UNIVERSALLY COMPOSABLE NON-COMMITTING
ENCRYPTIONS IN THE PRESENCE OF ADAPTIVE ADVERSARIES

Huafei Zhd, Tadashi Araragi Takashi Nishid&and Kouichi Sakurdi
Linstitute for Infocomm Research, A-STAR, Singapore
2NTT Communication Science Laboratories, Kyoto, Japan
3Department of Computer Science and Communication Engineering, Kyushu University, Fukuoka, Japan

Keywords: Adaptive security, Decisional Diffie-Hellman assumption, Non-committing encryptions, Oblivious sampling
and faking algorithms.

Abstract: Designing non-committing encryptions tolerating adaptive adversaries is a challenging task. In this paper,
a simple implementation of non-committing encryptions is presented and analyzed in the strongest security
model. We show that the proposed non-committing encryption scheme is provably secure against adaptive
adversaries in the universally composable framework assuming that the decisional Diffie-Hellman problem is

hard.
1 NON-COMMITTING (Canetti et al., 1996) is secure against adaptive
ENCRYPTIONS adversary in the universally composable framework,

see Section 6.3 of (Canetti, 2005) for more details).

. 2 - .

Informally, a non-committing encryption protocol is 10 €ncrypt 1 bit, (k%) public key bits are com-
an encrypted communication that allows a simulator Municated. Damgard and Nielsen (Damgard and
to open a ciphertext to any plaintext it desires and sim- Ni€lsen, 2000) proposed generic constructions of
ulate the real world adversary’s view before and after NON-committing encryption schemes based on so
a player is corrupted. Nielsen (Nielsen, 2002) shows called _S|mulatable public-key encryption scheme_s in
that no non-interactive communication protocol can 1€ universally composable framework (a detailed
be adaptively secure in the asynchronous model. analysis of the protocol presented in (Damgard and

Beaver and Haber's protocol (Beaver and Haber Nielsen, 2000) is available in Section 4 of (Nielsen,
1992) realizes the functionality of non-commitment 2003)). _Rou_ghly speak_mg_, a pu_b_llc—key encryption
encryption schemes in the erasure model. That is, if SCheme is simulatable if, in addition to the normal
one is willing to trust honest parties can erase sensi- K€y generation algorithm procedure, there is an
tive information such that the adversary can find no &/9orithm to generate a public key without knowing
trace of it, should he break in, then such adaptively € corresponding secret key. Moreover, it must be
secure multi-party computation of any function can POSsible to sample efficiently a random ciphertext
be efficiently realized. Subsequently, Beaver (Beaver, Without getting to know the corresponding plaintext.
1997) proposed a much simpler scheme based on thel "€y showed that a non-committing encryption
decisional Diffie-Hellman assumption with expansion scheme can_be constructe(_j from any semantically
factor O(k). The non-committing encryptions pre- S€cUre ang S|mulataple public-key system. Althoggh
sented in (Beaver, 1997) and (Beaver and Haber,the Damgard and Nlelsen’s construction (Damga_lrd
1992) are designed and analyzed in the stand-alone2nd Nielsen, 2000) is general, the cost of computation
simulation-based framework. IS expensive since one should obliviously generate

Canetti, Feige, Goldreich and Naor (Canetti et al., & Pair of public keys to communicate 1-bit in open
1996) proposed the first non-committing encryptions NEWOrks. . :
based on so called common-domain permutations (the ~ V'Y recently, ~Choi, ~Soled, Malkin —and

stand-alone non-committing encryption presented in Wee (S.Choi et al., 2009) have presented a new
implementation of non-committing encryptions

389

Zhu H., Araragi T., Nishide T. and Sakurai K. (2010).

UNIVERSALLY COMPOSABLE NON-COMMITTING ENCRYPTIONS IN THE PRESENCE OF ADAPTIVE ADVERSARIES.
In Proceedings of the International Conference on Security and Cryptography, pages 389-398

DOI: 10.5220/0002985003890398

Copyright © SciTePress

SECRYPT 2010 - International Conference on Security and Cryptography

based on a weaker notion (called trapdoor sim- andgfsyé in the ideal execution if the decisional Diffie-
ulatable cryptosystems). The idea behind their Hellman assumption holds. The core technique ap-
construction is that- on input a security parameter plied to the security proof is a novel application of
k, a receiver first generates totak gublic keys oblivious sampling and faking algorithms introduced
where the firstk public keys are generated by a and formalized by Canetti and Fischlinin (Canetti and
key generation algorithm of the underlying trapdoor Fischlin, 2001). Roughly speaking, an oblivious fak-
simulatable encryption scheme while the rest 3 ing algorithmfake takesg € G as input and outputs
public keys are generated by an oblivious sampling a stringrg € {0, 1}2\p_ An oblivious sampling algo-
algorithm. To encrypt a bib, the sender sends rithm sample takesr ey {0, 1}2\p\ as input and out-
4k ciphertexts of whichk are encrypted and the puts an elements € G. The oblivious sampling and
remaining & ones are obliviously sampled. Although faking algorithms engaged in the security proof bene-
the non-committing encryption scheme in (S.Choi fjt 3 PPT simulator to generate subgroup elements of
etal., 2009) is at the expense of higher computation G c z: uniformly at random and interprets a Diffie-
and communication of the Damgard and Nielsen's Hellman quadruple, as a garbled quadrupkg_q.
protocol (Damgard and Nielsen, 2000), such an The oblivious sampling and faking algorithms also
implementation is definitely interesting since the penefit the simulator to interpret a random selection
subtle failure model in (Damgard and Nielsen, 2000) string as a garbled string. As a result, no environment
is eliminateq (i.e., the S(.:hem.e pretsented in (SChOl Z, on any input' can tell with non_neg|igib|e prob_
etal., 2009) is round-optimal) in their framework. ability whether it is interacting witm and players

. runningtt, or with s and 75 in the ideal execution if
1.1 This Work the decisional Diffie-Hellman assumption holds.

This paper studies non-committing encryptionsinthe .

