
EVALUATING THE QUALITY OF FREE/OPEN SOURCE
PROJECTS

Lerina Aversano, Igino Pennino and Maria Tortorella
Department of Engineering, University of Sannio, via Traiano 82100, Benevento, Italy

Keywords: Measurement, Documentation, Economics, Reliability, Experimentation, Standardization, Legal Aspects,
Free/Open Source Projects, Quality Model, ISO/IEC 9126, ERP.

Abstract: Characterization and evaluation of software quality is one of the main challenge of software engineering.
One of currently used standards is ISO/IEC 9126, which defines a quality model for software products.
However, in the context of Free/Open Source software, differences in production, distribution and support
modality, have to be considered as additional quality characteristics apart from ISO standard ones. This
paper defines a quality model for Free/Open Source Software projects, equipped with an evaluation
framework, realized by applying the Goal Question Metric paradigm. The evaluation of an open source
system has been carried out as case study.

1 INTRODUCTION

Since many years, software engineering is facing
software quality related problems. Lots of energy
were spent for defining methodological and
technological tools for managing such issues. The
main requirement is the characterization of software
quality and, consequentially, evaluation of the
quality of a software system.

The International Organization for
Standardization (ISO), faced the question by
defining the ISO/IEC 9126 standard (ISO, 2004),
published for the first time in 1991. It is a quality
model for software products, to be considered as
reference for evaluating them. Unfortunately, the
ISO/IEC 9126 standard is not enough for
characterizing the quality of an Free/Open Source
software (FlOSS)1 project. Actually, additional
characteristics are required with reference to the
global quality of the project, as a FlOSS project is
different from a closed source one in terms of
production, distribution and support modalities,
more than product related characteristics.
Many organizations and researchers consider the
evaluation of these aspects as necessary to assess the
quality of an open source project.

1 FlOSS stands for Free libre Open Source Software.

In particular, Kamseu and Habra analyzed the
different factors that potentially influence the
adoption of an open source software (Kamseu,
2009). They identified a three dimensional model
and stated that for having a good global project
quality, it has to be considered the quality of: the
development process; the community which made
and maintain the product; and the product. Sung,
Kim and Rhew focused on the quality of the product
and identified some problems in evaluating an OSS
product, such as the difficulty of using description
and/or specification and collecting information if the
developers do not make it public (Sung, 2007).
IRCA (Wheeler, 2009) is an OSS selection process,
based on side-by-side comparison of different
software, defined by David Wheeler. The process
consists of four steps: Identify candidates, Read
existing reviews, Compare the leading programs'
basic attributes to your needs, and Analyze the top
candidates in more depth. The QSOS – Qualification
and Selection of Open Source software –
methodology consists of a set of steps regarding the
start, evaluation, adjustment and selection OSS
projects whose products seems to fit with the overall
requirements (QSOS, 2006). The OpenBRR project
– Business Readiness Rating for Open Source – born
with the same purpose of QSOS’s one (OpenBRR,
2005). QualiPSo – Quality Platform for Open
Source Software – is one of the biggest initiatives
related to open source software realized by the

186
Aversano L., Pennino I. and Tortorella M. (2010).
EVALUATING THE QUALITY OF FREE/OPEN SOURCE PROJECTS.
In Proceedings of the Fifth International Conference on Evaluation of Novel Approaches to Software Engineering, pages 186-191
DOI: 10.5220/0003000701860191
Copyright c© SciTePress

European Union, and its products include an
evaluation framework for the trustworthiness of
Open Source projects (Del Bianco, 2008).

This research presented in this paper starts form
the evaluation of the listed approach and proposes
the EFFORT evaluation framework, aiming at
overcoming their limitations. Then, the aim of the
paper is:
• Definition of a quality model for FlOSS projects,

extending the ISO/IEC 9126 standard and
considering characteristics peculiar to that kind
of projects.

• Definition of a framework for evaluating FlOSS
projects, which gives guide lines, procedures and
metrics to actually perform the measurement.

