
REWRITING-BASED SECURITY ENFORCEMENT OF
CONCURRENT SYSTEMS

A Formal Approach

Mahjoub Langar, Mohamed Mejri
LSFM Research Group, Computer Science Department, Laval University, Québec, Québec, Canada

Kamel Adi
LRSI Research Group, Computer Science Department, University of Quebec in Outaouais, Gatineau, Québec, Canada

Keywords: Language based security, Runtime verification, Concurrent systems, Process algebra, Formal verification.

Abstract: Program security enforcement is designed to ensure that a program respects a given security policy, which
generally specifies the acceptable executions of that. In general, the enforcement is achieved by adding some
controls (tests) inside the target program or process. The major drawback of existing techniques is either their
lack of precision or their inefficiency, especially those dedicated for concurrent languages. This paper proposes
an efficient algebraic and fully automatic approach for security program enforcement: given a concurrent
programP and a security policyφ, it automatically generates another programP′ that satisfiesφ and behaves
like P, except that it stops whenP tries to violate the security policyφ.

1 INTRODUCTION

Until today, fully secure computer systems are still
a distant dream, mainly due to the subtleness and
the complexity of the problem. However, one of the
current and promising avenues of research for secur-
ing computer systems is the development of formal
frameworks for automatic enforcement of security
policies in programs. The goal of those approaches
is to ensure that a program respects a given secu-
rity policy which generally specifies acceptable ex-
ecutions of the program. Security policies can be ex-
pressed in terms of access control problems, infor-
mation flow, availability of resources, confidential-
ity, etc. (Schneider, 2000) and the literature records
various techniques for enforcing security policies.
Thus, we mainly distinguish two principal classes:
static approaches including typing theory (Morrisett
et al., 1999), Proof Carrying Code (Necula, 1997),
and dynamic approaches including reference moni-
tors (Bauer et al., 2002; Ligatti et al., 2005; Martinell
and Matteucci, 2007), Java stack inspection (Erlings-
son and Schneider, 2000). Static analysis aims at en-
forcing properties before program execution. In dy-
namic analysis, however, the enforcement takes place

at runtime by intercepting critical events during the
program execution and halting the latter whenever
an action is attempting to violate the property be-
ing enforced. Recently several researchers have ex-
plored rewriting techniques (K. Hamlen and Schnei-
der, 2003) in order to gather advantages of both static
and dynamic methods. The idea consists in modifying
statically a program, so that the produced version re-
spects the requested requirements. The rewritten pro-
gram is generated from the original one by adding,
when necessary, some tests at some critical points to
obtain the desired behavior.

The literature record many formal works (Langar
et al., 2007; Langar and Mejri, 2005; Ligatti et al.,
2005; Mejri and Fujita, 2008; Ould-Slimane et al.,
2009) related to the rewriting of sequential programs,
however only few attempts have targeted concurrent
programs. This is due to the complexity added by the
parallelism operator. Even simple systems become
widely complicated when they are executed in par-
allel (Fokkink, 2000). However, the research commu-
nity knows that this challenge cannot be ignored for
a long time due to the urgent need for securing con-
current systems which are pervasive in every sphere
of human activity.

66
Langar M., Mejri M. and Adi K. (2010).
REWRITING-BASED SECURITY ENFORCEMENT OF CONCURRENT SYSTEMS - A Formal Approach.
In Proceedings of the International Conference on Security and Cryptography, pages 66-74
DOI: 10.5220/0002996100660074
Copyright c© SciTePress

This paper proposes an algebraic and fully auto-
matic approach that could generate from a given pro-
gram and a security policy a new version of this pro-
gram that respects the requested security policy. More
precisely, this paper formally defines a syntactic op-
erator⊗ that takes as input a processP and a security
policy φ and generatesP′ = P⊗φ, a new process that
respects the following conditions:

• P′|∼ φ, i.e.,P′ "satisfies" the security policyφ.

• P′ ⊑ P, i.e., behaviours ofP⊗φ are subset of the
behaviours ofP.

• ∀Q : ((Q|∼ φ)∧ (Q⊑ P))⇒ Q⊑ P′, i.e., all good
behaviours ofP are inP⊗φ.

P φ

⊗

P′ = P⊗φ

For the specification of concurrent systems,
the suggested model uses an extended version of
ACP "Algebra for Communicating Process" (Baeten,
2005) denoted byACPφ. Moreover, the logic used for
the specification of security policies is an extended
version of regular languages denoted byLϕ. The lan-
guageACPφ is defined so that the enforcement oper-
ator is embedded in it. Furthermore, we define a set
of translation functions that allow to express our en-
forcement operator in terms of standard operator of
the process algebraACP.

This paper is structured as follows. Section 2
presents a logic for specifying security policies. Sec-
tion 3 describes the syntax and the semantics of our
calculus used for specifying concurrent programs. In
Section 4 we present a formal framework based on the
introduced logic and process algebra for security poli-
cies enforcement on programs. Section 5 gives the
main theorem stating the correctness of our method.
Section 6 illustrates our method by An example. Fi-
nally, Section 7 provides concluding remarks.

2 SECURITY POLICY
SPECIFICATION

The purpose of this section is to define an adequate
logic for specifying the required security policies.