UC-framework of Canetti. We will show that the pro- Efficiency. - Our scheme requires 3 messages to
posed non-committing encryption scheme is provably communicaté encrypted bits, wherteis the security
secure against adaptive adversaries in the universallyParameter. The total communicationGgk) Diffie-

composable framework assuming that the decisional Hellman quadruples and garbled quadruples@fid
Diffie-Hellman problem is hard. selection strings and garbled strings dabits (the

communication of the fingt bits of the communica-
tion depend on the actual messages to be sent). Thus,
our universally composably secure non-committing
lgncryption protocol is as efficient as the stand-alone,
simulation-based (but the notion of environmentis de-
fined in their security definition and the proof of the
protocols) protocol by Beaver (Beaver, 1997)the
most efficient implementation of non-committing en-
cryptions so far.

An Overview of the Protocol. The proposed
non-committing encryption protocol comprises two
phases: a channel setup phase and a communicatio
phase. The idea behind our construction is simple: to
set up a secure channel, a senfidirst picks a ran-
dom bita € {0,1}, and then selects a Diffie-Hellman
guadruplez, and a garbled quadrupé_4 and send
(en,€1) to a receiveR. Given (ep,€1), the receiver

R picks a selection strindg and a garbled string
f1_g, and then obliviously selects 1-out-of-2 quadru- Road-map. The rest of this paper is organized
ples with the help of the selection strirfg. If ey is as follows: In Section 2, the building blocks are
selected, then a secure channel is established; Othersketched;The functionality and security definition of
wise,SandR retry the channel setup procedure. non-committing encryption protocols are presented
in Section 3. In Section 4, a new non-committing
encryption scheme is proposed and analyzed in the
universally composable framework in the presence of
adaptive adversaries. We conclude our work in Sec-
tion 5.

Main Result. We claim that the non-commitment
protocoltt presented in Section 4 realizes the univer-
sally composable security in the presence of adap-
tive adversaries assuming that the Decisional Diffie-
Hellman problem is hard.

The Proof of Security. We will show that for any 2 PRELIMINARIES

real world adversary there exists an ideal-world ad-

versarys such that no environmert, on any input, We assume that a reader is familiar with the
can tell with non-negligible probability whether it is standard notion of universally composable frame-
interacting with2a and players runningt, or with § work (Canetti, 2001). The oblivious sampling and

390

UNIVERSALLY COMPOSABLE NON-COMMITTING ENCRYPTIONS IN THE PRESENCE OF ADAPTIVE

ADVERSARIES

faking algorithms described below are due to Canetti DLogg(X1), and(gz,hz) € DLogg(X2), @ mappingy
and Fischlin (Canetti and Fischlin, 2001). The two al- called Naor-Pinkas randomizer is defined below:

gorithms combined together allow a simulator to con-

struct a fake transcript to the environmemnin such

(p((gl7 02, hla hz) X (Sat)) = (gigtz mod P, h?.htz mod p)

a way that the simulator can open this transcript to wheres;t ey Zq4

the actual inputs that the simulator receives from the

Denoteu= g$g, mod p andv =h$h}, mod p. Naor

functionality when the parties get corrupted, a core and Pinkas (Moni Naor, 2001) have shown that
task to prove the security of protocols against adap- i X1 = X2 (=X), then(u,v) is uniformly random in

tive adversaries in the universally composable secu-

rity model.

The Canetti-Fischlin Oblivious Sampling Algo-
rithm. Let p=wqg+ 1 for somew not divisible byq,

andG is a cyclic group of ordeq in Z;,. The Canetti-
Fischlin oblivious sampling algorithreample takes
r € {0,1}2/Pl as input and outputs an elemeatc G

via the following computations

e the sampling algorithnsample chooses a string
r € {0,1}2Pl uniformly at random, wher¢p| be
the bit length of the prime numbex

e Letrp =r modpandrg =ry modp.

Lemma 1 (Due to (Canetti and Fischlin, 2001)).
Let X = [X=x:Xxe€y G, andY = [Y =y y«
sample(r),r €y {0,1}2Pl], then the distributions be-
tween two random variables andY are statistically
indistinguishable.

The Canetti-Fischlin Oblivious Faking Algorithm.
Let p=wqg+ 1 for somew not divisible byqg, andG is

a cyclic group of ordeq in Z;. The Canetti-Fischlin
oblivious faking algorithnfake takes a random ele-
menth € G as input and outputs, € {0, 1}2Pl via the
following computations

e On inputh € G, the faking algorithnfake picks
a random integer € Zy,. Lethp = h*g'4 mod p,
wherexw = 1 modg;

e Letry = Len(y ez, jp +hp), where Lerix) de-
notes the bit IengtFl of an integer

Lemma 2 (due to (Canetti and Fischlin, 2001))
Let X = [X = x:x ey {0,1}2P], andY = [Y = y:
y « fake(g),g €y GJ, then the distributions between
two random variableX andY are statistically indis-
tinguishable.

2.1 The Decisional Diffie-Hellman
Assumption

Let p=2g+ 1 andp, q be large prime numbers. Let
G C Z;, be a cyclic group of orde. Letg be a ran-
dom generator 06. For any 0# x € Zg, we define
DLogg(X) ={(9,¢) : g € G}. On input(gy,hy) €

DLogg(X);
e if X1 # X2, then(u,v) is uniformly random inG2.

3 NON-COMMITTING
ENCRYPTIONS:
FUNCTIONALITY AND
SECURITY DEFINITION

The notion of non-committing encryption scheme in-
troduced in (Canetti et al., 1996) is a protocol used to
realize secure channel in the presence of an adaptive
adversary. In particular, this means that a simulator
can build a fake transcript to the environmentin
such a way that the simulator can open this transcript
to the actual inputs, that the simulator receives from
the functionality when the parties get corrupted.

Leta. be a non-information oracle which is a PPT
Turing machine that captures the information leaked
to the adversary in the ideal-world. That &, is
the oracle which take&Sendsid, P, m) as input and
outputs(Sendsid,P,|m|). Let ChSetup be a chan-
nel setup command which on inpytshSetupsid, S)
produces no output an@Corruptsid,P) be a cor-
ruption command which takeCorruptsid, P) pro-
duces no output. The functionality of non-committing
encryption secure channels defined below is due to
Garay, Wichs and Zhou (Garay et al., 2009).