The paper is structured as follows: section 2
describes the proposed measurement framework;
section 4 reports a case study, consisting of the
evaluation of a FlOSS project; conclusions and
future works are discussed section 5.

2 THE PROPOSED
FRAMEWORK

This section presents the proposed evaluation
framework, called EFFORT – Evaluation
Framework for Free/Open souRce projects. Its main
purpose is defining a quality model and
measurement tool for supporting the evaluation of
FlOSS projects, avoiding the limitation of the
approaches analyzed in the previous section.

The quality model is synthesized in Figure 1. It
defines the quality of a FlOSS project as the synergy
of three major components: quality of the product
developed within the project, trustworthiness of the
community of developers and contributors, product
attractiveness to its specified catchment area. Figure
1 shows the hierarchy of considered attributes.

The measurement framework was defined on the
basis of the Goal Question Metrics paradigm. In
correspondence of each first-level characteristics of
Figure 1, one Goal is defined. Then, the EFFORT
measurement framework includes three goals.
Questions, consequentially, map the second-level
characteristics, even if, Goal 1 has been broken up
into sub-goals, because of its high complexity. For
question of space, the metric level is not presented.
The following subsections summarily describe each
goal, providing a formalization of the goal itself,
incidental definitions of specific terms and list of
questions. A complete portion of the framework,
with the questions, will be just shown for Goal 2.

2.1 Product Quality

One of the main aspects that denotes the quality of a
project is product quality. So, it was necessary to
consider all the aspects of software product quality,
as defined by ISO/IEC 9126 standard (ISO, 2004).

Goal 1 is defined as follows:
Analyze the software product with the aim of
evaluating its quality, from a software
engineering’s point of view.

Given the vastness of the aspects considered by
the ISO standard, Goal 1 is decomposed in sub-
goals, each of which is focused on a single issue
corresponding to one of the six main characteristics
of the reference model: portability, maintainability,
reliability, functionality, usability, and efficiency.
The in-use quality characteristic is not considered in
this context.

Table 1 shows the sub-goals and questions
related to portability, maintainability.

For a precise definition of each characteristic, the
ISO/IEC 9126 standard can be referred (ISO, 2004).

Table 1: Some sub-goals of the Product Quality.

Sub-goal 1a: Analyze the software product with the aim of
evaluating it as regards the portability, from a software
engineering’s point of view

Q
1a.1

What degree of adaptability does the product offer?

Q
1a.2

What degree of installability does the product offer?

Q
1a.3

What degree of replaceability does the product offer?

Q
1a.4

What degree of coesistence does the product offer?

Sub-goal 1b: Analyze the software product with the aim of
evaluating it as regards the maintainability, from a software
engineering’s point of view

Q
1b.1

What degree of analyzability does the product offer?

Q
1b.2

What degree of changeability does the product offer?

Q
1b.3

What degree of testability does the product offer?

Q
1b.4

What degree of technology concentration does the
product offer?

Q
1b.5

What degree of stability does the product offer?

2.2 Community Trustworthiness

When adopting a FlOSS product, users are generally
worried about offered support in case of troubles.
The community, in fact, is not in duty-bound of
supporting a user that adopts its software product.
Anyway, a certain degree of support is generally
given in quantity and modality that differ from a
community to another one. We have considered

EVALUATING THE QUALITY OF FREE/OPEN SOURCE PROJECTS

187

Figure 1: Quality model for FlOSS Projects.

valuable to include community trustworthiness in the
definition of the global quality of a FlOSS project.
With community trustworthiness, the degree of trust
that a user can give to a community regarding the
support. Goal 2 is defined as follows:

Analyze the offered support with the aim of
evaluating the community with reference to
the trustworthiness, from a
(user/organization) adopter’s point of view.

A community Generally provides a set of tools that
support users in using its products such as forums,
mailing lists, bug trackers, documentation, wiki and
frequently asking questions. It is also possible to
acquire a commercial edition of the software
product, that usually differs from free edition in
terms of support and warranties provided. Another
important factor that influences trust in a project is
the availability of documentation for installing,
using and modifying the software product. All these
aspects together with the activeness of the
community are considered in the community
trustworthiness concept. Table 2 shows the set of
questions related to Goal 2. While Table 4 lists the
metrics related to question 2.3.

