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Abstract: We extend the state diagrams used for dynamic modelling in object-oriented analysis and design. We sug-
gest that the events which label the state transitions be replaced with plausible logic expressions. The result
is a very effective descriptive and declarative mechanism for specifying requirements that can be applied to
requirements engineering of robotic and embedded systems. The declarative model can automatically be trans-
lated and requirements are traceable to implementation and validation, minimising faults from the perspective
of software engineering. We compare our approach Réttni NetsandBehavior Treesising the well-known
example of the one-minute microwave oven.

1 INTRODUCTION Class diagrams capture the static information of all

objects of the same class (what they know, what they
We extend state transition diagrams in that we al- store), but behaviour is essentially described in mod-
low transitions to be labelled by statements of a non- els using states and transitions. The prominence of
monotonic logic, in particular Plausible Logic. We OMT and Shlaer-Mellor has permeated into the most
show that this has several benefits. First, it facilitates popular modelling language for object-orientation,
requirements engineering. Namely, we show this ap- the Unified Modeling Language (UML). “A state di-
proach can be more transparent, clear, and succinctagram describes the behavior of a single class of ob-
than other alternatives. Therefore, it enables betterjects” (Rumbaugh et al., 1991, p. 90). Although the
capture of requirements and this leads to much morestate diagrams for each class do not describe the in-
effective system development. Furthermore, we show teractions and behaviour of several objects of diverse
that such diagrams can be directly, and automatically classes in action (for this, UML has collaboration dia-
translated into executable code, i.e. no introduction of grams and sequence diagrams), they constitute a cen-
failures in the software development process. tral modelling tool for software engineering.

Finite automata have a long history of mod- Although UML and its variants have different lev-
elling dynamic systems and consequently have beenels of formality, in the sense of having a very clear
a strong influence in the modelling of the behaviour syntax and semantics, they aim for the highest for-
of computer systems (Rumbaugh et al., 1991, Biblio- mality possible. This is because their aim is to re-
graphical notes, p. 113-114). System analysis and de-move ambiguity and be the communication vehicle
sign uses diagrams that represent behaviour of com-between requesters, stakeholders, designers, imple-
ponents or classes. State diagrams (or state machinesnentors, testers, and users of a software system.
constitute the core behavior modeling tool of object- Thus, they offer constraints very similar to the for-
oriented methodologies. In the early 90s state ma- mal finite state machine models. For example, in a
chines became the instrument of choice to model the deterministic finite state machine, no two transitions
behaviour of all the objects of a class. The Object- out of the same state can be labelled with the same
Modeling Methodology (OMT) of Rumbaugh et al. symbol. This is because formally, a deterministic fi-
(1991, chapter 5) established state diagrams as the prihite state machine consists of a finite set of states, an
mary dynamic model. The Shlaer-Mellor approach input language (for events), and a transition function.
established state models to capture the life cycle of The transition function indicates what the new state
objects of a given class (Shlaer and Mellor, 1992). will be, given an input and the current state. Other
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Table 1: The Transition Function as a Table. 2 NON-MONOTONIC LOGICIN
© @ s STATE DIAGRAMS
S Cv Sj

An ambition of both artificial intelligence (Al) and
s % 9 software engineering is to be able to only specify

) ) _ o whatwe want, without having to detdilowto achieve
adornments include signalling some statesnétsal this. The motivation for our approach has a simi-

and some afinal. However, a fundamental aspect of |3r origin. We aim at producing a vehicle of com-