The ideal functionality 745

Channel setup: upon receiving an input
(ChSetup,sid,S) from party S, initialize the ma-
chine 4. and record the tuplésid,A(). Pass the
messageChSetup,S) to R, In addition, pass this
message ta{ and forward its output t@;

Message transfer: Upon receiving an input
(Send, sid, P, m) from partyP, whereP € {S R}, find
a tuple(sid,a(), and if none exists, ignore the mes-
sage. Otherwise, send the messésend, sid, P,m)
to the other party? ={S,R} \ {P}. In addition, in-
voke N with (Send, sid, P, m) and forwards its output
(Send, sid, P, |m|) to the adversary.

receiving a
the adversary s,

Corruption:
(Corrupt, sid, P)

Upon
from

message
send

391

SECRYPT 2010 - International Conference on Security and Cryptography

(Corruptsid,P) to A and forward its output to
the adversary. After the first corruption, stop execu-
tion of A’ and give the adversary complete control
over the functionality.

Definition (due to (Garay et al., 2009)). We b

call the functionalitygfsf‘é a non-committing encryp-
tion secure channel. A real-world protoaolhich

realizes 75 is called a non-committing encryption
scheme.

4 NON-COMMITTING
ENCRYPTION

In this section, we first describe an implementation

of non-committing schemes based on the decisional
Diffie-Hellman problem, and then show that the pro- e
posed scheme realizes UC-security in the presence of
adaptive adversaries.

4.1 Description of Non-committing
Encryption Scheme

The non-committing encryption protocol comprises
two phases: a channel setup phase and a communica-
tion phase. To set up a secure chanBelepares two
quadruplesy ande;, whereey is a Diffie-Hellman
quadruple ané;_q is a garbled quadruple,< {0,1}.
Snow let a receiveR to choose 1-out-of-2 quadru-
ples. Ifey is selected, a secure channel has been set
up between two parties; OtherwiseandR retry the
channel setup procedure. The details of protocol are
depicted below.

— S picks a quadrupl€gi1-a, 921-a; M1-a;
h21-«) € G* uniformly at random. Leg;
=(01,1-0a» 921—as N11-a, N21-q).

— Ssendg(ep,e1) toR.

Upon receiving(ep,e1), R checks the conditions

1#4gjeGandl1#hjeG(=12j=0,1),

if any of the conditions are violated® outputs

1; Otherwise,R performs the following compu-

tations

— R choosesp €y {0,1} and sg,t3 €y Zg and

t

theS: ct:omputesuB = gi‘fﬁggg mod p and vg

=hyghoe

:(SﬁatB)'

R picksu;_g € G andv;_g € G uniformly at

random. Letf;_g =(u;_g,Vi_p).

— Rsendqfp, f1)t0'S

Upon receiving fo, f1), parsingfo as(up,vo) and

f1 as(u1,v1), Schecks that £ u; € G and 1+#

v; € G (i =0, 1), if any of the conditions are vi-

olated,S outputs | ; Otherwise,S further checks

. ? sk
the conditionvg = ug® modp.

mod p. Let fg = (ug,vg) and 1

— If Vg # US® modp, Ssends =0 toRand retries
thechannel setup procedure;

— If Vg = U$® mod p, Ssendsb =1 toR and con-
tinues themessage transfer step below.

Message transfer: On inputme {0,1} anda, Scom-
putesm@a. Letc=ma a. Sthen sendstoR. Upon
receiving a ciphertext’, R obtainsm’ by computing
c @ B.

4.2 The Proof of Security

Theorem. Assuming that the Decisional Diffie-

generation algorithng: which takes security parame-
terk as input and output®,q,G), wherep is a large
safe prime number (i.ep=2q+ 1, q is a prime num-
ber) andG is a cyclic group with ordeq.

Channel setup: To set up a secure channel, a sender
Sand a receiveR jointly perform the following com-

putations
[}

e Oninput(p,q,G), Schoosest €y {0,1} and per-
forms the following computations

— S generates a random Diffie-Hellman quadru- e

ple (91a, 92,a, h1a, h2,a), Wheregs ¢ andgz o
are two random generators G andh; o and
ho o are two elements irfG such thath; o =

gilg mod p, andhyq = gi'ﬁ‘(mod p, where
ska €u Zy. Letey = (gl,ota 02.a, h1a, hog).

392

protocol 1t depicted above realizes universally com-
posable security in the presence of adaptive adver-
saries.

Proof. There are four cases defined in the follow-

ing proof, depending on when the real world adver-
sary4 makes its first corruption request (and thus the
proof is tedious):

Case 1: the real world adversamymakes its first
corruption request after a secure channel has been
set up successfully;

Case 2: the real world adversamymakes its first
corruption request after the send®has received
R’s first message,;

Case 3: the real world adversamymakes its first
corruption request afte® has generated its first
message, but befofereceivesR's first message;

UNIVERSALLY COMPOSABLE NON-COMMITTING ENCRYPTIONS IN THE PRESENCE OF ADAPTIVE

e Case 4: the real world adversarymakes its first

ADVERSARIES

which takesSs internal staters as input and inter-

corruption request before any messages are genretse, as a Diffie-Hellman quadruple, associated

erated.

We show that in each case above there exists an

ideal-world adversary such that no environmeunt,
on any input, can tell with non-negligible probability
whether it is interacting witm and players running
T, or with s and #4¢ in the ideal execution if the de-
cisional Diffie-Hellman assumption holds.

