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Abstract: We extend the state diagrams used for dynamic modelling in object-oriented analysis and design. We sug-
gest that the events which label the state transitions be replaced with plausible logic expressions. The result
is a very effective descriptive and declarative mechanism for specifying requirements that can be applied to
requirements engineering of robotic and embedded systems. The declarative model can automatically be trans-
lated and requirements are traceable to implementation and validation, minimising faults from the perspective
of software engineering. We compare our approach withPetri NetsandBehavior Treesusing the well-known
example of the one-minute microwave oven.

1 INTRODUCTION

We extend state transition diagrams in that we al-
low transitions to be labelled by statements of a non-
monotonic logic, in particular Plausible Logic. We
show that this has several benefits. First, it facilitates
requirements engineering. Namely, we show this ap-
proach can be more transparent, clear, and succinct
than other alternatives. Therefore, it enables better
capture of requirements and this leads to much more
effective system development. Furthermore, we show
that such diagrams can be directly, and automatically
translated into executable code, i.e. no introduction of
failures in the software development process.

Finite automata have a long history of mod-
elling dynamic systems and consequently have been
a strong influence in the modelling of the behaviour
of computer systems (Rumbaugh et al., 1991, Biblio-
graphical notes, p. 113-114). System analysis and de-
sign uses diagrams that represent behaviour of com-
ponents or classes. State diagrams (or state machines)
constitute the core behavior modeling tool of object-
oriented methodologies. In the early 90s state ma-
chines became the instrument of choice to model the
behaviour of all the objects of a class. The Object-
Modeling Methodology (OMT) of Rumbaugh et al.
(1991, chapter 5) established state diagrams as the pri-
mary dynamic model. The Shlaer-Mellor approach
established state models to capture the life cycle of
objects of a given class (Shlaer and Mellor, 1992).

Class diagrams capture the static information of all
objects of the same class (what they know, what they
store), but behaviour is essentially described in mod-
els using states and transitions. The prominence of
OMT and Shlaer-Mellor has permeated into the most
popular modelling language for object-orientation,
the Unified Modeling Language (UML). “A state di-
agram describes the behavior of a single class of ob-
jects” (Rumbaugh et al., 1991, p. 90). Although the
state diagrams for each class do not describe the in-
teractions and behaviour of several objects of diverse
classes in action (for this, UML has collaboration dia-
grams and sequence diagrams), they constitute a cen-
tral modelling tool for software engineering.

Although UML and its variants have different lev-
els of formality, in the sense of having a very clear
syntax and semantics, they aim for the highest for-
mality possible. This is because their aim is to re-
move ambiguity and be the communication vehicle
between requesters, stakeholders, designers, imple-
mentors, testers, and users of a software system.
Thus, they offer constraints very similar to the for-
mal finite state machine models. For example, in a
deterministic finite state machine, no two transitions
out of the same state can be labelled with the same
symbol. This is because formally, a deterministic fi-
nite state machine consists of a finite set of states, an
input language (for events), and a transition function.
The transition function indicates what the new state
will be, given an input and the current state. Other
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Table 1: The Transition Function as a Table.

s1 cu si

s1 cv sj

. . .

si cx sp

adornments include signalling some states asinitial
and some asfinal. However, a fundamental aspect of
finite state machines is that the transition function is
just that, a function (mathematically, a function pro-
vides only one value of the codomain for each value
in the domain).

Granted that the model can be extended to a non-
deterministic machine, where given an input and a
state, a set of possible states is the outcome of the
transition. In this case, the semantics of the behaviour
has several interpretations. For example, in the the-
ory of computation, the so-calledpower set construc-
tion shows that non-deterministic and deterministic
finite state machines are equivalent. However, other
semantics are possible, such as multi-threaded be-
haviour. Therefore, as a modelling instrument in soft-
ware engineering, it is typically expected that the con-
ditions emanating from a state are mutually exclu-
sive and exhaustive. “All the transitions leaving a
state must correspond to different events” (Rumbaugh
et al., 1991, p. 89). Namely, if the symbolci is a
Boolean expression representing the guard of the tran-
sition, then

∨n
i=1ci = true (the exhaustive condition),

andci ∧c j = false, ∀ i 6= j (the exclusivity condition).
In fact, Shlaer-Mellor also suggest the analysis should
make use of theState Transition Table(STT) (Shlaer
and Mellor, 1992). Table 1 is the tabular represen-
tation of the transition function “to prevent one from
making inconsistent statements” (Shlaer and Mellor,
1992, p. 52) and they provide an illustration where
two transitions out of the same state and labelled by
the same event are corrected using the table.

