
A PROGRAMMING LANGUAGE TO FACILITATE THE
TRANSITION FROM RAPID PROTOTYPING TO EFFICIENT

SOFTWARE PRODUCTION

Francisco Ortin, Daniel Zapico and Miguel Garcia
Computer Science Department, University of Oviedo, Calvo Sotelo s/n, Oviedo, Spain

Keywords: Dynamic languages, Rapid prototyping, Separation of concerts, Union types, Alias analysis, Type inference.

Abstract: Dynamic languages are becoming increasingly popular for developing different kinds of applications, being
rapid prototyping one of the scenarios where they are widely used. The dynamism offered by dynamic lan-
guages is, however, counteracted by two main limitations: no early type error detection and fewer opportunities
for compiler optimizations. To obtain the benefits of both dynamically and statically typed languages, we have
designed theStaDynprogramming language to provide both approaches. Our language implementation keeps
gathering type information at compile time, even when dynamic references are used. This type information
is used to offer compile-time type error detection, direct interoperation between static and dynamic code, and
better runtime performance. Following the Separation of Concerns principle, dynamically typed references
can be easily turned into statically typed ones without changing the application source code, facilitating the
transition from rapid prototyping to efficient software production. This paper describes the key techniques
used in the implementation ofStaDynto obtain these benefits.

1 INTRODUCTION

Dynamic languages have recently turned out to be re-
ally suitable for specific scenarios such as Web devel-
opment, application frameworks, game scripting, in-
teractive programming, dynamic aspect-oriented pro-
gramming, and any kind of runtime adaptable or
adaptive software. Common features of dynamic lan-
guages are meta-programming, reflection, mobility,
and dynamic reconfiguration and distribution. One
of the scenarios where they are widely used is the
rapid development of software prototypes. Their abil-
ity to address quickly changing software requirements
and their fast interactive edit-debug-test development
method make dynamic languages ideal for the rapid
creation of prototypes.

Due to the recent success of dynamic languages,
other statically typed ones –such as Java or C#– are
gradually incorporating more dynamic features into
their platforms. Taking Java as an example, the plat-
form was initially released with introspective and
low-level dynamic code generation services. Ver-
sion 2.0 included dynamic methods and theCodeDom
namespace to model and generate the structure of a
high-level source code document. TheDynamic Lan-
guage Runtime(DLR), first announced by Microsoft

in 2007, adds to the .NET platform a set of services
to facilitate the implementation of dynamic languages
(Hugunin, 2007). Finally, Microsoft has just included
a dynamic typing feature in C# 4.0, as part of the Vi-
sual Studio 2010. This new feature of C# 4.0 is the
Microsoft response to the emerging use of dynamic
languages such as Python or Ruby. C# 4.0 offers a
newdynamic keyword to support dynamically typed
C# code. When a reference is declared asdynamic,
the compiler performs no static type checking, mak-
ing all the type verifications at runtime. With this new
characteristic, C# 4.0 will offer direct access to dy-
namically typed code in IronPython, IronRuby and
the JavaScript code in Silverlight. Dynamic code in
C# 4.0 makes use of the DLR services (Hugunin,
2007).

The great suitability of dynamic languages for
rapid prototyping is, however, counteracted by lim-
itations derived by the lack of static type checking.
This deficiency implies two major drawbacks: no
early detection of type errors, and commonly a con-
siderable runtime performance penalty. Static typ-
ing offers the programmer the detection of type er-
rors at compile time, making possible to fix them
immediately rather than discovering them at runtime
–when the programmer’s efforts might be aimed at

40
Ortin F., Zapico D. and Garcia M. (2010).
A PROGRAMMING LANGUAGE TO FACILITATE THE TRANSITION FROM RAPID PROTOTYPING TO EFFICIENT SOFTWARE PRODUCTION.
In Proceedings of the 5th International Conference on Software and Data Technologies, pages 40-50
DOI: 10.5220/0002978500400050
Copyright c© SciTePress



some other task, or even after the program has been
deployed (Pierce, 2002). Moreover, since runtime
adaptability of dynamic languages is mostly imple-
mented with dynamic type systems, runtime type in-
spection and checking commonly involves a signifi-
cant performance penalty.