To simplify the description of a simulator, we omit

the explicit description of the non-information oracle

with the auxiliary stringsk, and interpretse;_, as
a garbled quadruples, ,. That is, the faking al-
gorithm fake interpretsg;j € G as a stringrg; €
{0,1}2P andh; j € G as a string, ; € {0,1}2/P/ (i
=1, 2,j =0, 1). Letre, = (rgl,wrgz,wrhl,yvrhz.v)_"_’md
ley y = (rgl‘lfv,rgzvlfy,rhl‘lfy,rhz‘lfy). The auxiliary
string sk; is associated withe, such that(rg, ..,)
€ Dlog(sk) and (rg,,,rn,,) € Dlog(sk;) (Note that
given a string g, € {0,1}2Pl, the corresponding

2C here and what follows since the non-commitment g5 elementig € G can be efficiently reconstructed
encryption scheme Qescrlbed in this paper is a well- by applying the Canetti-Fischlin’s sampling algo-
structured protocol (informally, a well-structured pro- rithm). s reveals(re,, re,), Sk, andmto 4.

tocol requires the message sizes and the number of
rounds are completely determined by the protocol
and are independent of the input values or random
For the details definition of

well-structured protocol, please refer to (Garay et al.,
2009)). We here and what follows, also omit the ex-

plicit checks that the simulator has seen the previous

coins of the parties.

steps of the protocol.

Case 1. The first corruption occurs after a secure
channel has been set up successfufithe real world

If R gets corrupted in the second corruption,
modifies the receiver’s internal statg before it is
revealed taz. That is,s first invokes the faking al-
gorithmfake which takesR's internal stater as in-
put and interpretdy (=(uy,V)) as a selection string
rt, (=(ru.,ry)) associated with the auxiliary string
(sy,ty) and interpretedy_y (=(u1—y,v1—y)) as a gar-
bled stringrflfy (:(rulfy,r\,lfv)). s reveals(ry,rs,)
and(sy,ty) to 4.

Case 1.1.2WhenR gets corrupted in the first cor-

adversaryz makes its first corruption request after a ruption, s corrupts the dummy parti in the ideal
secure channel has been set up successfully, an idealorld and obtainsn. s then invokes the faking algo-

world adversarys must simulate any of the follow-
ing three cases: 1) the first corruption occurs aRer
has received; or 2) the first corruption occurs after
S has generated, but beforeR receivesc; or 3) the
first corruption occurs befor@generates. The cor-
responding simulatas is described as follows.

e Step 1: s first picks gio cu G, gi1 cu G,
sk cu Zg and sk ey Zg, and then computes
ho = gf¢ mod p, hi1 = g mod p, i

=1, 2. Letey =(d1,0,920,h10,M20) and e, =

(01,1,02,1,h1,1,h2.1). 5 keeps the auxiliary strings

sky andsk; secret.

e Step 2:5 then pickss ey Zgq andt ey Zg, and
computesy; = g3,gi; mod p, v =h3;h; mod p.
Let fi = (u,v), i =0, 1. s keeps the auxiliary
strings(so,to) and(sy,t1) secret.

e Step 3:5 outputs a bib (=1).

Case 1.1.the first corruption occurs after R has re-
ceived ¢ If a partyP € {S R} gets corrupteds cor-

rupts the corresponding dummy paRyand obtains
m. Lety=ma c. Following the steps (Step 1, Step 2

rithm fake which takesR's internal staterr as input
and interpretsfy as a selection strings, associated
with the auxiliary string(s,,ty) and interpretd;_y as
a garbled stringy, .. s reveals(rs,,rs,) and(syty)
toa.

If Sgets corrupted in the second corruptigrcor-
rupts the dummy part in the ideal world and ob-
tainsm. s invokes the faking algorithnfake which
takesrs as input and interpret as a Diffie-Hellman
quadruplere, associated with the auxiliary strirgk,
and interpret;_y as a garbled string,, . s reveals
(TeysTe;), Skyandmto 4.

Case 1.2 The first corruption occurs after S has gen-
erated c, but before R receiveskollowing the steps
(Step 1, Step 2 and Step 3) above, we further consider
subcases below:

Case 1.2.11f Sgets corrupted in the first corrup-
tion after it has generatex] but beforeR receivesc.
S corrupts the dummy partgin the ideal world and
obtainsm. Lety=c@&m. s invokes the faking al-
gorithmfake which takeg's as input and interprets,
as a Diffie-Hellman quadruplg, associated with the

and Step 3) above, we further consider subcases be-auxiliary stringsk, and interprets; _y as a garbled

low:
Case 1.1.1.1f the sendelS gets corrupted in the
first corruption,s invokes the faking algorithrfake

stringre, . 5 reveals(rg,, re,), sk;andmto 4.
If the second corruption occubefore Rreceives
a ciphertext’ (the received ciphertetxt may not be

393

SECRYPT 2010 - International Conference on Security and Cryptography

the same as the ciphertexgenerated bys since the
real-world adversary may change the ciphertest
S invokes the faking algorithriake which takegr as
input and interpretdy as a selection strings, asso-
ciated with the auxiliary strings,,ty) and interprets
f1_y as a garbled string, . s reveals(r,,rs,) and
(sy,ty) to 4.

If the second corruption occumfter R has re-
ceived a ciphertext’. The simulator invokegake
which takesrr as input and interpret§, as a selec-
tion string associated with the auxiliary striggy,ty)
and interpretd;_y as a garbled string. Let =y® ¢’

s reveals(re,,rs,), (sy,ty) andnt to 4.

Case 1.2.2If the receivelR gets corrupted in the
first corruption,s corrupts the corresponding dummy
party R and obtaing3. Lety =p. s invokes the fak-
ing algorithmfake which takesR’s internal stater as
input and interpretdy as a selection strings, asso-
ciated with the auxiliary strings,ty) and interprets
f1_y as a garbled string, . s reveals(r,rs,) and
(sy,ty) to 4.

If the second corruption occurg, corrupts the
corresponding dummy paréand obtainsn. $ then
invokes the faking algorithnfeke which takesrs as
input and interprets, as a Diffie-Hellman quadruple
re, associated with the auxiliary strirgk, and inter-
pretse;_y as agarbled string,, . 5 revealyre,,re,),
sk,andmto 4.