Recently, the software engineering community
has been pushing forRequirements Engineering
(RE) (Hull et al., 2005), concerned with identifying
and communicating the objectives of a software sys-
tem, and the context in which it will be used (Nu-
seibeh and Easterbrook, 2000). Hence, RE identifies
and elicits the needs of users, customers, and other
stakeholders in the domain of a software system. RE
demands a careful systematic approach. Significant
effort is to be placed on rigorous analysis and docu-
mented specification, especially for security or safety
critical systems. RE is important because a require-
ment not captured early may result in a very large ef-
fort to re-engineer a deployed system.

2 NON-MONOTONIC LOGIC IN
STATE DIAGRAMS

An ambition of both artificial intelligence (AI) and
software engineering is to be able to only specify
whatwe want, without having to detailhowto achieve
this. The motivation for our approach has a simi-
lar origin. We aim at producing a vehicle of com-
munication that would enable the specification of be-
haviour without the need for imperative programming
tools. Therefore, we want to use a declarative formal-
ism (a similar ambition has lead to the introduction
of logic programming and functional programming).
Non-monotonic logic is regarded as quite compati-
ble with the way humans reason and express the con-
ditions and circumstances that lead to outcomes, as
well as a way to express the refinements and even ex-
ceptions that polish a definition for a given concept.
In fact, non-monotonic reasoning is regarded as one
of the approaches to emulate common-sense reason-
ing (Russell and Norvig, 2002). We illustrate that the
addition of this declarative capability to state transi-
tion diagrams for capturing requirements is beneficial
because the models obtained are much simpler (a fact
necessary to ensure that the natural language descrip-
tion has indeed been captured). This way, we only
need to specify thewhatand can have all of thehow
within an embedded system generated automatically.

With our approach, modelling with state-diagrams
is sufficient to develop and code behaviours. The se-
mantics of astateis that it is lasting in time, while a
transition is assumed to be instantaneous. The state-
diagram corresponds closely to the formalism of finite
state machines (defined by a setS of states, a transi-
tion functiont : S×ϒ → S, whereϒ denotes a possi-
ble alphabet of input symbols). In our case, we can
specify the behaviour by the table that specifies the
transition functiont (Table 1).

We still use the notion of an initial states0, be-
cause, in our infrastructure that implements these
ideas (Billington et al., 2009), in someexternal-state
transition, behaviours must be able to reset them-
selves to the initial state. A final state is not required,
but behaviours should be able to indicate completion
of a task to other modules. Now, current practice
for modelling with finite state machines assumes that
transitions are labelled by events. In both the Shlaer-
Mellor approach and OMT (Rumbaugh et al., 1991),
transitions are labelled by events only. For exam-
ple, in Fig. 1, a transition is labelled by the event
ball visible (e.g. a sensor has detected a ball). A
slight extension is to allow labels to be a decidable
Boolean condition (or expression) in a logic with val-
ues true or false (that is, it will always be possi-
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Figure 1: Simple Finite State Diagram.

ble to find the value of the condition guarding the
transition). This easily captures the earlier model be-
cause rather than labelling by evente, we label by
the Boolean expressione hasoccured. Our exten-
sion to behaviour modelling extends this further with
the transition labels being any sentence in the non-
monotonic logic. Replacing the guarding conditions
with statements in the non-monotonic logic incorpo-
rates reasoning into the reactive1 nature of state ma-
chines. Since our logics model reasoning (and be-
liefs like “in this frame vision believes there is no
ball”), they are better suited to model these transitions
(they may even fuse contradicting beliefs reported by
many sensors and modules in a deterministic way),
and gracefully handle situations with incomplete (or
superfluous) information without increasing the cog-
nitive load of the behaviour designer.