finite state machines is that the transition function is munication that would enable the specification of be-
just that, a function (mathematically, a function pro- haviour without the need for imperative programming
vides only one value of the codomain for each value tools. Therefore, we want to use a declarative formal-
in the domain). ism (a similar ambition has lead to the introduction
Granted that the model can be extended to a non-qf |ogic programming and functional programming).
deterministic machine, where given an input and a Non-monotonic logic is regarded as quite compati-
state, a set of possible states is the outcome of thepje with the way humans reason and express the con-
transition. In this case, the semantics of the behaviour gitions and circumstances that lead to outcomes, as
has several inte_rpretations. For example, in the the- gl as a way to express the refinements and even ex-
ory of computation, the so-callggbwer set construc-  ceptions that polish a definition for a given concept.
tion shows that non-deterministic and deterministic |, fact, non-monotonic reasoning is regarded as one
finite state machines are equivalent. However, other of the approaches to emulate common-sense reason-
semantics are possible, such as multi-threaded beng (Russell and Norvig, 2002). We illustrate that the
haviour. Therefore, as a modelling instrument in soft- addition of this declarative capability to state transi-
ware engineering, itis typically expected that the con- tjon diagrams for capturing requirements is beneficial
ditions emanating from a state are mutually exclu- pecause the models obtained are much simpler (a fact
sive and exhaustive. “All the transitions leaving a necessary to ensure that the natural language descrip-
state must correspond to differe.ntevents"(Ru_mbaughtion has indeed been captured). This way, we only
et al, 1991, p. 89). Namely, if the symbalis a  npeed to specify thevhatand can have all of theow
Boolean expression representing the guard of the tran-yjthin an embedded system generated automatically.
sition, thenV/iL, ¢; = true (the exhaustive condition), With our approach, modelling with state-diagrams
andci A\cj = false, Vi 7 j (the exclusivity condition). s gyfficient to develop and code behaviours. The se-
In fact, Shlaer-Mellor also suggest the analysis should 1\ antics of astateis that it is lasting in time, while a
make use of thState Transition Tabl€STT) (Shlaer  yansitionis assumed to be instantaneous. The state-
and Mellor, 1992). Table 1 is the tabular represen- iagram corresponds closely to the formalism of finite
tation of the transition function “to prevent one from  ¢iote machines (defined by a Sf states, a transi-
making inconsistent statements” (Shlaer and Mellor, 441 functiont : Sx Y —s S, whereY denotes a possi-
1992, p. 52) and they provide an illustration where pqo alphabet of input symbols). In our case, we can

two transitions out of the same _state and labelled by specify the behaviour by the table that specifies the
the same event are corrected using the table. transition functiort (Table 1).

Recently, the software engineering community
has been pushing foRequirements Engineering
(RE) (Hull et al., 2005), concerned with identifying
and communicating the objectives of a software sys

We still use the notion of an initial statg, be-
cause, in our infrastructure that implements these
ideas (Billington et al., 2009), in sormexternal-state

" transition, behaviours must be able to reset them-

ter_';)’ ﬁnd (tjhg c?ntgxt 'E \gggg 'tHW'" be F‘;ée.g ('\H.’ selves to the initial state. A final state is not required,
seibe and asterbroox, ). Hence, Iaentiesy, + hehaviours should be able to indicate completion
and elicits the needs of users, customers, and other

; . of a task to other modules. Now, current practice
stakeholders in the domain of a software system. RE P

q d ful ¢ " h Signif tfor modelling with finite state machines assumes that
emands a careful systematic approach. - significanty, o qjtions are labelled by events. In both the Shlaer-

effort is to be. plaged on rigqrous analysi§ and docu- Mellor approach and OMT (Rumbaugh et al., 1991),
mented specification, especially for security or safety transitions are labelled by events only. For exam-

C”t'ctal SE/SteTS' dRE 'T Important I?ecause al requmfe_— ple, in Fig. 1, a transition is labelled by the event

][netnt not capture ezrylmaydresut INaverylarge € pai _visile (e.g. a sensor has detected a ball). A

ortto re-engineer a deployed system. slight extension is to allow labels to be a decidable
Boolean condition (or expression) in a logic with val-
uestrue orfalse (that is, it will always be possi-
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/ BALL_CHASER ™ holme, 2003), which has no implication, and no nega-
____ball not visible tion (only OR_and AI_\ID.).. Thus our use of a non-
follow @earch monotonic logic is a significant variation.
| Do:iwalk | Do:spin

\_  rallvisible  / 3 PLAUSIBLELOGIC

Figure 1: Simple Finite State Diagram.