Case 1.3.The first corruption occurs before S gener-

ates ¢ Following the simulation steps (Step 1, Step 2
and Step 3) above, we consider the following two sub-
cases:

Case 1.3.1.1f the sendelS gets corrupted in the
first corruption,s corrupts the corresponding dummy
party Sin the ideal world and obtaing. s picks a
random bity € {0,1} uniformly at random. Lett =y
andf =y. s invokes the faking algorithrfake which
takesrs as input and interprets as a Diffie-Hellman
quadruplere, associated with the auxiliary strirgk,
and interpret®;_y as a garbled quadruplg, . s
revealy(rey,re,), Sk, andmto 4.

If Rgets corrupted in the second corruptigrin-
vokes the faking algorithnfake which takesR's in-
ternal stater as input and interpretf, as a selection
string r¢, associated with the auxiliary string,ty)
and interpretd;_y as a garbled stringy, . 5 reveals
(rty,rs,) and(sy,ty) to 4.

Case 1.3.2If the receiveR gets corrupted in the
first corruption,s picks a bity € {0,1} uniformly at
random and then invokes the faking algorittake
which takesrr as input and interpret$, as a se-
lection stringr ¢, associated with the auxiliary string
(sy.ty) and interpretd;_y as a garbled stringy, . s

394

revealsr,,r,) and(sy,ty) to 4.

If Sgets corrupted in the second corruptigrcor-
rupts the corresponding dummy paé;and obtains
m. s invokes the faking algorithriake which takes g
as input and interprets, as a Diffie-Hellman quadru-
plere, associated with the auxiliary strirgly, and in-
terpretse;_y as a garbled quadrupte, ,. The simu-
lator revealgre,,re,), Sk, andmto 4.

Case 2. The first corruption occurs after the sender
S has received R'’s first messatfethe real world ad-
versary4a makes its first corruption after the sen&er
has receive®'s first messagéfo, f1), the constructed
ideal world adversary must simulate any of the fol-
lowing three subcases: 1) the first corruption occurs
after S has generatedd andR has received; or 2)
the first corruption occurs aft&has generateld, but
beforeR receivesh; or 3) the first corruption occurs
beforeS generate®. We describe the corresponding
simulators below

e Step 1: s picks gio €u G, g1 €u G, sk cu
Zg and sk €y Zg, and then computes o

= g% mod p, hiz = g mod p. Let g
=(Qui, 92, M, hei), i =1, 2.5 keeps the auxiliary

stringssky andsk secret.

e Step 2:5 pickss € Zg andt; € Zg uniformly at
random, and then computes= giigtzi’i modp, Vi
=h3;hi; modp. Let fi = (ui,v), i =0, 1. 5 keeps
the auxiliary stringgso,to) and(si,t1) secret.

Case 2.1.The first corruption occurs after the sender
S has receive(fy, f1) and R has received a bit IF-ol-
lowing the simulation steps (Step 1 and Step 2) above,
we further consider subcases below:

Case 2.1.11f b=1 and a partp € {S R} gets cor-
rupted in the first corruption, the corresponding sim-
ulator can be constructed exactly as that described in
Case 1.

Case 2.1.2.1f b=0 and if the sende$ gets cor-
rupted in the first corruption, the simulater cor-
rupts the corresponding dummy paéyin the ideal
world and obtaingn. s then chooses a random bit
veu {0,1}. Leta =yandp =1—y. s invokes the fak-
ing algorithmfake which takes s as input and inter-
pretsey as a Diffie-Hellman quadruple, associated
with the auxiliary stringsk, and interprets;_y as a
garbled quadruples, , and revealgre,,re,), sk, and
mto the real world adversary.

If the receiverR gets corrupted in the second cor-
ruption,s invokesfake which takes as input and in-
terpretsf;_y as a selection stringH associated with
the auxiliary string(si—y,t1—y) and interpretsy as a
garbled string t, and reveal$ri,,rs,) and(s;—y,t1—y)
toAa.

UNIVERSALLY COMPOSABLE NON-COMMITTING ENCRYPTIONS IN THE PRESENCE OF ADAPTIVE

Case 2.1.3.If b=0 and if the receiveR gets cor-
rupted in the first corruptions picks a bity € {0,1}
uniformly at random and sefs=y anda =1—vy. s
invokes the faking algorithrfake which takesrr as
input and interpretdy as a selection strings, asso-
ciated with the auxiliary strings,ty) and interprets
f1_y as a garbled string, . s reveals(r,,rs,) and
(sy,ty) to 4.

If the sendelS gets corrupted in the second cor-
ruption, the simulators corrupts the corresponding
dummy partySin the ideal world and obtains. s
then interpretse;_y as a Diffie-Hellman quadruple
Fey y associated with the auxiliary strirslg_y and in-
terpretsey as a garbled quadruptg,. s then reveals
(feysTe;), Ski—y andmto 4.

Case 2.2.The first corruption occurs after S has re-
ceived(fo, f1) and S has generated b but before R
receives the bit b Following the simulation steps
(Step 1 and Step 2) above, we further consider sub-
cases below:

Case 2.2.1.1f Sgets corrupted in the first cor-
ruption and ifb =1, s corrupts a dummy partg and
obtainsm. s then picks a biy ey {0,1}. Leta =y
andp =y. s invokes the faking algorithrfake which
takesrs as input and interprets as a Diffie-Hellman
quadruplerg, associated with the auxiliary strirgk,
and interpret;_y as a garbled quadruplg, . s
revealy(rey,re,), Sk, andmto 4.

If the receiverR gets corrupted beforR receives
the bitb (=1) in the second corruptios,invokesfake
algorithm which takesr as input and interprets,
as a selection strings, associated with the auxiliary
string (sy,ty) and interpretsf;_, as a garbled string
My, . S reveals(rg,re,) and(sy,ty) to 2. If the re-
ceiverR gets corrupted after it has received a it
(the generated bit might be changed:byin the sec-
ond corruption, the corresponding simulator can be
constructed exactly as that described in Case 2.1.

