1263 and T =1.5078, 
showing that they are not identical. This is not a 
surprise because the Tsallis distribution is generally 
not a Levy stable process, and Levy stable processes 
usually do not have an analytical form except for 
special cases [7]. However, they are quite close. This 
means that the Tsallis distribution can be a good 
approximation of the Levy distribution. Using the 
values α =0.9 and c =1.4 produces similar results, 
and Figure 4 shows that they are almost identical. 

A comparison of Figures 3 and 4 clearly shows 
that as α  becomes smaller, the match between 
Levy and Tsallis decreases. Equation (21) helps 
explain the deviation between these two 
distributions. For the sake of clarity, repeat the 
second part of Eq. (21) in Eq. (28) as follows. Here 
y  has two meanings: one is the function of q  

( )(qy ); the other is the function of α  ( ))(αy . 

( ) 1/2
1
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      (28)  

 
Figure 3: The comparison between Levy and Tasllis with 
α =2/3 and c =2.4. 

 
Figure 4: The comparison between Levy and Tasllis with 
α =0.9 and c =1.4. 

As mentioned above, the right hand side of the 
second equation in Eq. (21) is a monotonically 
decreasing function of q  for ]3,1(∈q . Figure 5 
shows the results. 

 
Figure 5: Function of )y(q . 

The maximum of y  is 0.56419 when +→1q . 
Note also that the left hand side of Eq. (28) is a 
convex function of α . As +→ 0α , )(αy  
approaches to infinity and decreases to a minimum 
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as α  increases up to 0.684. Then )(αy climbs 
upwards and reaches its local extreme when α  goes 
to 2. Figure 6 shows the results. 

 
Figure 6: Function of )(αy . 

To produce a solution of q  for a given α  in Eq. 
(28), the value of )(qy  in Fig. 5 must equal that of 

)(αy  in Fig. 6. Since the range of )(qy  is less 
than or equal to 0.56419 and the range of )(αy  can 
go up to infinity, it is clear that for certain ranges of 
α , there is no solution for q  that satisfies Eq. (28). 
This creates the first problem. On the other hand, 
since )(αy  is a convex function with a minimum 
of 0.2819, thus for )(qy  less than 0.2819 （which 
implies that >q 2.127）, there is no solution for α  
that satisfies Eq. (28). The third problem is related to 
the second problem. When [ ]( ) 0.2819,0.56419y q ∈ , 
there are two solutions for α . This creates the 
possible dilemma that for a set of ( )Tq, , there are two 
sets of ( )c,α  that satisfy Eq. (28). This means there is 
a possibility that ( )Tq,  and ( )c,α  do not form a one-
on-one mapping, which is an undesirable situation. 
The following section solves the third problem of 
finding proper ( )c,α  given a set of ( )Tq, . The other 
two problems, are solved in a similar manner.  

Two examples can be used to demonstrate the 
procedure of solving two solutions for α . The map 
between ( )c,α  and ( )Tq,  can be unique even if there 
are two solutions of α  for a given q  in Eq. (28). 
Fix one α  (where α <0.684) first, and then use Eq. 
(28) to determine its left hand side. Then solve 
another α  (where α >0.684) by applying the left 
hand side of Eq. (28) again. This approach produces 
two values of α  (say, 1α  and 2α ) for a common 

)(αy . Using the right hand side of Eq. (28), solve 

for a unique q . Further, assume a value of T  such 

that there are two sets of ( )c,α , say ( )11  , cα  and 
( )22  , cα , in Eq. (21) for a given set of ( )Tq, . 
Which one of ( )11  , cα  and ( )22  , cα  is a better 
match to ( )Tq, ? Numerical examples show that a 
significant difference may exist between ( )11  , cα  
and ( )22  , cα  in the matter of resemblance to ( )Tq, . 