The designer can separate the logic model from
the state-transition model. Moreover, the designer
would not be required to ensure the exhaustive nature
of the transitions leading out from a state; as priorities
can indicate a default transition if conditions guarding
other transitions cannot be decided.

“State diagrams have often been criticized be-
cause they allegedly lack expressive power and are
impractical for large problems” (Rumbaugh et al.,
1991, p. 95). However, several techniques such as
nesting state diagrams, state generalisation, and event
generalisation were used in OMT to resolve this issue.
We have shown elsewhere (Billington et al., 2010)
(1) how the technique of nested state diagrams (e.g.
team automata (ter Beek et al., 2003; Ellis, 1997)
handle complexity, and (2) that there is an equiv-
alence between Behavior Trees and state machines,
mitigating the problem of expressive power of state
diagrams for larger systems. In fact our approach fol-
lows the very successful modelling by finite state ma-
chines (Wagner et al., 2006) that has resulted instate-
WORKS, a product used for over decade in the engi-
neering of embedded systems software (Wagner and
Wolstenholme, 2003). InstateWORKS, transitions
are labelled by a small subset of propositional logic,
namelypositive logic algebra(Wagner and Wolsten-

1In the agent modelreactivesystems are seen as an al-
ternative to logic-based systems that perform planning and
reasoning (Wooldridge, 2002).

holme, 2003), which has no implication, and no nega-
tion (only OR and AND). Thus our use of a non-
monotonic logic is a significant variation.

3 PLAUSIBLE LOGIC

Non-monotonic reasoning (Antoniou, 1997) is the ca-
pacity to make inferences from a database of be-
liefs and to correct those as new information arrives
that makes previous conclusions invalid. Although
several non-monotonic formalisms have been pro-
posed (Antoniou, 1997), Theβ algorithm for PL uses
the closed world assumption while theπ algorithm
uses the open world assumption. the family of non-
monotonic logics called Defeasible Logics has the
advantage of being designed to be implementable.
The main members of this family, includingPlausible
Logic (PL), are compared in (Billington, 2008), list-
ing their uses and desirable properties. Although the
most recent member of this family, CDL (Billington,
2008), has some advantages over PL (Billington and
Rock, 2001), the differences are not significant for the
purposes this paper. We shall therefore use PL as its
corresponding programming language, DPL, is more
advanced. If only factual information is used, PL es-
sentially becomes classical propositional logic. But
when determining the provability2 of a formula, the
proving algorithms in PL can deliver three values (that
is, it is a three-valued logic),+1 for a formula that
has been proved,−1 for a formula that has been dis-
proved, and 0 when the formula cannot be proved and
attempting so would cause an infinite loop. Another
very important aspect of PL is that it distinguishes be-
tween formulas proved using only factual information
and those using plausible information. PL allows for-
mulas to be proved using a variety of algorithms, each
providing a certain degree of trust in the conclusion.
Because PL uses different algorithms, it can handle
a closed world assumption (where not telling a fact
implies the fact is false) as well as the open world as-
sumption in which not being told a fact means that
nothing is known about that fact.

In PL all information is represented by three kinds
of rules and a priority relation between those rules.
The first type of rules are strict rules, denoted by the
strict arrow→ and used to model facts that are cer-
tain. For a ruleA → l we should understand that
if all literals in A are proved then we can deduce
l (this is simply ordinary implication). A situation
such asHumans are mammalswill be encoded as
human(x)→ mammal(x). Plausible rulesA ⇒ l use

2Provability here means determining if the formula can
be verified or proved.
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the plausible arrow⇒ to represent a plausible situ-
ation. If we have no evidence againstl , then A is
sufficient evidence for concludingl . For example,
we writeBirds usually flyasbird(x) ⇒ f ly(x). This
records that when we find a bird we may conclude
that it flies unless there is evidence that it may not fly
(e.g. if it is a penguin). Defeater rulesA⇀¬l say ifA
is not disproved, then it is risky to concludel . An ex-
ample isSick birds might not flywhich is encoded as
{sick(x),bird(x)} ⇀ ¬ f ly(x). Defeater rules prevent
conclusions that would otherwise be risky (e.g. from
a chain of plausible conclusions).

