
KNOWLEDGE SUPPORT FOR SOFTWARE PROCESSES

Michal Košinár, Svatopluk Štolfa and Jan Kožusznik
VŠB - Technical University of Ostrava, Faculty of Electrical Engineering and Computer Science

17. listopadu 15, 708 33, Ostrava, Poruba, Czech Republic

Keywords: Software Process Improvement, Knowledge, Rules, Facts, Knowledge Base, Data Mining, Software
Process.

Abstract: Documented software processes and their assessments are the basics of modern software development.
Nowadays, the semantic web, knowledge bases and knowledge management support many applications, but
still their application within software processes (and business processes generally) are surprisingly being
ignored. In this paper we focus on applying a knowledge layer into software processes and on the design of
such a knowledge base. After a brief description of some classical fundamental approaches to software
processes and knowledge bases, we propose an improvement based on the application of a machine readable
knowledge base. We focus, in particular, on optimizing and enhancing software processes and their
assessments with the knowledge layer.

1 INTRODUCTION

The main goal of every software company is to
develop high-quality software with a minimal cost of
development. One way to assure this is to follow
good practices that are described in software
processes. Since software processes show how to
build software, they are therefore an integrated part
of every software company. Every software
company uses some type of software process. Even
if this process is undocumented and/or unknown, it
is still there (Thayer, 1997).

Describing and maturing the software process is
a key element of a company’s strategy, because a
more mature software process means higher quality
and more inexpensive software. Maturity of the
software process is recognized through the
assessment and its evaluation. According to the
reference standards, a company’s software process
maturity is rated at a level from 0 to 5 (SEI, 2002). If
the company wants to have a more mature process,
the process must follow appropriate good practices
for a higher level (Makinen, 2008).

Building a knowledge base that describes the
practices in a company is an essential practice that
assures that everybody in company knows what to
do. Nowadays, almost every company has some type
of human readable knowledge base (HRKB) that
describes a variety of practices in the company.
There even exist human readable knowledge bases

that describe reference software processes and/or
good practices (Alexandre, 2008). What is still
missing in this area is the systematic usage of the
machine readable knowledge bases (MRKB) and
appropriate automated knowledge management.

In this paper, we are going to describe an
application of a machine readable knowledge base
for the support of a basic assessment of software
processes. The assessment result is the evaluation of
a comparison between the real software process and
the reference software process. This type of
assessment and its evaluation is only one part of our
proposed comprehensive approach for an assessment
and enhancement of the software processes. The aim
of this paper is to present this particular part and
discuss the integration into our comprehensive
knowledge supported approach for the assessment
and enhancement of software processes.

This paper is organized as follows: section 2
describes the basics of software processes; section 3
introduces the concept of creating, sharing and
comparing knowledge bases. In section 4 we briefly
present our process of semi-automated assessments
and evaluation of the similarity of the software
process to the reference process. Section 5 concludes
and discusses future work.

105
Košinár M., Štolfa S. and Kožusznik J. (2010).
KNOWLEDGE SUPPORT FOR SOFTWARE PROCESSES.
In Proceedings of the Fifth International Conference on Evaluation of Novel Approaches to Software Engineering, pages 105-111
DOI: 10.5220/0002999801050111
Copyright c© SciTePress

2 SOFTWARE PROCESS

Business processes represent the core of company
behavior. They define activities which companies
(their employees) perform to satisfy their customers.
For a definition of the term business process, we use
the definition from (WfMC, 1999): “Business
process is a set of one or more linked procedures or
activities which collectively realize a business
objective or policy goal, normally within the
structure defining functional roles and
relationships.” A process of IS development is called
the software process. The software process is also a
kind of business process but it has its specific
aspects.

Software engineering is a discipline that is
involved in software process development and
maintenance (Humphrey, 1995). The main purpose
is risk and cost reduction during software
development. There exist many methodologies in the
domain of software engineering but they could be
divided specifically into two areas:
• Software development methodologies – they

are the system of methods for software product
development,

• Project management methodologies – they are
the system of methods for project management.