The important requested features of this logic are:

• the ability for specifying linear and temporal
properties. We are interested by properties that
could not be always statistically verified. There-
fore we expect that the program will be monitored
at runtime so that the violation of the requested
security property could be forbidden. To that end,
and since at runtime, we can see only one branch
of the program at a given time, then the expected
logic needs to be linear.

• suitable for safety properties. Safety properties
are the class of properties that can be dynamically
enforced. By safety we mean that something bad
will never happen during the execution of a pro-
gram.

• the ability for specifyingω-properties (infinite
properties). An execution of a program could gen-
erate an infinite sequence of actions and it is im-
portant to be able to monitor these behaviours.

For the above stated reasons and others that will
be clarified later, the adopted logic is based on the
extended regular expressions (Sen and Rosu, 2003),
enhanced with the ability for specifying infinite be-
haviours.

2.1 Syntax

The syntax of the proposed logic is presented by the
BNF grammar in Table 1, wherea is an action in
a given finite setA , tt and f f denote the Boolean
constants and 1 denotes an empty sequence of ac-
tions. Furthermore, the logic contains standard propo-
sitional connectives (¬,∧ and∨) and a temporal op-
erator (.) denoting the operation sequencing. In the
sequel, we noteLϕ the set of formulas that can be
specified in our logic.

For reasons that will be detailed below, we con-
sider a deterministic Kleene operator, i.e.: only for-
mulasϕ1 andϕ2 such thatυ(ϕ1)∩υ(ϕ2) = /0 are al-
lowed in the formϕ∗

1ϕ2. Intuitively, υ(ϕ) is the set
of the first actions allowed by the formulaϕ. For
example,υ(a.b.c) = {a}, υ((a∨ b).c) = {a,b} and
υ(a.(b∨ c)) = {a}. More formally, the functionυ is
defined as follows:

υ : Lϕ → 2A

υ(tt) = A

υ(f f) = /0
υ(1) = /0
υ(a) = {a}

υ(ϕ∗
1ϕ2) = υ(ϕ1)∪υ(ϕ2)

υ(ϕ1∨ϕ2) = υ(ϕ1)∪υ(ϕ2)
υ(ϕ1∧ϕ2) = υ(ϕ1)∪υ(ϕ2)

υ(¬ϕ) = A \υ(ϕ)
υ(ϕ1.ϕ2) = υ(ϕ1)∪ (o(ϕ1)⊖υ(ϕ2))

REWRITING-BASED SECURITY ENFORCEMENT OF CONCURRENT SYSTEMS - A Formal Approach

67

where the functiono(ϕ) allows to know whether the
language accepted by the formula contain the empty
sequence and it is defined as follows :

o : Lϕ →{0,1}
o(tt) = 1

o(f f) = 0
o(1) = 1
o(a) = 0

o(ϕ1.ϕ2) = o(ϕ1)×o(ϕ2)
o(ϕ1∨ϕ2) = max(o(ϕ1),o(ϕ2))

o(ϕ∗
1ϕ2) = o(ϕ2)

o(¬ϕ) = (o(ϕ)+1) mod(2)

and the function⊖ is defined as follows:

⊖ : {0,1}×2A −→ 2A

(0,S) 7→ /0
(1,S) 7→ S

Table 1: Syntax ofLϕ.

ϕ1,ϕ2 ::= tt | f f | 1 | a | ϕ1.ϕ2 | ϕ1∨ϕ2 |
ϕ1∧ϕ2 | ¬ϕ | ϕ∗

1ϕ2

2.2 Semantics

Let T be the monoid (A , .,ε), the semantics ofLϕ is
defined by the functionJ K : Lϕ → T as shown in
Table 2. Intuitively, any trace respects the formula
true. No trace respects the formulafalseand only the
empty trace (ε) respects the formula 1. Only traces
that have prefixes respectingϕ1 and suffixes respect-
ing ϕ2 respectϕ1.ϕ2. Only traces that respectϕ1 or
ϕ2 respectϕ1∨ϕ2. Only traces that respect bothϕ1
andϕ2 respectϕ1∧ϕ2. A trace respectsϕ∗

1ϕ2 if either
it respectsϕ2 or it has a prefix that respectsϕ1 and a
suffix that respectϕ∗

1ϕ2. Finally, a trace respects¬ϕ,
if it does not respectϕ.

2.3 Shortcuts

For the sake of simplicity, we define the following
shortcuts whereA is a subset ofA , a ∈ A and "

.
="

is the abbreviation symbol:

A
.
=

∨
a∈Aa

−A
.
= A −A

−a
.
= A −{a}

−
.
= A − /0

ϕω .
= ϕ∗ f f

2.4 Example

Hereafter, we specify various properties using the
logic Lϕ.

• (−send)ω : this formula is satisfied by infinite
traces that do not contain the actionsend.

• (−read)∗(read.(−send)ω) : this formula repre-
sents a security property which prohibits asend
operation after areadhas been executed.