Table 2: Questions about Community Trustworthiness.

Q 2.1
How many developers does the community
involve?

Q 2.2 What degree of activity has the community?
Q 2.3 Support tools are available and effective?
Q 2.4 Are support services provided?

Q 2.5

Is the documentation exhaustive and easily
consultable?

Table 3: Metrics related to question Q 2.3.
M 2.3.1 Number of thread per year
M 2.3.2 Index of unreplied threads
M 2.3.3 Number of forums
M 2.3.4 Average of threads per forum
M 2.3.5 Average of posts per year
M 2.3.6 Degree of internationalization of the forum
M 2.3.7 Number of trackers
M 2.3.8 Wiki volume
M 2.3.9 Number of frequently asked questions

2.3 Product Attractiveness

This goal has the purpose of evaluating the
attractiveness of the product toward its catchment
area. The term attractiveness indicates all the factors
that influence the adoption of a product by a
potential user, who perceive convenience and
usefulness for achieving his scopes.

Goal 3, related to product attractiveness, is
formalized as follows:

Analyze software product with the aim of
evaluating it as regards attractiveness from a
(user/organization) adopter’s point of view.

This goal is more dependent from the application
context than the other ones. The application context
helps to explain why different kind of software
products are developed. Two elements that have to
be considered, during the selection of a FlOSS
product, are functional adequacy and diffusion. The
latter, in fact, could be considered as a marker of
how the product is appreciated and recognized as
useful and effective. This aspects are considered for
formulating the questions of Goal 3 listed in Table 4.

ENASE 2010 - International Conference on Evaluation of Novel Approaches to Software Engineering

188

Table 4: Questions about Product Attractiveness.

Q 3.1 What degree of functional adequacy does the
product offer?

Q 3.2 What degree of diffusion does the product
achieved?

Q 3.3 What level of cost effectiveness is estimated?

Q 3.4 What degree of reusability and redistribution is
left by the license?

Concerning cost effectiveness, considered in
Question 3.3, it is opportune to collect all the
information regarding cost of services. The amount
of available information can vary a lot among
projects. For making the evaluation framework more
complete with reference to a specific project, it is
possible to add metrics whenever required. This can
be also done also with reference to the license,
referred in Questions 3.4. It can have a various
degree of relevance, according to the purpose and
needs of the users. In particular, the kind of license
influences reuse and imposes some restrictions more
or less severe regarding the possibility of including
the code in own projects.

2.4 Data Analysis

Once data have been collected by means of metrics,
it is necessary to aggregate them, according to the
interpretation of the metrics, so one can obtain
useful information for answering the questions.
Aggregation of answers gives an indication
regarding the achievement of the goals.

In doing aggregation, the following issues needs
to be considered:
• Metrics have different type of scale, depending

on their nature. Then, it is not possible to directly
aggregate measures. To overcome that, after the
measurement is done, each metric is mapped to a
discrete score in the [1-5] interval.

• An high value for a metric can be interpreted in a
positive or a negative way, according to the
context of the related question. So, the
appropriate interpretation is provided for each
metric.

• Questions do not have the same relevance in the
evaluation of a goal. A relevance marker is
associated to each metric in the form of a
numeric value in [1,5] interval. Value 1 is
associated to questions with minimum relevance,
while value 5 means maximum relevance.

A specific function that takes into account the
observations above is so defined for the aggregation.
Let us call with:

rid, relevance associated to question id (sub-

goal for goal 1);
Qg, the set of questions (sub-goals for goal 1)
related to goal g.