Non-monotonic reasoning (Antoniou, 1997) is the ca-
ble to find the value of the condition guarding the pacity to make inferences from a database of be-
transition). This easily captures the earlier model be- liefs and to correct those as new information arrives
cause rather than labelling by evemtwe label by  that makes previous conclusions invalid. Although
the Boolean expressiomhasoccured Our exten-  several non-monotonic formalisms have been pro-
sion to behaviour modelling extends this further with posed (Antoniou, 1997), ThHgalgorithm for PL uses
the transition labels being any sentence in the non-the closed world assumption while thealgorithm
monotonic logic. Replacing the guarding conditions uses the open world assumption. the family of non-
with statements in the non-monotonic logic incorpo- monotonic logics called Defeasible Logics has the
rates reasoning into the reactiveature of state ma-  advantage of being designed to be implementable.
chines. Since our logics model reasoning (and be- The main members of this family, includiiausible
liefs like “in this frame vision believes there is no Logic (PL), are compared in (Billington, 2008), list-
ball”), they are better suited to model these transitions ing their uses and desirable properties. Although the
(they may even fuse contradicting beliefs reported by most recent member of this family, CDL (Billington,
many sensors and modules in a deterministic way), 2008), has some advantages over PL (Billington and
and gracefully handle situations with incomplete (or Rock, 2001), the differences are not significant for the
superfluous) information without increasing the cog- purposes this paper. We shall therefore use PL as its
nitive load of the behaviour designer. corresponding programming language, DPL, is more

The designer can separate the logic model from advanced. If only factual information is used, PL es-
the state-transition model. Moreover, the designer sentially becomes classical propositional logic. But
would not be required to ensure the exhaustive naturewhen determining the provabilfyof a formula, the
of the transitions leading out from a state; as priorities proving algorithmsin PL can deliver three values (that
can indicate a default transition if conditions guarding is, it is a three-valued logic)-1 for a formula that
other transitions cannot be decided. has been proved; 1 for a formula that has been dis-

“State diagrams have often been criticized be- proved, and 0 when the formula cannot be proved and
cause they allegedly lack expressive power and areattempting so would cause an infinite loop. Another
impractical for large problems” (Rumbaugh et al., veryimportant aspect of PL is that it distinguishes be-
1991, p. 95). However, several techniques such astween formulas proved using only factual information
nesting state diagrams, state generalisation, and even&nd those using plausible information. PL allows for-
generalisation were used in OMT to resolve this issue. mulas to be proved using a variety of algorithms, each
We have shown elsewhere (Billington et al., 2010) providing a certain degree of trust in the conclusion.
(1) how the technique of nested state diagrams (e.g.Because PL uses different algorithms, it can handle
team automata (ter Beek et al., 2003; Ellis, 1997) a closed world assumption (where not telling a fact
handle complexity, and (2) that there is an equiv- implies the fact is false) as well as the open world as-
alence between Behavior Trees and state machinessumption in which not being told a fact means that
mitigating the problem of expressive power of state nothing is known about that fact.
diagrams for larger systems. In fact our approach fol- In PL all information is represented by three kinds
lows the very successful modelling by finite state ma- of rules and a priority relation between those rules.
chines (Wagner et al., 2006) that has resultestéte- The first type of rules are strict rules, denoted by the
WORKS a product used for over decade in the engi- strict arrow— and used to model facts that are cer-
neering of embedded systems software (Wagner andtain. For a ruleA — | we should understand that
Wolstenholme, 2003). IstateWORKStransitions  if all literals in A are proved then we can deduce
are labelled by a small subset of propositional logic, | (this is simply ordinary implication). A situation
namelypositive logic algebrgWagner and Wolsten-  such asHumans are mammalwill be encoded as

_ humar{x) — mammalx). Plausible rulef\ = | use
in the agent modekeactivesystems are seenasanal- —

ternative to logic-based systems that perform planning and  2Provability here means determining if the formula can

reasoning (Wooldridge, 2002). be verified or proved.
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the plausible arrow=- to represent a plausible situ-
ation. If we have no evidence agairistthenA is
sufficient evidence for concluding For example,
we write Birds usually flyasbird(x) = fly(x). This
records that when we find a bird we may conclude
that it flies unless there is evidence that it may not fly
(e.g. ifitis a penguin). Defeater rulés— -l say ifA

is not disproved, then it is risky to conclutleAn ex-
ample isSick birds might not flyvhich is encoded as
{sick(x),bird(x)} — —fly(x). Defeater rules prevent
conclusions that would otherwise be risky (e.g. from
a chain of plausible conclusions).