2.5 Derivative

In this subsection, we adapt the notion of Brzozowski
derivatives or "residuals" (see (Brzozowski, 1964;
Owens et al., 2009; Sen and Rosu, 2003) for more de-
tail) to our logic. The notion of derivatives expresses
the idea of "program evolution", in the sense that it
gives the remaining part of a program after the exe-
cution of a given action. Similarly, the derivative of
a formulaeϕ with respect to an atomic actiona, de-
noted by[ϕ]a, is the remaining part ofϕ that needs to
be respected by an arbitrary tracet so thata.t respects
ϕ. More formally, the definition of the derivative is as
shown in Table 3.

Hereafter, we extend the definition of derivative to
an arbitrary trace as follows:

Definition 1. Letϕ be a formula in Lϕ, ξ a trace inT ,
and a an action inA . The derivative ofϕ with respect
to ξ denoted by[ϕ]ξ is defined as follows:

• [ϕ]ε = ϕ
• [ϕ]a.ξ = [[ϕ]a]ξ

Definition 2. Let ϕ be a formula in Lϕ, ξ a trace in
T , and a an action inA .

• We say that a traceξ satisfies the formulaϕ, de-
noted byξ � ϕ, if ξ ∈ JϕK.

• We say that a traceξ prefix-satisfies a formulaeϕ,
denoted byξ|∼ ϕ, if there exists a traceξ′ such
thatξ.ξ′ � ϕ.

Proposition 2.1. Let ϕ be a formula in Lϕ and ξ a
trace inT . The following notations are equivalent:

• ξ|∼ ϕ
• [ϕ]ξ 6= f f
• ∃x | ξ.x� ϕ

Proof. The proof follows directly from the definition
of |∼ and�. 2

SECRYPT 2010 - International Conference on Security and Cryptography

68

Table 2: Semantics ofLϕ formulae.

JttK = T
J f f K = /0
J1K = {ε}
JaK = {a}

Jϕ1.ϕ2K = {ξ1.ξ2|ξ1 ∈ Jϕ1K andξ2 ∈ Jϕ2K}
Jϕ1∨ϕ2K = Jϕ1K∪ Jϕ2K
Jϕ1∧ϕ2K = Jϕ1K∩ Jϕ2K

Jϕ∗
1ϕ2K =

{
Jϕ1K

∗∪{ξ1.ξ2|ξ1 ∈ Jϕ1K
∗ andξ2 ∈ Jϕ2K} If Jϕ2K 6= /0

Jϕ1K
ω elsewhere

J¬ϕK = T \JϕK

Table 3: Derivative of a formula.

[−]− : Lϕ ×A → Lϕ
[tt]a = tt
[f f]a = f f
[1]a = f f
[a]a = 1
[b]a = f f Wherea 6= b

[ϕ1.ϕ2]a =

{
[ϕ1]a.ϕ2∨ [ϕ2]a i f o(ϕ1) = 1
[ϕ1]a.ϕ2 i f o(ϕ1) = 0

[ϕ1∨ϕ2]a = [ϕ1]a∨ [ϕ2]a
[ϕ∗

1ϕ2]a = [ϕ1]a.ϕ∗
1ϕ2∨ [ϕ2]a

[¬ϕ]a = ¬[ϕ]a

3 PROGRAM SPECIFICATION

In this section, we present the formal language that
we use to specify concurrent programs. It is a modi-
fied version of ACP (Algebra of Communicating Pro-
cesses) which is developed by Jan Bergstra and Jan
Willem Klop in 1982 (Baeten, 2005). This new alge-
bra, denotedACPφ, has the particularity of explicitly
handling the monitoring concept through its operator

"∂ξ
φ". For instance, the process∂ξ

φ(P) can execute only
actions that prefix-satisfies the security policyφ. This
process algebra is a powerful language for specifying
and studying concurrent systems. It provides a mod-
ular tool for the high-level description of interactions,
communications and synchronizations between a col-
lection of processes.

3.1 Syntax

The syntax ofACPφ is presented by the BNF grammar
in Table 4. Note that the merge operator||γ and the
communication operator|γ are parameterized by the
communication functionγ as defined hereafter:

Definition 3 (Communication Function). A com-
munication function is any commutative and associa-
tive function formA ×A to A , i.e.: γ : A ×A → A is

a communication function if:

1. ∀a,b∈ A , : γ(a,b) = γ(b,a), and

2. ∀a,b,c∈ A : γ(γ(a,b),c) = γ(a,γ(b,c)).

Table 4: Syntax ofACPφ.

P ::= 1 | δ | a | P1.P2 | P1+P2 |
P1||γP2 | P1TγP2 | P1|γP2 |

P∗
1P2 | ∂H(P) | τI (P) | ∂ξ

φ(P)

Essentially, a process is either an atomic action or
a combination of others processes according to some
well defined operators. Constants 1 andδ represent
the successful termination and the deadlock respec-
tively. Constantsa,b,c, . . . are called atomic actions.
The operator "." represents the sequential composi-
tion: P1.P2 is the process that first executesP1 until it
terminates, and thenP2 starts. The operator "+" repre-
sents the alternative composition:P1+P2 represents
the process that either executesP1 or P2 but not both
of them. The merge operator "||γ" represents the par-
allel composition:P1||γP2 is the process that executes
P1 andP2 in parallel with the possibility of synchro-
nization according to the functionγ. Notice that the
function γ can change from one composition to an-
other. For instance,(P1|γ1P2)|γ2P3 is a valid process,
whereγ1 6= γ2. The left merge operator "Tγ" has the
same meaning as the merge operator, but with the re-
striction that the first step must come from the left
process:P1TγP2 is the process that first executes an
action in P1 and then run the remaining part ofP1
in parallel withP2. The communication operator "|γ"
represents a synchronized composition (communica-
tion between processes). Thus,P1|γP2 represents the
merge of two processesP1 andP2 with the restriction
that the first step is a communication betweenP1 and
P2. The operator "∗" represents the iteration. It is a bi-
nary version of the Kleene star operator (Bergstra and
Ponse, 2001):P∗