Finally, a priority relation> between plausible
rulesR1 > R2 indicates thatR1 should be used instead
of R2. The following example demonstrates the ex-
pressive power of this particular aspect of the formal-
ism:

{} → quail(Quin) Quin is a quail
quail(x) → bird(x) Quails are birds

R1 : bird(x) ⇒ f ly(x) Birds usually fly

From the ruleR1 above, one would logically ac-
cept thatQuinflies (sinceQuin is abird).

{} → quail(Quin) Quin is a quail
quail(x) → bird(x) Quails are birds

R2 : quail(x) ⇒ ¬ f ly(x) Quails usually do not fly

However, fromR2, we would reach the (correct)
conclusion that Quin usually does not fly. But what if
both knowledge bases are correct (bothR1 andR2 are
valid)? We perhaps can say thatR2 is more informa-
tive as it is more specific and so we addR2 > R1 to
a knowledge base unifying both. Then PL allows the
agent to reach the proper conclusion that Quin usually
does not fly, while if it finds another bird that is not a
quail, the agent would accept that it flies. What is im-
portant to note here is that if the rule set is consistent,
all proofs withing PL will also be consistent. I.e. as
long as any conflicts between plausible rules are prop-
erly resolved using priority relations, it will never be
possible to prove both a literall and its negation¬l at
the same time.

Note that Asimov’s famous Three Laws of
Robotics are a good example of how humans describe
a model. They define a general rule, and the next rule
is a refinement. Further rules down the list continue
to polish the description. This style of development is
not only natural, but allows incremental refinement.
Indeed, the knowledge elicitation mechanism known
asRipple Down Rules(Compton and Jansen, 1990)
extracts knowledge from human experts by refining a
previous model by identifying the rule that needs to
be expanded by detailing it more.

Table 2: One-Minute Microwave Oven Requirements.

Req. Description

R1
There is a single control button available for the use of the oven.
If the oven is closed and you push the button, the oven will start
cooking (that is, energise the power-tube) for one minute.

R2 If the button is pushed while the oven is cooking, it will cause the
oven to cook for an extra minute.

R3 Pushing the button when the door is open has no effect.

R4 Whenever the oven is cooking or the door is open, the light in the
oven will be on.

R5 Opening the door stops the cooking.

R6 Closing the door turns off the light. This is the normal idle state,
prior to cooking when the user has placed food in the oven.

R7
If the oven times out, the light and the power-tube are turnedoff
and then a beeper emits a warning beep to indicate that the cook-
ing has finished.

4 A CLASSICAL EXAMPLE

We proceed here to illustrate our approach with an ex-
ample that has been repeatedly used by the software
engineering community, e.g. (Dromey and Powell,
2005; Myers and Dromey, 2009; Shlaer and Mellor,
1992; Wen and Dromey, 2004; Mellor, 2007). This
is the so called one-minute microwave oven (Shlaer
and Mellor, 1992). Table 2 shows the requirements as
presented by Myers and Dromey (Myers and Dromey,
2009, p. 27, Table 1). Although this is in fact not
exactly the same as the original by Shlaer and Mel-
lor (Shlaer and Mellor, 1992, p. 36), we have cho-
sen the former rather than the latter because we will
later compare with Behavior Trees regarding model
size and direct code generation.

4.1 Microwave in Plausible Logic

Because we have a software architecture that handles
communication between modules through a decou-
pling mechanism named thewhiteboard(Billington
et al., 2009), we can proceed at a very high level. We
assume that sensors, such as the microwave button,
are hardware instruments that deposit a message on
the whiteboard with the signature of the depositing
module and a time stamp. Thus, events like a but-
ton push or actions such as energising the microwave
tube are communicated by simply placing a message
on the whiteboard.3 Thus, knowledge of an event like
a button push simply exists because a corresponding
message has appeared on the whiteboard. Similarly,
an action like energising the microwave tube is trig-

3Matters are a bit more complex, as messages on the
whiteboard expire or are consumed, and for actuators, they
could have a priority and thus actuators can be organised
with “subsumption” (Brooks, 1991).
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% MicrowaveCook.d

name{MicrowaveCook}.

input{timeLeft}.
input{doorOpen}.