The aggregation function for Goal g is defined as
follows:

ሺ݃ሻݍ ൌ ௗݎ כ ݉ሺ݅݀ሻ
ௗ אொ

 / ௗݎ
ௗ אொ

where m(q) is the aggregation function of the
metrics of question q:

݉ሺݍሻ ൌ ቐ ݅ሺ݅݀ሻ כ ሺ݅݀ሻݒ ሾ1 െ ݅ሺ݅݀ሻሿ כ ሾݒሺ݅݀ሻ ݉6 ݀ሿ
ௗ א ெ

ቑ

 |ܯ|/
where: Mq is the set of metrics related to question q;
v(id) is the score obtained for metric id and i(id) is
its interpretation. In particular:

݅ሺ݅݀ሻ ൌ ൜0 ݂݅ ݊݅ݐܽݐ݁ݎݎ݁ݐ݊݅ ݁ݒ݅ݐ݅ݏ ݏ݄ܽ ܿ݅ݎݐ݁݉ ݄݁ݐ ݂݅ 1݊݅ݐܽݐ݁ݎݎ݁ݐ݊݅ ݁ݒ݅ݐܽ݃݁݊ ݏ݄ܽ ܿ݅ݎݐ݁݉ ݄݁ݐ

3 CASE STUDY

For assessing the usefulness of the proposed method
and identifying future works, a significant FlOSS
project was evaluated by using EFFORT. The
chosen project is Compiere (www.compiere.com),
one of the most diffused ERP systems. Data were
collected by analysing the documentation, trackers,
repositories and official web sites of the project. In
addition, the source code was analyses and the
product itself was used. Further data source
considered were sourceforge.net, freshmeat.net and
ohloh.net.

In the following, data are reported in table and
graphical format. The “in vitro” nature of the
experiment did not allow a realistic evaluation of the
efficiency, so it has been leaved out from the
discussions of the results. In Table 6, one can
observe that the Compiere product is characterized
by more than sufficient quality. By analysing the
sub-characteristics, one can notice that the product
offers a good degree of portability and functionality,
an excellent reliability and a sufficient usability.
Concerning product quality results, the main limit of
Compiere regards its maintainability.

Looking at reliability, the following
consideration are recorded: a very good robustness,
in terms of age, small amount of discovered post
release bugs, low defect density, defect per module
and index of unsolved bugs, and even higher
recoverability, measured in terms of availability of
backup and restore functions and services.

EVALUATING THE QUALITY OF FREE/OPEN SOURCE PROJECTS

189

Table 5: Results regarding Product Quality.

Quality Characteristic Relevance Score
Portability 3 4,1
 Adaptability 5
 Install ability 2,64
 Changeability 4,67

Maintainability 3 2,83
 Analyzability 3
 Modifiability 2,8
 Testability 2,5
 Technological Dispersion 3

Reliability 3 4,42
 Robustness 4,16
 Recoverability 4,67

Functionality 5 4,13
 Functional Adequacy 3,25
 Interoperability 5

Usability 4 3,28
 Attractive 2
 Operability 4
 Comprehension 3,89
 Learning ability 3,25

Product Quality 3,77

Table 6: Results forCommunity Trustworthiness.

Quality Characteristic Relevance Score
N. developers 2 2

Community Activity 4 2,60

Support tools 5 2,44

Support services 2 3,44

Documentation 4 1,67

Community Trustworthiness 2,36

Table 7: Results regarding Product Attractiveness.

Quality Characteristic Relevance Score
Functional Adequacy 5 3,25
Diffusion 4 4
Cost Effectiveness 3 2,40
Legal Reusability 1 5

Product Attractiveness 3,63

As Compiere is an ERP software, the presence of a
transaction management systems could also be
considered. Concerning maintainability, the lower
score has been evaluated by mainly using CK
metrics (Chidamber,1991), associated to the related
sub-characteristics. For instance, the medium-low
value for testability of Compiere depends on the
high average number of children (NOC) of classes,

number of attributes (NOA) and overridden methods
(NOM), as well as little availability of built in test
functions. The values of cyclomatic complexity
(VG) and dept of inheritance tree (DIT) are on the
average.