Software development methodologies often
divide software process into separate disciplines:
• requirement specification,
• analysis and design,
• implementation and testing,
• deployment,

There are two base kinds of software process
models:
• waterfall model,
• iterative model

During the waterfall model, every discipline
takes part after the previous discipline ends. The
idea of the waterfall model is adopted from civil
engineering and was popular in the beginning of
software engineering.

The waterfall model has a big disadvantage,
because implemented software is visible only after
the end of the whole process. However, it is a
practical experience requirement and the needs of
stakeholders, users or investors could be changed.
This issue solves the iterative model. The software
development process consists of several iterations.
Every iteration contains all disciplines – from
requirement specification to deployment. Only
selected requirements – based on priority – are

implemented and after finishing the iteration the
evaluation takes its part. Results of the evaluation
come as input in the next iteration and it can modify
or add requirements. The paradigm of the iterative
model uses such robust process frameworks as
Rational Unified Process or other lightweight
process frameworks or methodologies – XP
programming, ICONIX and etc…

3 KNOWLEDGE BASE

A knowledge base serves as artificial memory
(Brachman, 2004). The content of the knowledge
base consists of rules (obtained from reasoning or
domain ontologies) and facts (the state of the system
and its environment). We will use knowledge bases
and ontologies as a basic building block for
documenting and evaluating software processes. In
this section, fundamentals are described to
understand our approach to knowledge (Ciprich,
2008) and (Frydrych, 2008).

Details on how we can transform a human
readable knowledge base and how the rules and facts
are stored, reconstructed and managed in the
knowledge base are described in the next section.

3.1 Human Readable Knowledge Base

This section contains fundamentals of human
readable knowledge bases that are used in
organizations to document, share and evaluate
knowledge.

All of the pros and cons are shown the name. As
it is human readable, it is also created by humans. It
is simple to understand and share the contents. A big
disadvantage also comes from this property –
contents of such knowledge bases are typically
vague, and suffer from the lack of details.

3.1.1 Documentation

The most commonly used tools to document
knowledge in organizations are Wikis, project
portals and typical FAQs. Typical examples are
applications like web documentation of RUP, portals
like MSDN and Wikipedia.

3.1.2 Sharing

Sharing human readable knowledge means typical
communication that can be personal (meetings,
brainstormings, conferences etc.), combination of
personal and electronic (video calls, conference calls

ENASE 2010 - International Conference on Evaluation of Novel Approaches to Software Engineering

106

etc.), or pure electronic (e-mail client, Exchange,
Lotus etc.).

3.1.3 Evaluation

With all the advantages that human readable
knowledge bases offer, the assessment is a really big
disadvantage. Evaluating a process described in such
a knowledge base means manually comparing
documented knowledge with a real process.

3.2 Machine Readable Knowledge Base

The basic difference between a human readable and
machine readable knowledge base is the use of an
inference system in a machine readable knowledge
base. Even comparing two or more machine
readable knowledge bases is easier because we can
use smart algorithms instead of a manual
comparison.

So far so good, these possibilities are however
dependent on the domain ontology of such
knowledge bases. Let’s presume that we have a base
ontology describing a general software process
(terms like request, use case, change, sequence
diagram, class etc. and basic relation among them)
and one specialized ontology which is an extension
of the base ontology. The specialized ontology will
serve as a domain ontology for a concrete software
process formal semantic description and will allow
us to build a knowledge base for assessment
purposes. More information about enhancing
software processes with knowledge bases and
semantic tools is in the section 4.

3.2.1 Creation and Storage

The first difference is that instead of “documenting”
the knowledge in human readable knowledge bases
we are “creating and storing” it to fill the base with
rules and fact. All knowledge must be based on
domain ontology and has to be written in some
formal language (i.e. Prolog, OWL DL, TIL-Script).

Still, knowledge must be inserted into the base
by an expert, as in the case of human readable
knowledge bases.

More about formal languages used in knowledge
bases in (Ciprich, 2007), (Ciprich, 2008) and
(Frydrych, 2008).