C0: {} => ˜cook.
C1: timeLeft => cook. C1 > C0.
C2: doorOpen => ˜cook. C2 > C1.

output{b cook, "cook"}.
output{b ˜cook, "dontCook"}.

(a) DPL for 2-state machine controlling
tube, fan, and plate.

% MicrowaveLight.d

name{MicrowaveLight}.

input{timeLeft}.
input{doorOpen}.

L0: {} => ˜lightOn.
L1: timeLeft => lightOn. L1 > L0.
L2: doorOpen => lightOn. L2 > L0.

output{b lightOn, "lightOn"}.
output{b ˜lightOn, "lightOff"}.

(b) DPL for 2-state machine
controlling the light.

Figure 2: Simple theories for 2-state machines.

gered by placing a different message on the white-
board. The driver for the corresponding actuator then
performs an action for this particular message as soon
as it appears on the whiteboard.

However, here the labelcook for the transition
of the stateNOT COOKING to the stateCOOKING and
the labeldontCook from COOKING to NOT COOKING
are not necessarily events. They are consequents in a
logic model. For example,dontCook is an output of
such a model that acts as the cue to halt the cooking.
The logic model will specify the conditions by which
this cue is issued. Fig. 2a shows the logic model
in the logic programming language DPL that imple-
ments PL. In the case of the microwave oven require-
ments, for the purposes of building a model, a system
analyst or software engineer would first identify that
there are two states for various actuators. When the
oven is cooking, the fan is operating, the tube is en-
ergised and the plate is rotating. When the oven is
not cooking, all these actuators are off. The approach
can be likened to arranging the score for an orches-
tra: all these actuators will need the same cues from
the conductor (the control) and, in this example, all
switch together from the state ofCOOKING to the state
of NOT COOKING and vice versa. They will all syn-
chronously consume the message to be off or to be on.
Thus, we have a simple state diagram to model this
(Fig. 3a). By default, we do not have the conditions
to cook. This is RuleC0 in the logic model (called a

(a) A 2-state machine for controlling
tube, fan, and plate.

(b) A 2-state machine for
controlling the light.

Figure 3: Simple 2-state machines control most of the mi-
crowave.

theory) relevant to the cooking actuators. However, if
there is time left for cooking, then we have the con-
ditions to cook (RuleC1) and this rule takes priority
overC0. However, when the door opens, then we do
not cook:C2 takes priority overC1.

The light in the microwave is on when the door is
open as well as when the microwave is cooking. So,
the cues for the light are not the same as those for en-
ergising the tube. However, the light is in only one of
two statesLIGHT OFF or LIGHT ON. The default state
is that the light is off. This is RuleL0 in thetheoryfor
the light (see Fig. 2b). However, when cooking the
light is on. So RuleL1 has priority overL0. There is a
further condition that overwrites the state of the light
being off, and that is when the door is open (RuleL2).
Note that in this model, the two rulesL1 andL2 over-
ride the default RuleL0, while in the model for cook-
ing the priorities caused each new rule to refine the
previous rule. The control button (Fig. 4) also has
two states. In one state,CB ADD, the time left can
be incremented, while in the other state, pushing the
button has no effect. Again, between these two states
we place transitions labelled by an expression of PL
(in all cases, simple outputs of a theory). The control
button does not add time unless the button is pushed.
This is reflected by RuleCB0and RuleCB1below and
the priority thatCB1 has overCB0. When the door
is open, pushing the button has no effect; this is Re-
quirement R3 and expressed by RuleCB2and its pref-
erence overCB1. Because we already have defined
that a push of a button adds time to the timer (except
for the conditions already captured), if the button is
not pushed, then we do not add time. This is a strict
rule that in DPL is expressed by a disjunction.