Twitter can be seen as a practical example of how
dynamic languages are suitable for rapid prototyping
but they are not as appropriate as static ones for scal-
able, robust and efficient software production. Twit-
ter began its life as a Ruby on Rails application but,
in 2008 the Twitter developers started replacing the
back-end Ruby services with applications running on
the JVM written in Scala (Venners, 2009). They
changed to Scala because, in their opinion,the Ruby
language lacks some things that contribute to reliable,
high performance code, and they want their codeto be
correct and maintainable(Venners, 2009).

Since translating an implementation from one pro-
gramming language to another is not a straightfor-
ward task, there have been former works on provid-
ing both typing approaches in the same language (see
Section 6). Meijer and Drayton maintained that in-
stead of providing programmers with a black or white
choice between static or dynamic typing, it could
be useful to strive for softer type systems (Meijer
and Drayton, 2004). Static typing allows earlier de-
tection of programming mistakes, better documenta-
tion, more opportunities for compiler optimizations,
and increased runtime performance. Dynamic typ-
ing languages provide a solution to a kind of com-
putational incompleteness inherent to statically-typed
languages, offering, for example, storage of persistent
data, inter-process communication, dynamic program
behavior customization, or generative programming
(Abadi et al., 1991). Hence, there are situations in
programming when one would like to use dynamic
types even in the presence of advanced static type
systems (Abadi et al., 1994). That is,static typing
where possible, dynamic typing when needed(Meijer
and Drayton, 2004).

Our work breaks the programmers’ black or white
choice between static or dynamic typing. The pro-
gramming language presented in this paper, called
StaDyn, supports both static and dynamic typing.
This programming language permits the rapid devel-
opment of dynamically typed prototypes, and the later
conversion to the final application with a high level of
robustness and runtime performance. The program-
mer indicates whether high flexibility is required (dy-
namic typing) orcorrect1 execution (static) is pre-
ferred. It is also possible to combine both approaches,

1We usecorrect to indicate programs without runtime
type errors.

making parts of an application more flexible, whereas
the rest of the program maintains its robustness and
runtime performance. The result is thatStaDynallows
the separation of the dynamism concern (Hürsch and
Lopes, 1995). This feature facilitates turning rapidly
developed prototypes into a final robust and efficient
application.

In this paper, we present an overview of the tech-
niques we have used to design and implement our pro-
gramming language in order to facilitate the transition
from rapid prototyping to efficient software produc-
tion. The rest of this paper is structured as follows. In
the next section, we provide the motivation and back-
ground of dynamic and static languages. Section 3 de-
scribes the features of theStaDynprogramming lan-
guage and a brief identification of the techniques em-
ployed. Section 4 presents the key implementation
decisions, and the results of a runtime performance
assessment is presented in Section 5, and Section 6
discusses related work. Finally, Section 7 presents the
conclusions and future work.

2 STATIC AND DYNAMIC
TYPING

2.1 Static Typing

A language is said to besafe if it produces no exe-
cution errors that go unnoticed and later cause arbi-
trary behavior (Tucker, 1997), following the notion
that well-typed programs should not gowrong (i.e.,
reach astuckstate on its execution) (Pierce, 2002).
Statically typed languages ensure type safety of pro-
grams by means of static type systems. However,
these type systems do not compile some expressions
that do not produce any type error at runtime (e.g., in
.NET and Java it is not possible to pass them mes-
sage to anObject reference, although the object ac-
tually implements a publicm method). This happens
because their static type systems require ensuring that
compiled expressions do not generate any type error
at runtime.

In order to ensure that no type error is pro-
duced at runtime, statically typed languages employ
a pessimistic policy regarding to program compila-
tion. This pessimism causes compilation errors in
programs that do not produce any error at runtime.
C# code shown in Figure 1 is an example program of
this scenario. Although the program does not produce
any error at runtime, the C# type system does not rec-
ognize it as a valid compilable program.