3.2.2 Sharing

Sharing as we know it from human readable
knowledge bases is out of the question because we
are not building machine readable knowledge bases

to share the knowledge among experts like in their
human readable siblings’ case.

Moreover, there are ways to share knowledge
stored in a machine readable base. One possibility is
to use such a base as a base memory of an intelligent
software agent in a multi-agent system. The second
way is to translate the knowledge into natural
language (using TIL-Script and natural language
semantic web like WordNet). The third way is to
read the content of the base in its plain form;
however, this is possible only for those who know
the language used to formalize the content.

3.2.3 Evaluation

The difficult way to build machine readable
knowledge base for software processes has its
positives. We can evaluate knowledge content using
a machine comparison of two (or more) knowledge
bases that can be done more easily than a manual
comparison of two human readable knowledge
bases. In the next section of this paper, this idea is
described in more detail.

3.3 Knowledge Base Comparison

As mentioned above, we can compare contents of
two knowledge bases.

To do this correctly, we must define one basic
condition that will allow us to do that
- every member of knowledge base must be

comparable with another
This basic requirement is fulfilled as we are

using a homogenous data model to store knowledge
(every member of the set is stored as a string of text)
and usage of more content languages in two bases
which will be compared is prohibited.

Now, we can handle knowledge bases as with
typical unordered sets (of rules and facts) so it
allows us to perform operations like union and
intersection.

So far, a simple relation to compare two
knowledge bases can be defined.
Definiton 3.4.
Similarity (A, B) = | intersection (A, B) | / | union (A, B) |

This function can compare only KBs where at
least one has no zero cardinality..The function
returns a number from interval <0 ;1>. This fuzzy
value is the value of two knowledge bases similarity.

KNOWLEDGE SUPPORT FOR SOFTWARE PROCESSES

107

4 KNOWLEDGE SUPPORT FOR
SOFTWARE PROCESSES

The idea of knowledge support for the assessment
and evaluation of software processes is based on the
fact, that according to us, the assessment,
enhancement and monitoring can be supported by
the creation and usage of machine readable
knowledge bases. A lot of manual procedures can be
automated. The goal is to create a more effective
environment for the assessment, enhancement and
monitoring of software processes.

One of the many tasks of this domain area is the
comparison between the reference software process
and real software process that is used in the
company. The issue is to find the similarity between
the real software process and the reference software
process and provide an evaluation of the current
state. Typically, the real process is assessed and
human readable knowledge bases are searched for
similarities. Everything is performed manually. Our
proposed approach shows the possibility of using a
machine readable knowledge base for the automatic
evaluation of the similarity between the real and
reference processes.

Our approach can be basically described as
follows:

1. The first step is the creation of the particular
reference knowledge base - Knowledge base
transformation.

Documented software processes that are
described in the human readable knowledge bases
are analyzed and the particular ontology for each
software process is created. Next, the ontology and
knowledge obtained from the HRKB is transformed
into the machine readable knowledge base. A new
MRKB is created for every type of the reference
software process.

2. The second step is the study and creation of
the real knowledge base and the comparison of the
reference and real knowledge base - enhancing
software processes with knowledge management.

A real software process is modeled and the
ontology for this process is created. The created
ontology must then be mapped into the reference
software process ontology. The mapped ontology set
and the knowledge obtained from the model is then
transformed into the machine readable knowledge
base.

Both knowledge bases are then automatically
compared and the result is a number that shows the
similarity of real and reference software processes.

It is obvious that the first step can be performed
only once for every reference software process. The
step is then applied for every real software process
that we want to evaluate.

4.1 Knowledge Base Transformation

We have already sketched a basic idea of how to
transform a human readable knowledge base into its
machine readable clone. Now, it is time to refine it
into details.

At first, we should explain the basic reason for
transforming the human readable KB into the
machine readable KB. The answer is really simple –
if we want to evaluate a process that is based on
some reference software process we would have to
manually compare it with the reference model
process described in its human readable knowledge
base. With knowledge enhancements and basic
approaches described above, we can sort this
problem automatically – by transforming the
reference knowledge base into the machine readable
knowledge base (Fig.1).