Case 2.2.2.1f R gets corrupted in the first cor-
ruption and ifb=1, s picks a random biy €y {0,1}
and set$ =y anda =y. s interpretsf, as a selection
string r¢, associated with the auxiliary string,ty)
and interpretd;_y as a garbled string, . 5 reveals
(rty,r,) and(sy,ty) to 2

If Sgets corrupted in the second corruptigrgor-
rupts the dummy partﬁ and obtainsn. s then inter-
pretsey as a Diffie-Hellman quadruple, associated
with the auxiliary stringsk, and interpret®;_y as a
garbled quadruple, . s revealre),re,), Sk;andm
to 4.

Case 2.2.3.If S gets corrupted in the first cor-
ruption and ifb =0, s corrupts a dummy part$ and
obtainsm and picks a bity € {0,1} uniformly at ran-

ADVERSARIES

dom. Leta =y andp =1-vy. s invokes the faking

algorithmfake which takesrs as input and interprets
gy as a Diffie-Hellman quadruple, associated with

the auxiliary stringsk, and interprets; _y as a garbled

quadruplee, . S reveals(re,,re,), sk, andmto 4.

If the receiveR gets corrupted before it receives a
bit b’ in the second corruptiow, interpretsf;_, a se-
lection stringrt, , associated with the auxiliary string
(s1-y,t1-y) and interpretdy as a garbled string,. s
reveals the randomne§s,, r,), (St—y,t1—y) to 4. If
the receivelR gets corrupted after it has received a
bit b’, the simulator can be constructed exactly as that
described in Case 2.1.

Case 2.2.4.1f R gets corrupted in the first cor-
ruption and ifb=0, s picks a random biy € {0,1}
uniformly at random and sefs=yanda =1-vy. § in-
terpretsfy as a selection string;, associated with the
auxiliary stringsk, and interpretsf;_y as a garbled
stringry, . S then revealsry,,ry,), (Syty) to 4. If
Sgets corrupted in the second corruptisncorrupts
Sand obtainsn, and then interprets;_y as a Diffie-
Hellman quadruplee, , associated with the auxiliary
string sk;_y and interpret®y as a garbled quadruple
ley- S reveals(re, e), Ski—y andmto 4.

Case 2.3.The first corruption occurs after the sender
S has receivedfo, f1), but before S generates Bol-
lowing the simulation steps (Step 1 and Step 2) above,
s picks a bitb € {0, 1} uniformly at random. We fur-
ther consider the following subcases
Case 2.3.1If Sgets corrupted in the first corrup-
tion and ifb =1, the corresponding simulatercan be
constructed exactly as that described in Case 2.2.1;
Case 2.3.2If Rgets corrupted in the first corrup-
tion and ifb =1, the corresponding simulatercan be
constructed exactly as that described in Case 2.2.2;
Case 2.3.3If Sgets corrupted in the first corrup-
tion and ifb = 0,the corresponding simulatercan be
constructed exactly as that described in Case 2.2.3;
Case 2.3.41f Rgets corrupted in the first corrup-
tion and ifb = 0, the corresponding simulatgrcan
be constructed exactly as that described in Case 2.2.4.

Case 3.The first corruption occurs after S has gen-
erated its first message, but before it receives R’s first
messagelf the real world adversary makes its first
corruption request afte® has generated its first mes-
sage, but before it receiv&s first message, an ideal
world adversarys must simulate any of the follow-
ing subcases: 1) the first corruption occurs aRéas
received(ep, e1) and have generated its first message
(fo, f1) but beforeS receives it; or 2) the first cor-
ruption occurs afteR has receivedey, e1) but before

R generategfo, f1); or 3) the first corruption occurs
after S has generated its first message, but beRre

395

SECRYPT 2010 - International Conference on Security and Cryptography

receivesS first message.

Case 3.11f the first corruption occurs after R has re-
ceived(ep, e1) and R has generatedo, f1) but before
S receives it The corresponding simulatgr can be
constructed as follows.

e Step 1: s picks gio €u G, g1 €u G, sk cu
Zg and sk €y Zg, and then computes o

= gis,lc? mod p, hi1 = gf"f mod p, i =1,
2. Let e =(010,020,M0,h20) and e =
(01,1,02,1,h1.1,h2.1). 5 keeps the auxiliary strings

sky andsk; secret.

e Step 2: s then pickss ey Zy andt ey Zg,
and then computes; = giigtzi,i mod p, Vi
=h3 i, modp. Let f; = (ui,v), i =0, 1.5 keeps
the auxiliary stringgso,to) and(ss,t1) secret.

Following the simulation steps (Step 1 and Step 2)
above, we consider the following subcases:

Case 3.1.1.If S gets corrupted in the first cor-
ruption,s corrupts the corresponding dummy paﬁy
in the ideal world and obtains. s then picks a bit
Y €u {0,1} uniformly at random and sets=y; S in-
vokes the faking algorithrfake which takes's as in-
put and interprets, as a Diffie-Hellman quadrupfg,
associated with the auxiliary strirgl, and interprets
€1y as a garbled quadruptg,_,. s reveals(rey,re,),
sk, andmto 4.

If R gets corrupted in the second corruption,
chooses a bib €y {0,1} uniformly at random. We
further consider the following cases

e if b=1, then let =y. s invokes the faking algo-
rithm fake which takesrg as input and interprets
fy as a selection string, associated with the aux-
iliary string (sy,ty) and interprets;_y as a garbled
stringry,_,. 5 reveals(rfy,r,) and(s,ty) to 1.

e if b =0, then letB = 1—vy. s invokes the fak-
ing algorithmfake which takesr as input and in-
terpretsf;_y as a selection stringfky associated
with the auxiliary string(s;—y,t1—y) and interprets
fy as a garbled stringy,. s reveals(ry,,rs,) and
(S1-yt1y) to 4.

Case 3.1.2If Rgets corrupted in the first corrup-
tion, s picks a bity €y {0,1} uniformly at random
and set{3=y; s invokes the faking algorithnfake
which takegr as input and interpretf as a selection
string rt, associated with the auxiliary string,ty)
and interpretd,_y as a garbled stringflfy. S reveals
(Ff:T1,) and(sy.ty) to 2.