Finally, a priority relation> between plausible
rulesR; > Ry indicates thaR; should be used instead
of Rp. The following example demonstrates the ex-
pressive power of this particular aspect of the formal-
ism:

Quin is a qualil
Quialils are birds
Birds usually fly

{} — quail(Quin)
quail(x) — bird(x)
Ry : bird(x) = fly(x)

From the ruleR; above, one would logically ac-
cept thatQuinflies (sinceQuinis abird).

Quin is a quall
Quialils are birds
Quails usually do not fly

{} — quail(Quin)
quail(x) — bird(x)
Ry : quail(x) = —fly(x)

However, fromR,, we would reach the (correct)
conclusion that Quin usually does not fly. But what if
both knowledge bases are correct (bBtrandR; are
valid)? We perhaps can say ttat is more informa-
tive as it is more specific and so we aRg > R; to
a knowledge base unifying both. Then PL allows the

agent to reach the proper conclusion that Quin usually

does not fly, while if it finds another bird that is not a

Table 2: One-Minute Microwave Oven Requirements.

| Req. | Description |

There is a single control button available for the use of treno

R1 If the oven is closed and you push the button, the oven witt sta
cooking (that is, energise the power-tube) for one minute.

R2 If the button is pushed while the oven is cooking, it will cadke
oven to cook for an extra minute.

R3 Pushing the button when the door is open has no effect.

R4 Whenever the oven is cooking or the door is open, the lightén
oven will be on.

R5 Opening the door stops the cooking.

R6 Closing the door turns off the light. This is the normal idiats,
prior to cooking when the user has placed food in the oven.
If the oven times out, the light and the power-tube are tumféd

R7 and then a beeper emits a warning beep to indicate that the cpo
ing has finished.

4 A CLASSICAL EXAMPLE

We proceed here to illustrate our approach with an ex-
ample that has been repeatedly used by the software
engineering community, e.g. (Dromey and Powell,
2005; Myers and Dromey, 2009; Shlaer and Mellor,
1992; Wen and Dromey, 2004; Mellor, 2007). This
is the so called one-minute microwave oven (Shlaer
and Mellor, 1992). Table 2 shows the requirements as
presented by Myers and Dromey (Myers and Dromey,
2009, p. 27, Table 1). Although this is in fact not
exactly the same as the original by Shlaer and Mel-
lor (Shlaer and Mellor, 1992, p. 36), we have cho-
sen the former rather than the latter because we will
later compare with Behavior Trees regarding model
size and direct code generation.

4.1 Microwavein Plausible Logic

quail, the agent would accept that it flies. What is im- Because we have a software architecture that handles
portant to note here is that if the rule set is consistent, COmmunication between modules through a decou-
all proofs withing PL will also be consistent. l.e. as Pling mechanism named thehiteboard(Billington

long as any conflicts between plausible rules are prop- €t al., 2009), we can proceed at a very high level. We
erly resolved using priority relations, it will never be @ssume that sensors, such as the microwave button,

possible to prove both a literalind its negatioml at ~ &ré hardware instruments that deposit a message on
the same time. the whiteboard with the signature of the depositing
Note that Asimov's famous Three Laws of module and a time stamp. Thus, events like a but-

Robotics are a good example of how humans describel®n push or action_s such as e_nergising.the microwave
a model. They define a general rule, and the next rule tUP€ are communicated by simply placing a message
is a refinement. Further rules down the list continue " the wh|teboa_r8.Thus,_knowledge of an event “ke_

to polish the description. This style of development is & Putton push simply exists because a corresponding
not only natural, but allows incremental refinement. Message has appeared on the whiteboard. Similarly,