Figure 1: Scheme of the machine readable knowledge base
creation – RUP example.

This can be done by building an ontology for a
concrete domain (i.e. a software process) using the
human readable reference documentation. Then, the
knowledge base is defined by such ontology’s
content. We can see particular transformation in
greater detail in figure 2.

ENASE 2010 - International Conference on Evaluation of Novel Approaches to Software Engineering

108

Figure 2: Knowledge base transformation.

An ontology builder has to describe the domain
to the ontology data file (using tools like Protégé
etc.) and then fill the reference knowledge base with
rules and facts (using some content language like
OWL-DL, TIL-Script or PROLOG) describing the
reference domain (using terms and relations from
domain ontology).

4.2 Building Process Definition with
Ontology Background

Example: Let’s say that we want to transform a part
of RUP’s “Change request” process. The simple
example of created ontology below describes types
of Change request and Change manager where the
Change request is a class of all possible instances of
change requests and Change manager class of all
change managers - individuals (as defined in RUP’s
documentation). As in real world, both types have
some properties – we must define them as well by
using Object Property definition. These properties
allow us to define a relationship among all described
types. In our example we define that Change
manager is associated with Change request via “Is
manager of” relation and vice versa Change request
is connected with manager by “Has manager”
relation. We can also use primitive types as Integer,
Boolean etc. in Object properties as in “Is approved”
property of Change request that says whether the
request was or was not approved. However more
appropriate usage of primitives are in Data
properties of types like in “Change request number”
property of Change request. Then we have to
associate the Data property to Class with defining an
Individual – the concrete instance of the property
associated with Class (the Change label that
identifies the change request in whole system). In

last example we define an individual as instance of
Change manager associated to Change request via
Change label identification.

Class(pp:changeRequest)

Class(pp:changeManager partial
restriction(pp:uses
someValuesFrom(pp:ChangeManagementArt
efacts)))

ObjectProperty(pp:isManagerOf

domain(pp:changeManager)
range(pp:changeRequest))

ObjectProperty(pp:isApproved

domain(pp:changeRequest) range(xsd:bool))

ObjectProperty(pp:hasManager
domain(pp:changeRequest)
range(pp:changeManager))

DataProperty(pp:changeRequestNumber

range(xsd:integer))

Individual(pp:ChangeLabel
type(pp:changeRequest)
value(pp:changeRequestNumber
"007"^^xsd:integer))

Individual(pp:Michal type(changeManager)

value(pp:isManagerOf pp:ChangeLabel))

Now, with defined ontology background of some
RUP process part, we can build a process definition
with storyboard method with strong formal system
of semantic annotation in every item’s background.

Figure 3: Storyboard diagram example from Storyboard
designer application.

4.3 Enhancing Software Processes with
Knowledge Management

The ability of transforming human readable
knowledge bases of documented software processes
into machine readable knowledge bases means that
we have a tool for the automatic assessment of
software processes.

This can be performed with the creation of two
knowledge bases.

i. One knowledge base that holds the optimal
software process transformed from human

KNOWLEDGE SUPPORT FOR SOFTWARE PROCESSES

109

readable base holding the process’
documentation (RUP documentation on the
Web). Let us name this knowledge set as a
“Template”.

ii. The second knowledge base that holds an actual
software process that is used in an organization.
This knowledge base must be filled by an
ontology expert in processing and consulting
services using the same ontology dictionary as
the “Template”. The name of this set will be the
“Actual”.

Now, when we have two knowledge bases whose
contents are documented and real software processes
we can use the function from Definition 3.4 to
evaluate the similarity of them.

An individual content comparison can be
performed as an add-on to the assessment. We can
search for differences directly between individual
members of both sets. However, this means basically
a brute-force comparison of two sets, which is not
optimal. Results of such a comparison can tell us
where gaps are in the “Actual” knowledge base of a
process compared to “Template”. The way to search
for such differences is the main task of our future
research.