If the sendeBgets corrupted in the second corrup-
tion, s chooses a bt €y {0, 1} uniformly at random.
We further consider the following cases

396

o if b=1, letp =y. s invokes the faking algorithm
fake which takesrr as input and interpret§, as
a selection strings, associated with the auxiliary
string(sy,ty) and interpretd$;_ as a garbled string
re, .S reveals(r,rs,) and(s,ty) to 4.

e if b=0, letB = 1—vy. s invokes the faking al-
gorithm fake which takesrgr as input and inter-
prets f1_y as a selection strings, , associated
with the auxiliary strings;—y,t1—y) and interprets
fy as a garbled stringy,. s reveals(ry,,rs,) and
(S1-y,ti-y) to 4.

Case 3.2. If the first corruption occurs afteR has
received(ep, e1) but beforeR generateg fo, f1), the
corresponding simulatar can be constructed as fol-
lows.

e Step 1:5 picksgip €u G, g1 €u G, sk €u Zg
and sk ey Zg uniformly at random, and then

computeshi g = gf*g mod p, hi1 = gf"f mod p,
i =1, 2. Letep =(g1,0,920,h10,h20) ande; =
(01,1,92,1,h1.1,h21). s keeps the auxiliary strings

sk andsk; secret.

Following the simulation Step 1 above, we further
consider subcases below:

Case 3.2.1.If the sendelS gets corrupted in the
first corruption,s corrupts the corresponding dummy
party§in the ideal world and obtains. s then picks
a bity € {0,1} uniformly at random and sets= y;

S invokes the faking algorithrfake which takess as
input and interprets, as a Diffie-Hellman quadruple
re, associated with the auxiliary strirgk, and inter-
pretse;_y as a garbled quadrupte, ,. s revealsm,
(rey,re,) andsk, to 4.

o if R gets corrupted before it generaidsg, f1) in
the second corruptios, revealsR's internal state
rrto 4; The rest of simulation is trivial since both
parties have already corrupted.

o if Rgets corrupted after it has generatdd, f1)
in the second corruptiors, picks a bitb € {0,1}
uniformly at random

1) if b= 1, s invokes the faking algorithnfake
which takesrr as input and interprets, as a
Diffie-Hellman quadruplee, associated with the
auxiliary stringsk, and interprets; _y as a garbled
quadruplee, . s reveals(re,,re,) andsk, to 4.

2) if b= 0, s invokes the faking algorithnfake

which takesrr as input and interprete;_y as

a Diffie-Hellman quadrupleg, , associated with
the auxiliary stringsk—y and interprets, as a gar-
bled quadruplee,. S reveals(re,,re,) andsk;—y

to 4.

UNIVERSALLY COMPOSABLE NON-COMMITTING ENCRYPTIONS IN THE PRESENCE OF ADAPTIVE

ADVERSARIES
Case 3.2.21If the receivelR gets corrupted in the 1) are violated, thew revealrg to a; If (&,€))
first corruption,s simply revealgr to 4. is well-defined, i.e., ¥ g jeGand1# hij € G

(i=1, 2,j =0, 1),s picks a random biy € {0,1}
and setsx =y. The rest work ofs is same as that
described in Case 3.2.

e if Sgets corrupted before it obtai§), f;) in the
second corruptions corrupts the corresponding
dummy party§ in the ideal world and obtains
m. $ picks a bity € {0,1} uniformly at random Case 3.3.2If Rgets corrupted in the first corrup-
and setsu=y. s invokes the faking algorithm tion, s revealsR’s internal staterg to 2. If Sgets
fake which takes's as input and interprety asa corrupted in the second corruption, we consider the
Diffie-Hellman quadruplee, associated with the following two cases:
auxiliary stringsk, and interprets; _y as a garbled

quadruplere, .. 5 revealsm, (re,.re,) andsk; to * if (fo f;) has not been received, picks a ran-
7\/') b

dom bity €y {0,1} and setsx =y. $ then invokes

A the faking algorithnfake which takes's as input

e if Sgets corrupted after it has receivefy, f;) in and interprets, as a Diffie-Hellman quadrupte,
the second corruption. We consider the following associated with the auxiliary strirgk, and inter-
two cases: pretse;_y as a garbled quadruples revealsm,
1) if (fg, f1) is not well-defined, i.e., any of the (rey:Te;) andsk, to the real world adversary.

conditions 1A u; € Gand 1#£ v; € G (i =0, 1) are
violated,s picks a bitb € {0,1} uniformly at ran-
dom. Ifb=1, leta =y; if b=0, leta =1—vy. The
rest work of simulator is same as that described in

o if (fg, f]) has been received, and(ify, f;) is not

well-defined, the rest work of is same as that
described in Case 3.2; iff),f]) has been re-
ceived and if(fy, f{) is well-defined,s can be

Case2.1. o constructed exactly as that described in Case 2.3.
2) if (fy, f1) is well-defined, i.e., ¥ u; € G and
1#vi € G(i=0,1),s picks abitb € {0,1} uni- Case 4.The first corruption occurs befofey, e1) has

formly atrandom. Ib =1, letp=y; Ifb=0, |6t ~ peen generatedf 2 makes its first request befoge
=1— - Thg rest work of simulator is same as that generatesey, e1), the corresponding simulatsrcan
described in Case 2.1. be constructed as follows.

Case 3.3. If the first corruption occurs aftes has Case 4.1.1f Sgets corrupted in the first corruption,
generatec(e_)o,el) but beforeR receives it, the corre- s corrupts the corresponding dummy paByn the
sponding simulatos can be constructed as follows. jdeal world and obtaine. s reveals its internal state

e Step 1: s picksgio cu G, g1 €u G, sk cu rstogether with its inpuinto 4.