1P2 is the process that behaves like
P1.(P∗

1P2)+P2. The unary operator "∂H" represents a
restriction operator, whereH ⊆ A : the process∂H(P)
can evolve only by executing actions that are not in

REWRITING-BASED SECURITY ENFORCEMENT OF CONCURRENT SYSTEMS - A Formal Approach

69

H. The unary operator "τI " represents the abstraction
operator, whereI is any set of atomic actions called
internal actions: it abstracts all output action inI by

the silent actionτ. Finally, the operator "∂ξ
φ", where

φ is aLϕ formula andξ is a trace fromT , represents

our enforcement operator:∂ξ
φ(P) is the processes that

can evolve only ifP can evolve by actions that do not
lead to the violation of the security policyφ. In the
sequel, we denote byP the set of processes generated
by ACPφ.

3.2 Semantics

The operational semantics ofACPφ is defined by the
transition relation−→∈ P ×A ×P shown in table 6,
where the relation "≡" is defined in Table 5.

Table 5: Axiom ofACPφ.

P+Q ≡ Q+P P||γQ ≡ Q||γP
P|γQ ≡ Q|γP P+ δ ≡ P

δ.P ≡ δ 1.P ≡ P

In the following we define an ordering relation, noted
⊑, on processes.

Definition 4 (Order Relation). Let P and Q be
two processes inP . We say that P is smaller tan
Q, denoted by P⊑ Q, if the following condition is
satisfied:

P
a

−→ P′ then Q
a

−→ Q′ and P′ ⊑ Q′
.

4 FORMAL ENFORCEMENT OF
SECURITY POLICIES

The principal goal of this research is to define a for-
mal framework allowing to enforce security policies
on concurrent programs. To achieve this goal, we de-
fined a logic which is suitable for to the specification
of our targeted class of security policies and we used
a version ofACPcalculus enhanced with an enforce-
ment operator∂ξ

φ for the specification of concurrent
programs. The following theorem states that the de-
sired enforcement can be achieved by the operator∂−−.

Theorem 4.1. Let P be a process in ACPΦ and φ a
formula in Lϕ. Let ⊗ : ACPΦ × Lϕ → ACPΦ be de-
fined by P⊗φ= ∂ε

φ(P). The following three properties
hold:

(i) P⊗φ|∼ φ,
(ii) P⊗φ ⊑ P and
(iii) ∀ P′ : ((P′|∼ φ)∧ (P′ ⊑ P))⇒ P′ ⊑ P⊗φ.

Proof.
(i) ∂ε

φ(P)|∼ φ: This follows directly from the se-

mantics ofACPφ which was defined in such a way
that∂ε

φ(P) can evolve only when the security policy is
respected rule(R

∂ξ
φ
) of table 6.

(ii) ∂ε
φ(P)⊑P: This also follows directly from the rule

(R
∂ξ

φ
) of table 6.

(iii) Let P′ be a process such that :P′|∼ φ∧P′ ⊑ P
and suppose thatP′ a

−→ P′
1. SinceP′ ⊑ P, it follows

from the definition of⊑ thatP
a

−→P1. SinceP′|∼ φ it
follows, from the definition of|∼, thata|∼ φ. Finally,
since implies thatP

a
−→ P1 anda|∼ φ it follows from

the the rule(R
∂ξ

φ
) in table 6 that∂ε

φ(P)
a

−→ ∂a
φ(P1) and

we conclude thatP′ ⊑ ∂ε
φ(P) = P⊗φ. 2

Some of the important features of the enforcement
operator is that it allows us to enforce locally a given

security policy e.g.:P.∂ξ
φ(Q), P | ∂ξ

φ(Q), etc. This al-
lows to reduce the overhead induced by the monitor-
ing when the untrusted part of the system are known.
Besides, the enforcement operator allows us to en-
force different policies in different parts of the sys-

tem, e.g.∂ξ′
φ′(P).∂

ξ
φ(Q), ∂ξ′

φ′(P) | ∂ξ
φ(Q), etc. However,

the inconvenience of this operator is that its imple-
mentation could be heavy and the result could be not
efficient. In fact, as shown by the rule(R

∂ξ
φ
) of Table

6, we need to save the history of the execution of a
process and we need to check that any new requested
action cannot violate the security policy when added
to the history. Another future interesting point is to
compare the expressiveness of theACPΦ with ACP.

In the rest of this paper we prove that the enforce-
ment operator∂ε

φ(P) does not bring any additional ex-
pressivity to the language since it can be expressed as
a combination of the rest of the operators inACPΦ.
In addition to the importance of this result from the
theoretical point of view, it gives us an efficient and
elegant way to implement our enforcement operator.
Basically, the idea consists in transforming the secu-
rity policy as a process that runs in parallel with the
system. The controlled system will be modified by
adding some synchronization actions so that it can
evolve only when the requested action is allowed by
the security policy.