This intend of validating the correctness of a pro-

A PROGRAMMING LANGUAGE TO FACILITATE THE TRANSITION FROM RAPID PROTOTYPING TO
EFFICIENT SOFTWARE PRODUCTION

41



public class Test {

public static void Main() {

object[] v = new object[10];

int summation = 0;
for (int i = 0; i < 10; i++) { 
v[i] = i+1;
summation += v[i]; // Compilation error

}
}

}

Figure 1: Not compilable C# program that would not pro-
duce any runtime error.

gram before its execution makes statically typed lan-
guages to be less appropriate for rapid prototyping.
Almost every programming language that supports
interactive development environments (those where
code can be evaluated, tested, modified and reeval-
uated while the application is running) implements a
dynamic type system.

2.2 Dynamic Typing

The approach of dynamic languages is the opposite
one. Instead of making sure that all valid expres-
sions will be executed without any error, they make
all the syntactic valid programs compilable. This is
a too optimistic approach that causes a high number
of runtime type errors (commonly throwing runtime
exceptions) that might have been detected at compile
time. This approach compiles programs that might
have been identified as erroneous statically. The C#
4.0 source code in Figure 2 is an example of this
too optimistic approach. C# 4.0 has just included the
dynamic type to permit the use of dynamically typed
references. This erroneous program is compilable, al-
though a static type system might have detected the
error before its execution.

public class Test {

public static void Main() {

dynamic myObject = "StaDyn";

// No compilation error

System.Console.Write(myObject*2); 

}

}

Figure 2: Compilable C# 4.0 program that generates run-
time type errors.

2.3 The StaDyn Hybrid Approach

TheStaDynprogramming language performs type in-
ference at compile time, even over dynamic refer-
ences. The type information gathered statically is
used to both increase the robustness of the program-
ming language (notifying type error at compile time)
and improve its runtime performance. Type-checking

over dynamic references is more lenient in order to
facilitate the rapid development of prototypes. How-
ever, if the type-checker detects that a type error is
undoubtedly going to be produced at runtime, an error
message is shown and compilation is stopped. Type-
checking over static references is performed the same
as in C#.

For both typing approaches, we use the very same
programming language, letting the programmer move
from an optimistic, flexible and rapid development
(dynamic) to a more robust and efficient one (static).
This change can be done maintaining the same source
code, only changing the compiler settings. We sepa-
rate the dynamism concern (i.e., flexibility vs. robust-
ness and performance) from the functional require-
ments of the application (its source code).

3 THE STADYN PROGRAMMING
LANGUAGE

This section presents the features of theStaDynpro-
gramming language, identifying the techniques em-
ployed. A formal description of its type system is de-
picted in (Ortin and Perez-Schofield, 2008) and (Or-
tin, 2009). Implementation issues are presented in
Section 4.

The StaDynprogramming language is an exten-
sion of C# 3.0. Although our work could be applied
to any object-oriented statically-typed programming
language, we have used C# 3.0 to extend the behav-
ior of its implicitly typed local references. InStaDyn,
the type of references can still be explicitly declared,
while it is also possible to use thevar keyword to
declare implicitly typed references.StaDynincludes
this keyword as a new type (it can be used to declare
local variables, fields, method parameters and return
types), whereas C# 3.0 only provides its use in the
declaration of initialized local references. Therefore,
var references inStaDynare much more powerful
than implicitly typed local variables in C# 3.0.

The dynamic property ofvar references is speci-
fied in a separate file (an XML document). The pro-
grammer does not need to manipulate these XML
documents directly, leaving this task to the IDE.
When changes the dynamism of avar reference, the
IDE transparently modifies the corresponding XML
file. Depending on the dynamism of avar refer-
ence, type checking and type inference is performed
pessimistically (for static references) or optimistically
(for dynamic ones). Since the dynamism concern is
not explicitly stated in the source code,StaDynfacili-
tates the conversion of dynamic references into static
ones, and vice versa. This separation facilitates the

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

42



process of turning rapidly developed prototypes into
final robust and efficient applications (this is the rea-
son why we did not include a newdynamic reserved
word, like C# 4.0). It is also possible to make parts
of an application more adaptable, maintaining the ro-
bustness and runtime performance of the rest of the
program.