Thus, find two sets of ( )c,α , which are ( )11  , cα  
and ( )22  , cα , and compare them to the ( )Tq,  to find 
a better match between ( )c,α  and ( )Tq, . The 
following section provides two numerical examples. 
First let the first choice of α  (where α >0.684) be 

1α =1, then the left hand side of Eq. (28) is 
1 0.3183
π
= , and the other α  (where α <0.684), 

which renders the same )(αy , be 2α =0.5. In both 
cases, the corresponding q =2. Now further assume 

that T =1, and substitute α = 1α =1, T =1, and 
q =2 into the upper part of Eq. (21). This produces 

c = 1c =1, which is a standard Cauchy distribution, 
and is the same result obtained above. The Levy 
distribution (with parameters 1α =1 and 1c =1) and 
Tsallis distribution (with parameters q =2 and 
T =1) coincide. On the other hand, substituting 
α = 2α =0.5, q =2, and T =1 leads to c = 2c =2. It 
is clear that the Levy distribution (with parameters 

2α =0.5 and 2c =2) is not a Cauchy distribution, and 
therefore will not be equal to the Tsallis distribution 
(with parameters q =2 and T =1). Figure 7 shows 
the departure between α =0.5, c =2, and q =2, 
T =1. This figure shows that the departure can be 
quite large between ( )c,α  and ( )Tq,  for an 

improper choice of ( )c,α . Thus, selecting the 
correct values of ( )c,α  for a given value of ( )Tq,  
is a crucial task: the right choice leads to an exact 
match, whereas the wrong choice produces an out of 
shape match.  

Next, consider the first problem: how to find q  
when α  < 0.3490? The solution in this study is 
based on Deng’s paper [22], in which the 
relationship between α  and q  when ∞→x  is 

α+
+=

1
21q .                       (29) 
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Figure 7: The comparison between α =0.5, c =2 (blue 
line), and q =2, T =1 (green squares). 

Equation (29) clearly shows that as +→ 0α , 
−→ 3q . Recall that the range for α  is ]2,0(  and 

the range for q  is )3,1[ . Therefore, Eq. (29) 
satisfies the one to one relationship between α  and 
q  when α  < 0.3490. Note that Eq. (29) also solves 
the second problem, i.e., when q > 2.127 there is no 
solution of α  in Eq. (28). Simply replacing Eq. (28) 
with Eq. (29) immediately solves the first and 
second problems. Combining Eq. (29) with the first 
part of Eq. (21) produces a new equation for solving 
( )Tq,  given a set value of ( )c,α  when α  < 
0.3490. This equation is 

 

α

α

+
+=

= −

1
21

)3/(1

q

Tc q

.                        (30) 

The purpose for substituting Eq. (29) for Eq. (28) is 
to focus on the match between the two distributions 
in the heavy tails instead of on the peak of the 
distribution. This is because the heavy tails count 
more (or have more impact) when  α  < 0.3490. To 
show the effect of Eq. (21) and (30), try different α  
values with =c γ =1 using Eq. (21) and (30). 
Check the relationship between α  and the match 
quality between the two distributions. Table 1 lists 
these results, showing that when 1≥α , the match 
quality between Levy and Tsallis distributions is 
either perfect or excellent. At 1<α , the quality 
deteriorates a bit. When α  < 0.3490, the two 
distributions match very well on the heavy tails 
except for the narrow region near the origin, where 
they are significantly different. Note that the blue 
line represents the Levy stable process, whereas the 
green squares stand for the Tsallis distribution. Note 

that for the case of α =0.1, the green squares rise 
above the blue line in the region from 

1010 ≤≤− x . If the domain of x  is extended in 
absolute value to 10000, the two will match almost 
exactly on the heavy tails. This result is not shown 
here for the sake of brevity. The  difference  between 

Table 1: Match quality vs various α . 

α  Graph result Match quality

0.1 

 

fair 

0.5 

 

good 

0.9 

 

good 

1.0 

 

exact 

1.3 

 

excellent 

1.7 

 

excellent 

2.0 

 

exact 
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them is less than 710*5.1 −  in absolute value. Taking 
the Levy stable process as the standard and 
approximating it by the Tsallis distribution shows 
that the relative deviation is about 11.35%. The 
relative deviation decreases as the absolute value of 
x  increases. 

3 CONCLUSIONS 

This study thoroughly investigates the relationship 
between the parameters ( )c,α  and ( )Tq,  in the 
Levy distribution and the Tsallis distribution. 
Results show that they are usually totally different, 
except for two special cases of normal and Cauchy 
distributions. However, they can be approximated to 
each other through linking equation in (21) or (30) 
depending on whether or not the kurtosis parameter 
is α  < 0.3490. When 1≥α , the match quality 
between the Levy and Tsallis distributions is either 
perfect or excellent. When α <1, the quality 
deteriorates a bit. When α <0.3490, except on the 
narrow region near origin where the two have a 
significant difference, the two match very well on 
the heavy tails. 
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