Normal Form of Lϕ Formulas. In the sequel, we
show how to transform a formula inLϕ, specifying a
given security policy, as a process inACPΦ so that it
could follow the analyzed system step by step and for-
bid it whenever it tries to violate the security policy.

SECRYPT 2010 - International Conference on Security and Cryptography

70

Table 6: Operational semantics ofACPφ.

(R≡)
P≡ P1 P1

a
−→ P2 P2 ≡ Q

P
a

−→ Q
(Ra) 2

a
a

−→ 1

(R.)
P

a
−→ P′

P.Q
a

−→ P′
.Q

(R+)
P

a
−→ P′

P+Q
a

−→ P′

(R∗)
P

a
−→ P′

P∗Q
a

−→ P′
.(P∗Q)

(Rd
∗)

Q
a

−→ Q′

P∗Q
a

−→ Q′

(RTγ)
P

a
−→ P′

PTγQ
a

−→ P′||γQ
(R||γ)

P
a

−→ P′

P||γQ
a

−→ P′
1||γP2

(RC
||γ
)P

a
−→ P′ Q

b
−→ Q′

P||γQ
γ(a,b)
−→ P′||γQ

′
γ(a,b) 6= δ (R|γ)

P
a

−→ P′ Q
b

−→ Q′

P|γQ
γ(a,b)
−→ P′||γQ

′
γ(a,b) 6= δ

(Rφ
τ)

P
a

−→ P′

τI (P)
τ

−→ τI (P
′)

a∈ I (Rτ)
P

a
−→ P′

τI (P)
a

−→ τI (P)
a 6∈ I

(R∂H
) P

a
−→ P′

∂H(P)
a

−→ ∂H(P
′)

a 6∈ H (R
∂ξ

φ
) P

a
−→ P′

∂ξ
φ(P)

a
−→ ∂ξ.a

φ (P′)
ξ.a|∼ φ

Of course, the process reflecting the formula, must,
amongst others, produce the same traces given by the
semantic of the formula. Also, we should be able to
find an equivalence representation of any operator of
the logic inACPΦ. Operators like "." and "∗" of the
logic will be easily transformed into the same oper-
ators in ACPΦ. However, the situation is different
when we want to translate operators that are inLϕ
and not inACPΦ such as the conjunction or the nega-
tion. Some operators have their corresponding one in
ACPΦ, like the disjunction that can be translated to a
choice, but they have different algebraic properties. In
fact, as processes,a.(b+ c) anda.b+a.c do not have
the same behaviours but as a formulae,a.(b∨ c) and
a.b∨a.c has the same semantics. Therefore, one can
ask the question what is the appropriate translation of
the formulaa.b∨ a.c? Is it a.(b+ c) or a.b+ a.c?
In fact, the first choice is more appropriate since it al-
lows monitoring the analyzed system according to the
following idea: the system cannot evolve only if the
process capturing the formula can evolve. So if our
system isa.(b+ c) and our formula isa.b∨ a.c and
we capture the formula by the processa.b+a.c, there
is a risk that the system will be blocked even if it is
trivial that all its traces respect the formula.

We define a transformation function that rewrites
a logical formula to an equivalent one, called normal
form formula, so that the translation from the formula
to the process could be easily achieved. This normal-
ization involves the following three kind of transfor-
mation:

Conjunctive Normal Form. A formula is in CNF
(Conjunctive Normal Form) if it is a conjunction of
terms, where a term is a disjunction of literals. More
formally, it is formulae of the form

∧

i∈1..n

ϕi where each

ϕi does not contain the conjunction operation. We
will show later how we can enforce a formula in CNF.

Elimination of the Form ¬ϕ. Since the negation
operator inLϕ has not any "equivalent" one inACPΦ,
then we need to remove it as following: first, we trans-
form a formula of the form¬ϕ in such a way that
the scope of the negation operator will be limited to
atomic actions. For instance, the formula¬(ab) will
be transformed to¬a∨a.¬b . After that the negation
of an atomic action will be eliminated using its com-
plimentary part as it will be shown later.

Deterministic Formula. To resolve the problem of
the disjunction operator, we need to find its equiva-
lent deterministic form which always exists since we
restricted our logicLϕ so that the star operator is al-
ways deterministic. We can prove that this determin-
istic form is the normal form of the rewriting system
composed by the rule:a.ϕ1∨a.ϕ2 → a.(ϕ1∨ϕ2).

In the rest of the document, we will consider only
formula inLϕ that are in their normal form "

∧

i∈1..n

ϕi".

This set is denoted byLN(ϕ). Moreover, the set of
terms (ϕi) that does not contain the conjunction oper-
ator will be denoted byLd

N(ϕ).