Indeed, the knowledge elicitation mechanism known an action like energising the microwave tube is trig-

asRipple Down RulegCompton and Jansen, 19_90) SMatters are a bit more complex, as messages on the
extracts knowledge from human experts by refining a itehoard expire or are consumed, and for actuators, they
previous model by identifying the rule that needs to could have a priority and thus actuators can be organised
be expanded by detailing it more. with “subsumption” (Brooks, 1991).
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cook

% MicrowaveCook.d wi‘; /-\
name{MicrowaveCook}.
input{timeLeft}.
input{doorOpen}. \_J/
dontCook
O et © ek s (8) A 2-state machine for controlling
C2: doorOpen => “cook. C2 > Cl. tube, fan, and plate.
output{b cook, "cook'}. tar lighton
output{b “cook, "dontCook'}. ( \(‘ //—\\
(a) DPL for 2-state machine controlling
tube, fan, and plate. ~__
lightOff
% MicrowaveL ightd (b) A 2-state machine for
name{MicrowaveLight}. controlling the light.
input{timeL ef. Figure 3: Simple 2-state machines control most of the mi-
input{doorOpen}. crowave.
Lo: § => “lightOn.
L1: timeLeft => lightOn. L1 > LO. / .
L2: doorOpen => lighton. L2 > LO. theory) relevant to the cooking actuators. However, if
output ighton, “ghton', thgre is time left for cooking, then we have th_e con-
outputb TightOn, “lightOf'). ditions to cook (RuleCl) and this rule takes priority
_ overC0. However, when the door opens, then we do
(b) DPL for 2-state machine not cook:C2 takes priority oveCL.

trolling the light. 4 4 . . .
controfing the g The light in the microwave is on when the door is

open as well as when the microwave is cooking. So,
the cues for the light are not the same as those for en-
gered by placing a different message on the white- ergising the tube. However, the light is in only one of
board. The driver for the corresponding actuator then two states.IGHT_OFF or LIGHT_.ON. The default state
performs an action for this particular message as soonis that the light is off. This is Rul&0 in thetheoryfor

Figure 2: Simple theories for 2-state machines.

as it appears on the whiteboard. the light (see Fig. 2b). However, when cooking the
However, here the labelook for the transition lightis on. So Rulé.1 has priority ovet0. Thereis a

of the stateNOT_COOKING to the statecOOKING and further condition that overwrites the state of the light

the labeldontCook from COOKING t0 NOT_.COOKING being off, and that is when the door is open (Ruig.

are not necessarily events. They are consequents in dNote that in this model, the two rulés andL2 over-
logic model. For examplalontCook is an output of ride the default Rul&0, while in the model for cook-
such a model that acts as the cue to halt the cooking.ing the priorities caused each new rule to refine the
The logic model will specify the conditions by which ~ previous rule. The control button (Fig. 4) also has
this cue is issued. Fig. 2a shows the logic model two states. In one stat&B ADD, the time left can

in the logic programming language DPL that imple- be incremented, while in the other state, pushing the
ments PL. In the case of the microwave oven require- button has no effect. Again, between these two states
ments, for the purposes of building a model, a system we place transitions labelled by an expression of PL
analyst or software engineer would first identify that (in all cases, simple outputs of a theory). The control
there are two states for various actuators. When thebutton does not add time unless the button is pushed.
oven is cooking, the fan is operating, the tube is en- This is reflected by Rul€B0and RuleCB1below and
ergised and the plate is rotating. When the oven is the priority thatCB1 has overCBO. When the door
not cooking, all these actuators are off. The approachis open, pushing the button has no effect; this is Re-
can be likened to arranging the score for an orches-quirement R3 and expressed by ROE2and its pref-
tra: all these actuators will need the same cues fromerence oveCBL Because we already have defined
the conductor (the control) and, in this example, all that a push of a button adds time to the timer (except
switch together from the state 0bOKING to the state  for the conditions already captured), if the button is
of NOT_COOKING and vice versa. They will all syn- not pushed, then we do not add time. This is a strict
chronously consume the message to be off or to be on.rule that in DPL is expressed by a disjunction.