The final requirement to model is the bell, which
is armed while cooking, and rings when there is no
time left. This is the transitionnoTimeLeft from
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(a) State machine

% MicrowaveButton.d

name{MicrowaveButton}.

input{doorOpen}.
input{buttonPushed}.

CB0: {} => ˜add.
CB1: buttonPushed => add. CB1 > CB0.
CB2: doorOpen => ˜add. CB2 > CB1.

\/{buttonPushed, wait}.

output{b add, "add"}.
output{b wait, "wait"}.

(b) DPL theory

Figure 4: The modelling of the button’s capability to add to
the timer.

(a) Bell state machine

% MicrowaveBell.d

name{MicrowaveBell}.

input{timeLeft}.

output{b ˜timeLeft, "noTimeLeft"}.

(b) DPL theory for the bell.

Figure 5: The modelling of the bell’s capability to ring when
the time expires.

BELL ARMED to BELL RINGING in Fig. 5. After ring-
ing, the bell is off, and when cooking time is added
to the timer, it becomes armed. The logical model is
extremely simple, because the condition that departs
from BELL ARMED to BELL RINGING is the negation of
the one that moves from toBELL OFF to BELL ARMED.
Moreover, we always move fromBELL RINGING to
BELL OFF. The most important aspect of this approach
is that this isall the software analysis required in or-
der to obtain the working program.

#define dontCook ( \
doorOpen \

|| !timeLeft \
)

#define cook ( \
!doorOpen && timeLeft \

)

(a) Tube, fan and plate

#define lightOff ( \
!doorOpen && !timeLeft \

)

#define lightOn ( \
doorOpen \

|| timeLeft \
)

(b) The light

#define add ( \
buttonPushed && !doorOpen \

)

#define wait ( \
!buttonPushed \

)

(c) Button and timer

#define noTimeLeft ( \
!timeLeft \

)

(d) The bell

Figure 6: Translated C expressions for transitions.

4.2 Translation into Code

Once the high level model has been established in
DPL, translation into code is straightforward. A
Haskell proof engine implementation of DPL allows
the interpretation and formal verification of the devel-
oped rule sets (Billington and Rock, 2001). This im-
plementation was extended to include a translator that
generates code that can be used in C, C++, Objective-
C, C# and Java. The Haskell translator creates op-
timised Boolean expressions through the truth tables
generated from the DPL rules. These Boolean ex-
pressions are then written out as C code that can di-
rectly be compiled and linked with libraries and appli-
cation code. Incidentially, the C syntax for Boolean
expressions is not only the same in supersets of C
(such as C++ and Objective-C), but also in modern,
related programming languages such as Java4.

Figure 6 shows the DPL theories for the state dia-
gram transitions translated into C by the Haskell proof
engine. This code can then directly be used as a
header file for a generic embedded system state ma-
chine to test the transition conditions. Subsequent re-
finements of the rules do not require any changes to
the generic state machine code. A simple recompila-
tion against the updated, generated header files is suf-
ficient to update the behaviour of the state machine.

5 EVALUATION

The original approaches to modelling behaviour with
finite state diagrams (Rumbaugh et al., 1991; Shlaer

4At this stage, expressions are generated using the
#define preprocessor syntax, that is not supported directly
in Java, but can easily be extracted using a script or even
copy and paste.
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and Mellor, 1992) had little expectation that the mod-
els would directly translate to implementations with-
out the involvement of programmers using imperative
object-oriented programming languages. However,
the software development V-model (Wiegers, 2003)
has moved the focus to requirements modelling, and
then directly obtaining a working implementation, be-
cause this collapses the requirements analysis phase
with the verification phase. There are typically two
approaches. First, emulating or simulating the model,
which has the advantage that software analysts can
validate the model and implementation by running
as many scenarios as possible. The disadvantage is
the overhead incurred through the interpretation of
the model, rather than its compilation. The second
approach consists of generating code directly from
the model (Wagner and Wolstenholme, 2003; Wagner
et al., 2006). This removes the overhead of interpret-
ing at run-time the modelling constructs. Approaches
to the automatic execution or translation of models
for the behaviour of software have included the use
of UML state diagrams for generating code (Mellor,
2007), the automatic emulation or code generation
from Petri nets (Girault and Valk, 2001), and the au-
tomatic emulation or code generation fromBehavior
Trees(Wen and Dromey, 2004; Wen et al., 2007b;
Wen et al., 2007a). A more recent trend ismod-
els@run.time, where “there is a clear pressure arising
for mirroring the problem space for more declarative
models” (Blair et al., 2009).