5 CONCLUSIONS AND FUTURE
WORK

In this paper, we presented our new approach for the
semi-automated assessment and evaluation of
software process similarity. The comparison of the
real and reference software processes is done by the
usage of machine readable knowledge bases. The
template (reference) knowledge base describes the
reference software process and the actual knowledge
base (assessed process) describes the software
process in the company. The template knowledge
base is created in advance, using specific ontology
for the particular software process and other
techniques that are necessary to build a machine
readable knowledge base. The actual knowledge
base is created during the assessment process. Both
knowledge bases are then compared and the result is
the number that represents percentage similarity.

This presented process is one part of our
comprehensive approach to the assessment,
evaluation and improvement of software processes.
The first step is the extension of the presented
process to the automated comparison of specific
parts of software processes. The next steps are then
e.g. automated comparisons with more than one

specific process at once, involvement of process
modeling to the approach that will be used for the
automated search, evaluation and improvement
suggestion using the template software process
models etc… A lot of future work is needed to solve
all the problems that arise during the development of
this new approach. Our work is also supported by
the experience that is gained through the practical
experiments of this approach in real software
companies.

Although, according to our preliminary use cases
studies, this approach seems to be very promising,
the further use case studies are needed to
continuously develop and enhance the approach and
support its inclusion into the software process
assessment models and improvement techniques.

ACKNOWLEDGEMENTS

This research has been supported by internal grant
agency of FEECS VSB-TU Ostrava - IGA 22/2009
Modeling, simulation and verification of software
processes. Author Michal Košinár is also grand
aided student of Ostrava City Authority, Czech
Republic.

REFERENCES

Alexandre, S. Makinen, T., and Varkoi, T. Implementation
of a Software Process Standard as an Electronic
Process Guide. In proceedings of SPICE 2008
Conference (Software Process Improvement and
Capability dEtermination), 26-28 May 2008,
Nuremberg, Germany.

Ronald Brachman and Hector Levesque. Knowledge
Representation and Reasoning (The Morgan
Kaufmann Series in Artificial Intelligence). Morgan
Kaufmann, May 2004.

Ciprich, N., Duží, M., Košinár, M.: TIL-Script: Functional
Programming Based on Transparent Intensional
Logic. In RASLAN 2007, Sojka, P., Horák, A., (eds.),
MasarykUniversity Brno, 2007, pp. 37-42.

Ciprich, N., Duží, M. and Košinár, M.: The TIL-Script
language. In the Proceedings of the 18th European
Japanese Conference on Information Modelling and
Knowledge Bases (EJC 2008), Tsukuba, Japan 2008.

Frydrych, T., Kohut, O., Košinár, M.: Transparent
Intensional Logic in Knowledge Based Multiagent
Systems. In RASLAN 2008, Sojka, P., Horák, A.,
(eds.), MasarykUniversity Brno, 2008.

Dragan Gasevic, Dragan Djuric, and Vladan Devedzic.
Model Driven Architecture and Ontology
Development. Springer, July 2006.

ENASE 2010 - International Conference on Evaluation of Novel Approaches to Software Engineering

110

Humphrey, W. S. 1995 A Discipline for Software
Engineering. 1st. Addison-Wesley Longman
Publishing Co., Inc.

Makinen, T., and Varkoi, T. Assessment Driven Process
Modeling for Software Process Improvement. In
proceeding of PICMET'08 Conference, 27-31 July
2008, Cape Town, South Africa 2008

Standish Group International. The Chaos Report [online].
Boston: The Standish Group International, 1994 –
[cited on 17. Sept. 2006]. Available on http://www.
standishgroup.com/sample_research/chaos_1994_1.
php

Workflow Management Coalition, Terminology &
Glossary, The Workflow Management Coalition
Specification, February, 1999

Software Engineering Institute: CMMI staged-version 1.1
(2002), http://www.sei.cmu.edu/cmmi/

Thayer, R. H., Software System Engineering: An
Engineering Process, Software Requirements
Engineering, R. H. Thayer and M. Dorfmann, Eds.,
IEEE Press, Los Alamitos, CA 1997.

KNOWLEDGE SUPPORT FOR SOFTWARE PROCESSES

111