Thus, we have a simple state diagram to model this  The final requirement to model is the bell, which
(Fig. 3a). By default, we do not have the conditions is armed while cooking, and rings when there is no
to cook. This is RuleC0 in the logic model (called a time left. This is the transitiomoTimeLeft from
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Figure 4: The modelling of the button’s capability to add to

the timer.

- ad #define dontCook ( \ #define lightOff ( \
AL /\ doorOpen \ IdoorOpen && 'timeLeft \
\ || timeLeft \ )
)
#define lightOn ( \
#define cook ( \ doorOpen \
IdoorOpen && timeLeft \ || timeLeft \
wait
(a) State machine (a) Tube, fan and plate (b) The light

o #define add (\
% MicrowaveButton.d buttonPushed && !doorOpen \
name{MicrowaveButton}. )
i #define wait ( \ #define noTimeLeft ( \
!nput{doorOpen}. tbuttonPushed \ ttimeLeft \
input{buttonPushed}. ) )
CBO: {} => "add.
CB1: buttonPushed => add. CB1 > CBO. H
CB2: doorOpen ~s A, B2 > cBL. (c) Button and timer (d) The bell
Vibutonpushed, waid, Figure 6: Translated C expressions for transitions.
outputfb add, “"add"}. . .
output vt “wait) 4.2 Trandation into Code

(b) DPL theory

timeLeft

s-\ti: /—\

\@

(a) Bell state machine

% MicrowaveBell.d

Once the high level model has been established in
DPL, translation into code is straightforward. A
Haskell proof engine implementation of DPL allows
the interpretation and formal verification of the devel-
oped rule sets (Billington and Rock, 2001). This im-
plementation was extended to include a translator that
generates code that can be used in C, C++, Objective-
C, C# and Java. The Haskell translator creates op-
timised Boolean expressions through the truth tables
generated from the DPL rules. These Boolean ex-
pressions are then written out as C code that can di-
rectly be compiled and linked with libraries and appli-
cation code. Incidentially, the C syntax for Boolean
expressions is not only the same in supersets of C

(such as C++ and Objective-C), but also in modern,
related programming languages such as%lava
Figure 6 shows the DPL theories for the state dia-
gram transitions translated into C by the Haskell proof
engine. This code can then directly be used as a
(B)BPL theory for iggibell header file for a generic embedded system state ma-
Figure 5: The modelling of the bell's capability to ringwhen  chine to test the transition conditions. Subsequent re-
the time expires. finements of the rules do not require any changes to
the generic state machine code. A simple recompila-
BELL_ARMED t0 BELL_RINGING in Fig. 5. After ring- tion against the updated, generated header files is suf-
ing, the bell is off, and when cooking time is added ficient to update the behaviour of the state machine.
to the timer, it becomes armed. The logical model is
extremely simple, because the condition that departs
from BELL_ARMED t0 BELL RINGING is the negationof 5  EVALUATION
the one that moves from ®ELL_OFF to BELL_ARMED.

Moreover, we always move fromELL-R'N_GWG to The original approaches to modelling behaviour with
BELL.OFF. The mostimportantaspect of this approach nire state diagrams (Rumbaugh et al., 1991: Shlaer
is that this isall the software analysis required in or-

der to obtain the working program.

name{MicrowaveBell}.
input{timeLeft}.

output{b “timeLeft, “noTimeLeft"}.

4At this stage, expressions are generated using the
#define preprocessor syntax, that is not supported directly
in Java, but can easily be extracted using a script or even
copy and paste.
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and Mellor, 1992) had little expectation that the mod- &
els would directly translate to implementations with- z=oc=a T CIERIE

out the involvement of programmers using imperative | * "~
object-oriented programming languages. However,
the software development V-model (Wiegers, 2003) | :
has moved the focus to requirements modelling, and | -
then directly obtaining a working implementation, be- |
cause this collapses the requirements analysis phas¢

with the verification phase. There are typically two @ P
m,.,&ﬁ' @ 'v«é:um
% Jﬁc‘ e