REWRITING-BASED SECURITY ENFORCEMENT OF CONCURRENT SYSTEMS - A Formal Approach

71

Synchronization Actions. The idea of transform-
ing a formula to a process that monitors the system
is achieved via the introduction of what we call syn-
chronization actions (commonly used in synchroniza-
tion logic). Let us clarify the idea by a simple ex-
ample. Suppose that the process isa+b and the se-
curity policy is φ = a which means that only the ac-
tion a is allowed. To monitor the process, the secu-
rity policy will be transformed as a process contain-
ing only synchronization actions where each actiona
is replaced by a sequence of two actionsad.af used
to capture the start and the end of the actiona. There-
fore, the formulaa will be captured by the monitor
Pφ = ad.af . The process, on the other hand, will be
modified to include the complimentary part of these
synchronizations actions in such a way that each ac-
tion a will be replaced byad.a.af . For example, the
processa+bwill be transformed toad.a.af +bd.b.bf .
Now, when the two processes are executed in paral-
lel (ad.a.af + bd.b.bf) |γ ad.af they can communi-
cate (synchronize) on their synchronization actions if
γ allows it. Now, to really enforce, the security pol-
icy we need to force the synchronization using the
∂H . i.e.: ∂H((ad.a.af + bd.b.bf) |γ ad.af), where
H = {ad,af ,bd,bf ,ad,af }. Finally, we clean the out-
put stream of the process by abstracting the communi-
cation on synchronization actions by the silent action
τ as follows: τI (∂H((ad.a.af + bd.b.bf) |γ ad.af)),
where I = {γ(ad,ad)}. The final version is the en-
forced version of the system with the security policy
φ that behaves as expected.

To formalize, this idea, we need to introduce the
following ingredients:

• Given a set of actionsA, the corresponding syn-
chronization set, denoted byAC is:

AC =
⋃

a∈A

{ad,af ,ad,af }

SoA C will denote the set of synchronization ac-
tion associated withA . Moreover, for any process
P, A C (P) returns the set of synchronization ac-
tions inP.

• The processac wherea is in A C is:

∑
α∈AC \{a}

α

• For any integeri, the setA C
i is the version ofA C

indexed by an integeri :

A C
i =

⋃

a∈A
C

{ai}

• The setHi will be used to denote the setA C
i .

• The set Ii will be used to denote the set⋃

α∈AC
i

{α|ᾱ}.

• The functionγ0 will be used to denote the com-
munication function defined as follows:

γ0(a, ā) =

{
a|ā if a∈ A ∪A C
δ else

From Formula to Process: Translation Function.
The translation function is defined as shown in Table
7.

Table 7:Lϕ formulae translation function.

⌈|−|⌉ : Ld
N(ϕ)×N→ ACP

⌈|tt|⌉i =(∑
α∈A

αi
d.α

i
f)

∗∑
α∈A

αi
d.α

i
f +1

⌈| f f |⌉i =δ
⌈|1|⌉i =1
⌈|δ|⌉i =δ
⌈|a|⌉i =ai

d.a
i
f

⌈|φ1.φ2|⌉i = ⌈|φ1|⌉i .⌈|φ2|⌉i
⌈|φ1∨φ2|⌉i = ⌈|φ1|⌉i + ⌈|φ2|⌉i
⌈|φ∗1φ2|⌉i = ⌈|φ1|⌉i

∗⌈|φ2|⌉i

⌈|¬a|⌉i =ai
d

c
.ai

f
c
.((∑

α∈A

αi
d.α

i
f)

∗∑
α∈A

αi
d.α

i
f +1)

Adding Synchronization Actions to Process. Syn-
chronization actions are added in a process by the
function ⌈−⌉ defined in Table 8 where the function
A C (P) returns the set of synchronization actions inP.

Table 8:ACPφ Processes translation function.

⌈−⌉ : ACPΦ ×N×2A → ACPΦ

⌈1⌉H
i = 1

⌈δ⌉H
i = δ

⌈a⌉H
i =

{
a If a∈ H ∪{τ}
ai

d.a.a
i
f Else

⌈P1.P2⌉
H
i = ⌈P1⌉

H
i .⌈P2⌉

H
i

⌈P1+P2⌉
H
i = ⌈P1⌉

H
i + ⌈P2⌉

H
i

⌈P∗
1P2⌉

H
i = ⌈P1⌉

H
i
∗
⌈P2⌉

H
i

⌈P1||γ0P2⌉
H
i = ⌈P1⌉

H
i ||γ0⌈P2⌉

H
i

⌈P1TP2⌉
H
i = ⌈P1⌉

H
i T⌈P2⌉

H
i

⌈P1|P2⌉
H
i = ⌈P1⌉

H
i |⌈P2⌉

H
i

⌈∂H′(P)⌉H
i = ∂H′(⌈P⌉H∪H′

i)
⌈τI (P)⌉H

i = τI (⌈P⌉H∪I
i)

⌈∂ξ∧

j∈1..n

ϕ j
(P)⌉H

i = ⌈∂ξ∧
j∈2..n ϕ j

⌈∂ξ
ϕ1(P)⌉

H
i ⌉

H∪H1
i+1

⌈∂ξ
ϕ(P)⌉H

i = ∂Hi (τIi (⌈P⌉
H
i ||γ0⌈|[ϕ]ξ|⌉i))

where H1 = A C (⌈∂ξ
ϕ1(P)⌉

H
i)

SECRYPT 2010 - International Conference on Security and Cryptography

72

Enforced Version ∂ξ
ϕ(P). Now, we are ready to ex-

press the enforcement operator using the standard
ACP operators. Indeed, we’ll prove in the next sec-

tion that the process∂ξ
ϕ(P) is "equivalent" to the pro-

cess∂Hi (τIi (⌈P⌉i ||γ0⌈|[ϕ]ξ|⌉i)) for any integeri.