5.1 Contrast with State Diagrams

Simulation and direct generation of code from a state
diagram is clearly possible, since one only needs to
produce generic code that reads the transition table
(encoded in some standard form), then deploy and
interpret that repeatedly by analysing the events re-
ceived as well as the current state, and moving to the
proper subsequent state. This has been suggested for
UML (Mellor, 2007) and is the basis of the design pat-
tern state (Larman, 1995, p. 406). However, while
Finite State Machines continue to enjoy tremendous
success (Wagner and Wolstenholme, 2003), “there is
no authoritative source for the formal semantics of dy-
namic behavior in UML” (Winter et al., 2009). The
best example for the success of Finite State Machines
is stateWorks(www.stateworks.com ) and its method-
ology (Wagner et al., 2006). We have downloaded
the 60-day free license ofstateWorks Studioand the
SWLabsimulator (Fig.??). Note that this finite state
machine has only 5 states (the documentation of this
example withstateWorksadmits the model has is-
sues, e.g. “to reset the system for the next start, we

Figure 7: The execution of the example model provided in
the demo version ofstateWorksfor a microwave oven.

have to open and then close the door” and “the con-
trol system always starts even when the timeout value
is 0”). These issues can be fixed but additional infras-
tructure is necessary, including ‘counters’ and ‘switch
points’ as well as usage of the ‘real time database
(RTDN)’. The stateWorksexample describes generic
of microwave behaviour and needs some more polish-
ing to capture more detailed requirements e.g. those
outlined in Table 2. Since we argue in favour of us-
ing finite state machines for modelling behaviour, this
tool concurs with that approach. However, our eval-
uation confirms that using PL is more powerful and
closer to the original specification than the “positive-
logic” transitions instateWorks.

5.2 Contrast with Petri Nets

Petri Nets (Peterson, 1977; Holloway et al., 1997)
provide a formal model for concurrency and synchro-
nisation that is not readily available in state diagrams.
Thus, they offer the possibility of modelling multi-
threaded systems that support requirements for con-
currency. Early in the modelling effort Petri Nets
were dismissed: “Although they succeed well as an
abstract conceptual model, they are too low level
and inexpressive to be useful to specify large sys-
tems” (Rumbaugh et al., 1991, p. 144). However,
because it is quite possible to simulate or interpret a
Petri Net (or to generate code directly from it), they
continue to be suggested as an approach to directly
obtain implementations from the coding of the re-
quirements (Gold, 2004; Lian et al., 2008; Lakos,
2001; Saldhana and Shatz, 2000).

We have used PIPE 2.5 (pipe2.sf.net ) to con-
struct a model of the microwave as per the require-
ments in Table 2 (see Fig. 8). It becomes rapidly ap-
parent that the synchronisation of states between com-
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Figure 8: Capturing the requirements in Table 2 as a Petri
Net, grouped by the various components of the microwave.

ponents of the system forces to display connectors
among many parts in the layout, making the model
hard to grasp.Even if we consider incremental devel-
opment, each new requirement adds at least one place
and several transitions from/to existing places. There-
fore, we tend to agree that even for this small case
of the one-minute microwave, the Petri Net approach
seems too low level and models are not providing a
level of abstraction to assist in the behaviour engi-
neering of the system. One advantage of Petri Net
models is that there are many tools and algorithms
for different aspects of their validation. For example,
once a network is built withPIPE , this software has
algorithms to perform GSPN Analysis, FSM analy-
sis, and Invariant Analysis. However, even for this
example, considered simple and illustrative in many
circles, the model is not a suitable input for any of the
verification analysis inPIPE . On a positive note, some
first-order logics have been included in transitions to
createPredicate/Transition Nets(Genrich and Laut-
enbach, 1979; Genrich, 1991). Consequently, we see
no reason why our approach to use a non-monotonic
logic cannot be applied to Petri Nets.