=F

CAOREHMES| *

g ? feisiia =
e =

approaches. First, emulating or simulating the model, b
which has the advantage that software analysts can
validate the model and implementation by running | A
as many scenarios as possible. The disadvantage is-=
the overhead incurred through the interpretation of
the model, rather than its compilation. The second Figure 7: The execution of the example model provided in
approach consists of generating code directly from the demo version astateWorkdor a microwave oven.
the model (Wagner and Wolstenholme, 2003; Wagner
et al., 2006). This removes the overhead of interpret- naye to open and then close the door” and “the con-
ing at run-time the modelling constructs. Approaches trq| system always starts even when the timeout value
to the automatic execution or translation of models s o). These issues can be fixed but additional infras-
for the behaviour of software have included the use trycture is necessary, including ‘counters’ and ‘switch
of UML state diagrams for generating code (Mellor, points’ as well as usage of the ‘real time database
2007), the automatic emulation or code generation (RTDNY'. The stateWorksexample describes generic
from Petri nets (Girault and Valk, 2001), and the au- of microwave behaviour and needs some more polish-
tomatic emulation or code generation fr@ehavior  jng to capture more detailed requirements e.g. those
Trees(Wen and Dromey, 2004; Wen et al., 2007b; oytlined in Table 2. Since we argue in favour of us-
Wen et al., 2007a). A more recent trendn®d- jng finite state machines for modelling behaviour, this
els@run.timewhere “there is a clear pressure arising too| concurs with that approach. However, our eval-
for mirroring the problem space for more declarative yation confirms that using PL is more powerful and
models” (Blair et al., 2009). closer to the original specification than the “positive-
logic” transitions instateWorks

s Studio... |25 SWLab - MWOVen....

5.1 Contrast with State Diagrams
5.2 Contrast with Petri Nets

Simulation and direct generation of code from a state

diagram is clearly possible, since one only needs to Petri Nets (Peterson, 1977; Holloway et al., 1997)
produce generic code that reads the transition tableprovide a formal model for concurrency and synchro-
(encoded in some standard form), then deploy and nisation that is not readily available in state diagrams.
interpret that repeatedly by analysing the events re- Thus, they offer the possibility of modelling multi-
ceived as well as the current state, and moving to thethreaded systems that support requirements for con-
proper subsequent state. This has been suggested fogurrency. Early in the modelling effort Petri Nets
UML (Mellor, 2007) and is the basis of the design pat- were dismissed: “Although they succeed well as an
ternstate  (Larman, 1995, p. 406). However, while abstract conceptual model, they are too low level
Finite State Machines continue to enjoy tremendous and inexpressive to be useful to specify large sys-
success (Wagner and Wolstenholme, 2003), “there istems” (Rumbaugh et al., 1991, p. 144). However,
no authoritative source for the formal semantics of dy- because it is quite possible to simulate or interpret a
namic behavior in UML" (Winter et al., 2009). The Petri Net (or to generate code directly from it), they
best example for the success of Finite State Machinescontinue to be suggested as an approach to directly
is stateWorkgwww.stateworks.com ) and its method-  obtain implementations from the coding of the re-
ology (Wagner et al., 2006). We have downloaded quirements (Gold, 2004; Lian et al., 2008; Lakos,
the 60-day free license aftateWorks Studiand the 2001; Saldhana and Shatz, 2000).

SWLabsimulator (Fig.??). Note that this finite state We have used PIPE 2.pige2.sfret ) to con-
machine has only 5 states (the documentation of this struct a model of the microwave as per the require-
example withstateWorksadmits the model has is- ments in Table 2 (see Fig. 8). It becomes rapidly ap-
sues, e.g. “to reset the system for the next start, we parentthat the synchronisation of states between com-
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tions and generating C source code. The tBel
havior Engineering Component Integration Environ-
ment (BECIE)allows Behavior Trees to be drawn
and simulated. Proponents of Behavior Trees argue
that these diagrams enable requirements to be de-
veloped incrementally and that specifications of re-
guirements can be captured incrementally (Wen et al.,
2007b; Wen and Dromey, 2004). The classic exam-
ple of the one-minute microwave has also been ex-
tensively used by the Behavior Tree community (Wen
and Dromey, 2004; Dromey and Powell, 2005; Myers
and Dromey, 2009). Unfortunately, for this example,
Behavior Trees by comparison are disappointing. In
Figure 8: Capturing the requirements in Table 2 as a Petri the initial phase of the method, requirements R1, R2,
Net, grouped by the various components of the microwave. R5, R6 in Table 2 use five boxes (Wen and Dromey,
2004; Dromey and Powell, 2005), while R3 and R4
demand four. Six boxes are needed for requirement