5 MAIN RESULT

The purpose of this section is to prove that enforce-
ment process can be specified inACP. The initial
version of the process inACPφ and its correspond-
ing version inACPare equivalent with respect to the
τ-bissimulation defined hereafter:

Definition 5 (τ-bissimulation). A binary relation
S⊆ P × P over processes is aτ-bissimulation, if
(P,Q) ∈ S implies:

(i) If P
a
։ P′ then Q

a
։ Q′ and(P′

,Q′) ∈ S, and

(ii) If Q
a
։ Q′ then P

a
։ P′ and(Q′,P′) ∈ S

where
a
։= (

τ
→)∗

a
→ (

τ
→)∗

Definition 6 (↔τ). We define↔τ as the biggest
τ-bissimulation:

↔τ =
⋃
{S: S is aτ-bissimulation}

Finally, The following theorem states the equiva-
lence between the enforcement operator and its trans-
formation.

Theorem 5.1 (Main Theorem). ∀P ∈ ACPφ,
∀ϕ ∈ Ld

N(ϕ), and∀ξ ∈ T , we have :

∂ξ
ϕ(P)↔τ ∂Hi (τIi (⌈P⌉i ||γ0⌈|[ϕ]ξ|⌉i))

for any i∈ N.

6 EXAMPLE

Hereafter we show how our techniques works on
a simple example. We consider the programP =
read.copy||γ0write.send, which is composed of two
concurrent processes, and the property given by the
following formulaeϕ : (−read)∗(read.(−send)ω).
In order to enforceϕ on the programP, we execute
the process :∂ε

ϕ(read.copy||γ0write.send). Which is
equivalent to execute the process :

∂H1(τI1(⌈read.copy||γ0write.send⌉1||γ0

⌈|[(−read)∗(read.(−send)ω)]ε|⌉1)).

In order to simplify the presentation, the letterc
denotescopy, the letterr denotesread, the letterw
denoteswrite and the lettersdenotessend.

Firstly, we should calculate⌈r.c||γ0w.s⌉1 and
⌈|[(−r)∗(r.(−s)ω)]ε|⌉1 :

⌈r.c||γ0w.s⌉1 = r1
d.r.r

1
f .c

1
d.c.c

1
f ||γ0w1

d.w.w
1
f .s

1
d.s.s

1
f

⌈|[(−r)∗(r.(−s)ω)]ε|⌉1 = (r1
d

c
.r1

f
c
)∗(r1

d.r
1
f .(s

1
d

c
.s1

f
c
)ω)

We obtain the following process :
∂H1(τI1((r

1
d.r.r

1
f .c

1
d.c.c

1
f ||γ0w1

d.w.w
1
f .s

1
d.s.s

1
f)||γ0

(r1
d

c
.r1

f
c
)∗(r1

d.r
1
f .(s

1
d

c
.s1

f
c
)ω)

︸ ︷︷ ︸

φt

)), where

H1 = A C
1 andI1 =

⋃

α∈AC
1

{α|ᾱ}

For example developing the following sequence of
actions : read.write.send. Note that this sequence
violates the propertyφ, and the program should be
blocked before executing the actionsend.

∂H1(τI1((r
1
d.r.r

1
f .c

1
d.c.c

1
f ||γ0w1

d.w.w
1
f .s

1
d.s.s

1
f)||γ0

(r1
d

c
.r1

f
c
)∗(r1

d.r
1
f .(s

1
d

c
.s1

f
c
)ω)))

τ
−→ {| Rules RC

||γ
,Rφ

τ and R∂H
where

γ0(r1
d, r

1
d) = r1

d|r
1
d ∈ I1 |}

∂H1(τI1((r.r
1
f .c

1
d.c.c

1
f ||γ0w1

d.w.w
1
f .s

1
d.s.s

1
f)||γ0

r1
f .(s

1
d

c
.s1

f
c
)ω))

r
−→ {|RulesR||γ ,Rτ andR∂H wherer 6∈ I1

|}

∂H1(τI1((r
1
f .c

1
d.c.c

1
f ||γ0w1

d.w.w
1
f .s

1
d.s.s

1
f)||γ0

r1
f .(s

1
d

c
.s1

f
c
)ω))

τ
−→ {| Rules RC

||γ
,Rφ

τ and R∂H
where

γ0(r1
f , r

1
f) = r1

f |r
1
f ∈ I1 |}

∂H1(τI1((c
1
d.c.c

1
f ||γ0w1

d.w.w
1
f .s

1
d.s.s

1
f)||γ0

s1
d

c
.s1

f
c
.(s1

d
c
.s1

f
c
)ω))