5.3 Contrast with Behavior Trees

Behavior Trees(Wen et al., 2007a) is another pow-
erful visual approach forBehaviour Engineering(the
systematic progression from requirements to the soft-
ware of embedded systems). The approach provides
a modelling tool that constructs acyclic graphs (usu-
ally displayed as rooted tree diagrams) as well as
a Behavior Modelling Process (Dromey and Powell,
2005; Myers and Dromey, 2009) to transform nat-
ural language requirements into a formal set of re-
quirements. TheEmbedded Behavior Runtime En-
vironment (eBRE)(Myers and Dromey, 2009) exe-
cutes Behavior Tree models by applying transforma-

tions and generating C source code. The toolBe-
havior Engineering Component Integration Environ-
ment (BECIE)allows Behavior Trees to be drawn
and simulated. Proponents of Behavior Trees argue
that these diagrams enable requirements to be de-
veloped incrementally and that specifications of re-
quirements can be captured incrementally (Wen et al.,
2007b; Wen and Dromey, 2004). The classic exam-
ple of the one-minute microwave has also been ex-
tensively used by the Behavior Tree community (Wen
and Dromey, 2004; Dromey and Powell, 2005; Myers
and Dromey, 2009). Unfortunately, for this example,
Behavior Trees by comparison are disappointing. In
the initial phase of the method, requirements R1, R2,
R5, R6 in Table 2 use five boxes (Wen and Dromey,
2004; Dromey and Powell, 2005), while R3 and R4
demand four. Six boxes are needed for requirement
R7 (Wen and Dromey, 2004; Dromey and Powell,
2005). Then, theIntegration Design Behavior Tree
(DBT) demands 30 nodes (see (Dromey and Powell,
2005, p. 9) and (Wen and Dromey, 2004, Fig. 5)). By
the time it becomes a model foreBREthe microwave
has 60 nodes and 59 links! (Myers and Dromey, 2009,
Fig. 6) and theDesign Behavior Tree(Myers and
Dromey, 2009, Fig. 8) does not fit legibly on an A4
page. Sadly, the approach seems to defeat its pur-
pose, because on consideration of the system bound-
aries (Myers and Dromey, 2009, Fig. 7), outputs to
the alarm are overlooked. Moreover, the language for
logic tests in the tools for Behavior Trees is far more
limited than even the ‘positive-logic’ ofstateWORKS.
The equivalence between finite state machines and
Behavior Trees (Billington et al., 2010) is based on
the observation that Behavior Trees correspond to the
depth-first search through the treads of the states of
the system behaviour control. It is not surprising that
the notion needs far more nodes and connections than
the corresponding finite state machine.

6 FINAL REMARKS

We stress two more aspects of the comparison. First,
the approaches above attempt, in one way or another,
to construct the control unit of the embedded system,
and from it the behaviour of all of its components.
This implies that the control unit has a state space
that is a subset of the Cartesian product of the states
of the components. Our approach is more succinct
not only because of a more powerful logic to describe
state transition, but because our software architecture
decouples control into descriptions for the behaviour
of components. Second, our experience with this ap-
proach and the development of non-monotonic mod-
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Figure 9: Hardware running Java generated code.

els show that capturing requirements is structured and
incremental, enabling iterative refinement. That is,
one can proceed from the most general case, and pro-
duce rules and conditions for more special cases. We
ensured that our method delivers executable embed-
ded systems directly from the modelling by imple-
menting an oven where the hardware is constructed
from LEGO Mindstorm pieces, sensors, and actuators
(see Fig. 9). As witheBRE, we output Java source
code but execute a finite state machine. The execu-
tion then is verified because of the clear connection
between the model and the source code (as well as
testing it on the hardware).5
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