ponents of the system forces to display connectors J
among many parts in the layout, making the model R/ (Wen and Dromey, 2004; Dromey and Powell,

hard to grasp.Even if we consider incremental devel- 2005)- Then, thdntegration Design Behavior Tree
opment, each new requirement adds at least one pIacéDBT) demands 30 nodes (see (Dromey a_nd Powel,
and several transitions from/to existing places. There- 2005_' p- .9) anggtivelgand Drorey, 2004, .F'g' 5))- By
fore, we tend to agree that even for this small case € ime it becomes a model feBREthe microwave

of the one-minute microwave, the Petri Net approach h_as 60 nodes and 59 links! (My_ers and Dromey, 2009,
seems too low level and models are not providing a Fig. 6) and theD_eS|gn Behawor_Tree(.Myers and
level of abstraction to assist in the behaviour engi- PTOMeY. 2009, Fig. 8) does not fit legibly on an A4
neering of the system. One advantage of Petri Net page. Sadly, the apprc_)ach Seems to defeat its pur-
models is that there are many tools and algorithms FOSE, because on consideration of Fhe system bound-
for different aspects of their validation. For example, &res (Myers and Dromey, 2009, Fig. 7), outputs to
once a network is built witlPIPE, this software has the_alarm g'e overlooked. Moreo_ver, the Ia_mguage for
algorithms to perform GSPN Analysis, FSM analy- ng_lc tests in the tool§ for_Behawc_)r’Trees is far more
sis, and Invariant Analysis. However, even for this limited th_an eventhe posmv_e-!og|c cs‘tateWO_RKS
example, considered simple and illustrative in many The equwalence pgtween finite state “?aCh'”eS and
circles, the model is not a suitable input for any of the Behavior Trges (Billington _et al., 2010) is based on
verification analysis ifIPE. On a positive note, some the obs_ervatlon that Behavior Trees correspond to the
first-order logics have been included in transitions to d€Pth-first search through the treads of the states of

createPredicate/Transition NetéGenrich and Laut- the system behaviour control. It is not surpris?ng that
enbach, 1979; Genrich, 1991). Consequently, we Seethe notion needs far more nodes and connections than
no reason why our approach to use a non-monotonicth€ corresponding finite state machine.

logic cannot be applied to Petri Nets.
5.3 Contrast with Behavior Trees 6 FINAL REMARKS

Behavior TreegWen et al., 2007a) is another pow- We stress two more aspects of the comparison. First,
erful visual approach foBehaviour Engineerin¢the the approaches above attempt, in one way or another,
systematic progression from requirements to the soft- to construct the control unit of the embedded system,
ware of embedded systems). The approach providesand from it the behaviour of all of its components.

a modelling tool that constructs acyclic graphs (usu- This implies that the control unit has a state space
ally displayed as rooted tree diagrams) as well as that is a subset of the Cartesian product of the states
a Behavior Modelling Process (Dromey and Powell, of the components. Our approach is more succinct
2005; Myers and Dromey, 2009) to transform nat- not only because of a more powerful logic to describe

ural language requirements into a formal set of re- state transition, but because our software architecture
guirements. The&eambedded Behavior Runtime En- decouples control into descriptions for the behaviour

vironment (eBREYMyers and Dromey, 2009) exe- of components. Second, our experience with this ap-
cutes Behavior Tree models by applying transforma- proach and the development of non-monotonic mod-
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