Zq and sk €y Zg, and then computeso e if Rgets corrupted befor generategfo, 1) in
= gﬁ‘g’ mod p, hi1 = gls'f mod p, i =1, the second corruptiow, revealsR's internal state
2. Let & =(010,020.h0.h20) and e = rRto 4.
(911,921, h1,1,h21). 5 keeps the auxiliary strings 4 i R gets corrupted afteR has generate(fo, f1)
sk andsk; secret. in the second corruptio, picks a bity €y {0,1}
Following the simulation Step 1 above, we further uniformly at random and se® = y. S invokes
consider subcases below: the faking algorithirfake which takesr as input
Case 3.3.1If Sgets corrupted in the first corrup- and interpretdy as a selection string, associated
tion, s picks a bity € {0, 1} uniformly at random and with the auxiliary strings,ty) and interpretd;
setsa=y; s invokes the faking algorithrfake which as a garbled string, . S reveals(r,,rs,) and
takesrs as input and interprets as a Diffie-Hellman (syty) to 4.

quadruplere, associated with the auxiliary strirgk,
and interprets;_y as a garbled quadruple, . s Case 4.2.If R gets corrupted in the first corruption,

revealam, (re),re,) andsk, to 4. the corresponding simulator can be constructed as

o if Rgets corrupted before it receive, €) in the follows.
second corruptions revealsR's internal stateg e Step 1: s picks gio €u G, g1 €u G, sk cu
to 4. The rest of simulation is trivial since both Zy and sk €y Zg, and then computesg
parties have already got corrupted. = gis‘g mod p, hi1 = gflil mod p, i =1,

o if Rgets corrupted after it has receiveg, €]). If 2. Let € =(glyo,gzyo,h1:o,hzyo) and e =
(€, €)) is not well-defined, i.e., any of the condi- (91,1,92,1,h1.1,h21). s keeps the auxiliary strings
tions 1#¢gij € Gand 1# h; € G(i =1, 2,j =0, sky andsk; secret.

397

SECRYPT 2010 - International Conference on Security and Cryptography

Following Step 1 aboves corrupts the corre-
sponding dummy partR in the ideal world and re-
vealsR's internal stater to 4. If Sgets corrupted in

5 CONCLUSIONS

In this paper, a new implementation of non-

the second corruption, we further consider subcasescommitting encryptions has been presented and an-

below:

e if Sgets corrupted befor generatesf;, f;), or
if Sgets corrupted afteR has generateffy, f{),
but beforeS receives(fj, f1), s corrupts the cor-
responding dummy par@in the ideal world and
obtainsm. s picks a random biy € {0,1} uni-
formly at random and sets =y. s invokes the
faking algorithmfake which takes s as input and
interpretsey as a Diffie-Hellman quadruplg, as-
sociated with the auxiliary stringk, and inter-
pretse,_y as a garbled quadruptg . s reveals
(TeysTe;), Sk, andmto 4.

if Sgets corrupted afte3has receivedfy, f;), we
further consider the following two cases:

- 1) if (fg, f{) is not well-defined,s picks a ran-
dom bity €y {0,1} and setsx =y. $§ then invokes
the faking algorithnfake which takes's as input
and interpretsy as a Diffie-Hellman quadruptg,
associated with the auxiliary strirgk, and inter-
pretse,_y as a garbled quadruptg, ,. s reveals
m, (rey,le;) andsk, to 4.

- 2) if (f5, f1) is well-defined,s further checks/]

2 Uik for i =0, 1. If both indices are invalid,

s does the same procedure in the above case and

revealsm, (rey,re;) andsk, to 4. If there exists
an indexi satisfied with the check conditios,
picks a bitb € {0,1} uniformly at random. If
b=1, then let =i. § invokes the faking algorithm
fake which takeg s as input and interprets, as a
Diffie-Hellman quadruplee, associated with the
auxiliary stringsk, and interprets;_y as a garbled
quadruplere, . 5 revealsm, (re),re;) andsk, to
4. If b=0, leta =1—i. s invokes the faking
algorithmfake which takes's as input and inter-
pretse;_y as a random Diffie-Hellman quadruple
ley associated with the auxiliary strimst_y and
interpretss, as a garbled quadruplg. revealsm,
(Tey:Te,) andsky_y to 4.

By the DDH assumption, we know that the distribu-
tion of random variable, is computationally indis-
tinguishable from that o&,_y. Due to the random-
ness of Naor-Pinkas randomizer, the distribution of
random variablefy is computationally indistinguish-
able from that off;_y. This means that REAL,
and IDEAL; , are computationally indistinguish-
able in all cases. As a result, the real-world protocol

nrealizesr .

398

alyzed. We have shown that the proposed non-
committing encryption scheme realizes the UC-

security in the presence of adaptive adversary as-
suming that the decisional Diffie-Hellman problem is

hard.

REFERENCES

Beaver, D. (1997). Plug and play encryption.GRYPTO
Springer.

Beaver, D. and Haber, S. (1992). Cryptographic protocols
provably secure against dynamic adversariesEUn
ROCRYPTSpringer.

Canetti, R. (2001). a new paradigm for cryptographic pro-
tocols. InFOC. IEEE.

Canetti, R. (2005). Universally composable security: A
new paradigm for cryptographic protocols. dRrint
eprinter.iacr.org.

Canetti, R., Feige, U., Goldreich, O., and Naor, M. (1996).
Adaptively secure multi-party computation. 8TOC
IEEE.

Canetti, R. and Fischlin, M. (2001). a new paradigm for
cryptographic protocols. IERYPTOSpringer.

Damgard, |. and Nielsen, J. (2000). Improved non-
committing encryption schemes based on a general
complexity assumption. IERYPTOSpringer.

Garay, J., Wichs, D., and Zhou, H. (2009). Somewhat non-
committing encryption and efficient adaptively secure
oblivious transfer. ICRYPTOSpringer.

Moni Naor, B. P. (2001). Efficient oblivious transfer proto-
cols. INSODA ACM.

Nielsen, J. (2002). Separating random oracle proofs from
complexity theoretic proofs: The non-committing en-
cryption case. lCRYPTOSpringer.

Nielsen, J. (2003). On protocol security in the cryptograph
model. Inthesis www.brics.dk/ jbn/thesis.pdf.

S.Choi, Dachman-Soled, D., Malkin, T., and Wee, H.
(2009). Adaptively secure multi-party computation.
In Asiacrypt Springer.