τ
−→ {| Rules RC

||γ
,Rφ

τ and R∂H where

γ0(w1
d,s

1
d

c
) = w1

d|s
1
d

c
∈ I1 |}

∂H1(τI1((c
1
d.c.c

1
f ||γ0w.w1

f .s
1
d.s.s

1
f)

||γ0s1
f
c
.(s1

d
c
.s1

f
c
)ω))

w
−→ {|RulesR||γ ,Rτ andR∂H

wherer 6∈ I1
|}

∂H1(τI1((c
1
d.c.c

1
f ||γ0w1

f .s
1
d.s.s

1
f)||γ0 >

s1
f
c
.(s1

d
c
.s1

f
c
)ω))

τ
−→ {| Rules RC

||γ
,Rφ

τ and R∂H where

γ0(w1
f ,s

1
f
c
) = w1

f |s
1
f
c
∈ I1 |}

REWRITING-BASED SECURITY ENFORCEMENT OF CONCURRENT SYSTEMS - A Formal Approach

73

∂H1(τI1((c
1
d.c.c

1
f ||γ0s1

d.s.s
1
f)||γ0(s

1
d

c
.s1

f
c
)ω))

As we can see the subprocess(c1
d.c.c

1
f ||γ0s1

d.s.s
1
f)

cannot execute the actionsend, because it should
firstly synchronize with another process to execute the
actions1

d, which is impossible.

7 CONCLUSIONS

This paper presents an original and innovative con-
tribution for the enforcement of security policies on
parallel programs. We first defined a dedicated al-
gebraic calculus for the specification of parallel pro-
grams and a dedicated logic for the specification of
security policies. The originality of the presented cal-
culus is that it implements a special enforcement op-

erator∂ξ
φ. Thus, this research project has formally de-

fined the syntax and the semantics of the specifica-
tion languages and showed how these could be used
to provide mechanisms for automatic enforcement of
security requirements on parallel programs. Subse-
quently, this paper demonstrated important results of
soundness and completeness of the suggested tech-
nique. In a second step, this project was interested
in the practical aspects of the presented method and
showed how the enforcement operator could, in fact,
be defined by standardACPoperators. These results
are, in fact, very important both from a theoretical and
practical perspectives and allow us to consider the ap-
plication of our method on real languages like C or
Java. Consequently, we are currently implementing
a software prototype of our method that operates on
the Java language. As a future work, we plan to ex-
tend the logicLϕ to give the end user the possibility to
specify the actions to be executed when the security
policy is about to be violated instead of simply halting
the execution of the program.

REFERENCES

Baeten, J. C. M. (2005). A brief history of process algebra.
Theor. Comput. Sci., 335(2-3):131–146.

Bauer, L., Ligatti, J., and Walker, D. (2002). More enforce-
able security policies. InIn Foundations of Computer
Security.

Bergstra, W. F. J. A. and Ponse, A. (2001).Handbook Of
Process Algebra, chapter chapter 5 : Process Algebra
with Recursive Operations, pages 333–389. Elsevier.

Brzozowski, J. A. (1964). Derivatives of regular expres-
sions.J. ACM, 11(4):481–494.

Erlingsson, U. and Schneider, F. B. (2000). Irm enforce-
ment of java stack inspection. InSP ’00: Proceedings
of the 2000 IEEE Symposium on Security and Privacy,
page 246, Washington, DC, USA. IEEE Computer So-
ciety.

Fokkink, W. (2000). Introduction to Process Algebra.
Springer-Verlag, Berlin.

K. Hamlen, G. M. and Schneider, F. (2003). Computability
classes for enforcement mechanisms. Technical Re-
port TR2003-1908, Cornell University.

Langar, M. and Mejri, M. (2005). Formal and efficient en-
forcement of security policies. InFCS, pages 143–
149.

Langar, M., Mejri, M., and Adi, K. (2007). A formal ap-
proach for security policy enforcement in concurrent
programs. InSecurity and Management, pages 165–
171.

Ligatti, J., Bauer, L., and Walker, D. (2005). Edit automata:
Enforcement mechanisms for run-time security poli-
cies. International Journal of Information Security,
4(1–2):2–16.

Martinell, F. and Matteucci, I. (2007). Through modeling to
synthesis of security automata.Electron. Notes Theor.
Comput. Sci., 179:31–46.

Mejri, M. and Fujita, H. (2008). Enforcing security policies
using algebraic approach. InSoMeT, pages 84–98.

Morrisett, G., Walker, D., Crary, K., and Glew, N. (1999).
From system f to typed assembly language.ACM
Trans. Program. Lang. Syst., 21(3):527–568.

Necula, G. C. (1997). Proof-carrying code. InPOPL
’97: Proceedings of the 24th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages,
pages 106–119, New York, NY, USA. ACM.

Ould-Slimane, H., Mejri, M., and Adi, K. (2009). Using
edit automata for rewriting-based security enforce-
ment. InDBSec, pages 175–190.

Owens, S., Reppy, J., and Turon, A. (2009). Regular-
expression derivatives re-examined.J. Funct. Pro-
gram., 19(2):173–190.

Schneider, F. B. (2000). Enforceable security policies.ACM
Trans. Inf. Syst. Secur., 3(1):30–50.

Sen, K. and Rosu, G. (2003). Generating optimal monitors
for extended regular expressions. InIn Proceedings
of the 3rd Workshop on Runtime Verification (RV0́3).
Elsevier Science.

SECRYPT 2010 - International Conference on Security and Cryptography

74