Table 6 reports data regarding the community
trustworthiness. In this and the next cases, the
hierarchy of characteristics has one less level.
The score obtained by Compiere for community
trustworthiness is definitely lower than the product
quality. In particular, community behind Compiere
is not particularly active; in fact, average number of
major releases per year, average number of commits
per year and closed bugs percentage are low values.
Support tools are poorly used. In particular, a low
activity in official forums was registered.
Documentation available free of charge is small;
while support by services results to be more than
sufficient, even if it is available just for the
commercial editions of the product. This aspect
reflects the business model of Compiere Inc., that is
slightly distant from traditional open source model:
product for free, support with fee.

Figure 2 shows a graphical representation of the
results. Looking at Table 7 and Figure 3, one can
notice that Compiere offers a good global
attractiveness. In particular, a sufficient functional
adequacy and an excellent legal reusability is
exhibited, because of the possibility left to the users
of choosing the license, even a commercial one.
Compiere does not seem to be very affordable,
compared to other FlOSS solutions. Compiere’s
product results quite diffused. The last characteristic
was evaluated by measuring: number of downloads,
index of freshmeat popularity, rating number of
sourceforge users, rating index of positive
sourceforge, number of success stories, visibility on
google, number of official partners, as well as
number of published books, experts review and
academic papers.

Figure 2: Compiere Community Trustworthiness.

ENASE 2010 - International Conference on Evaluation of Novel Approaches to Software Engineering

190

4 CONCLUSIONS

The work presented in this paper was motivated by
the necessity of having tools and models for
characterizing and evaluating the quality of FlOSS
projects, comprehensive of quality characteristics of
the product and peculiar aspects of such a kind of
projects.

The proposed study started by analysing many
approaches already existing for evaluating FlOSS.
All the considered approaches presented limitations
for performing a complete evaluation. Among them,
IRCA seems to be the most complete (Wheeler,
2009), but it did not include an evaluation
framework to perform the measurements. EFFORT
overcomes this limitation by proposing a
measurement framework that is directly applicable.

EFFORT was designed for completely covering
the intersections among the other analyzed
approaches. It offers a good coverage of the
ISO/IEC 9126 standard, with the exception of in-use
quality. Other characteristics analyzed by the other
approaches and considered significant were also
considered, such as: QSOS’ maturity, pretty much
covered by EFFORT’s diffusion; cost effectiveness
and OpenBRR’s Architecture, of which EFFORT
considers just dependence of third parts components.

During the analysis of the case study regarding
the Compiere project, it was noticed that some
characteristics of the ERP systems were not
considered by EFFORT. In particular, the
configurability and customizability of such a kind of
systems. In particular, they could be considered in
the context of attractiveness. This aspect suggests an
evolution of the EFFORT approach that considers a
specialization of the measurement framework to the
specific peculiarities of a FlOSS projects before its
application. Therefore, future work will regard the
definition of mechanisms for extending and
customizing EFFORT, and offering the possibility of
a better characterization of all aspects dependent on
the application domain.

REFERENCES

ISO -International Organization for Standardization, 2001-
2004. ISO standard 9126: Software Engineering –
Product Quality, part 1-4. ISO/IEC.

Chidamber, S. R., Kemerer, C. F., 1991. Towards a
metrics suite for object-oriented design". In ACM
SIGPLAN Notices, 26(11), ACM press, pp. 197 -211.

Kamseu, F., Habra, N., 2009. Adoption of open source
software: Is it the matter of quality? PReCISE

Sung, W. J., Kim, J. H., Rhew, S. Y., 2007. A quality
model for open source selection. In ALPIT 2007, Sixth
International Conference on Advanced Language
Processing and Web Information Technology IEEE
Comp. Soc. Press.

Wheeler, D. A., 2009. How to evaluate open source
software/free software (OSS/FS) programs, DOI=
http://www.dwheeler.com/oss_fs_why.html

QSOS, 2006. Method for Qualification and Selection of
Open Source software. Atos Origin.

OpenBRR, 2005. Business Readiness for Open Source.
Intel.

Del Bianco, V., Lavazza, L., Morasca, S., Taibi, D., 2008.
The observed characteristics and relevant factors used
for assessing the trustworthiness of OSS products and
artefacts. QualiPSo.

EVALUATING THE QUALITY OF FREE/OPEN SOURCE PROJECTS

191