3.1 Single Static Assignment

Existing statically typed languages force a variable of
type T to have the same typeT within the scope in
which it is bound to a value. Even languages with
static type inference (type reconstruction) such as ML
(Milner et al., 1990) or Haskell (Hudak et al., 1991)
do not permit the assignment of different types to the
same polymorphic reference in the same scope.

However, dynamic languages provide the use of
one reference to hold different types in the same
scope. This is easily implemented at runtime with a
dynamic type system. However,StaDynoffers this
feature statically, taking into account the concrete
type of each reference. TheStaDynprogram shown in
Figure 3 is an example of this capability. Thenumber
reference has different types in the same scope. It
is initially set to a string, and a double is later as-
signed to it. The static type inference mechanism im-
plemented inStaDyndetects the error in the last line
of code. Moreover, a better runtime performance is
obtained because it is not necessary to use reflection
to discover types at runtime.

using System;

class Test {

public static void Main() {

Console.Write("Enter a number, please: ");

var number = Console.In.ReadLine();

Console.WriteLine("Number of digits: {0}.", 

number.Length);

number = Math.Pow(Convert.ToInt32(number), 2);

Console.WriteLine("The square is {0}.", number);

int digits = number.Length; // * Compilation error

}

}

Figure 3: A reference with different types in the same scope.

In order to obtain this behavior, we have devel-
oped an implicit parametric polymorphic type sys-
tem (Cardelli, 1988) that provides type reconstruc-
tion when avar reference is used. We have imple-
mented the Hindley-Milner type inference algorithm
to infer types of local variables (Milner, 1978). This
algorithm has been modified to perform type recon-
struction ofvar parameters and attributes (fields) –
described in sections 3.4 and 3.5.

The unification algorithm used in the Hindley-
Milner type system provides parametric polymor-
phism, but it forces a reference to have the same

static type in the scope it has been declared. To over-
come this drawback we have developed a version of
the SSA (Single Static Assignment) algorithm (Cytron
et al., 1991). This algorithm guarantees that every
reference is assigned exactly once by means of creat-
ing new temporary references. Since type inference
is performed after the SSA algorithm, we have imple-
mented it as a previous AST (Abstract Syntax Tree)
transformation. The implementation of this algorithm
follows theVisitor design pattern.

Figure 4 shows the corresponding program after
applying the AST transformation to the source code
in Figure 3. The AST represented by the source code
in Figure 4 is the actual input to the type inference
system. Eachnumber reference will be inferred to a
single static type –in our example, string and double,
respectively.

using System;

class Test {

public static void Main() {

Console.Write("Enter a number, please: ");

var number0 = Console.In.ReadLine();

Console.WriteLine("Number of digits: {0}.", 

number0.Length);

var number1 = Math.Pow(Convert.ToInt32(number0), 2);

Console.WriteLine("The square is {0}.", number1);

int digits = number1.Length; // * Compilation error

}

}

Figure 4: Corresponding program after the SSA transfor-
mation.

3.2 Static Duck Typing

Duck typing2 is a property offered by most dynamic
languages that means that an object is interchangeable
with any other object that implements the same dy-
namic interface, regardless of whether those objects
have a related inheritance hierarchy or not. One of
the outcomes of duck typing is that it supports poly-
morphism without using inheritance. Therefore, the
role of the abstract methods and interface as a mech-
anism to specify a contract is made redundant. Since
it is not necessary to define polymorphic inheritance
hierarchies, software can be developed more quickly.

There exist statically typed programming lan-
guages such as Scala (Odersky et al., 2002) or OCaml
(Rémy and Vouillon, 1998) that offer structural typ-
ing, providing part of the benefits ofduck typing.
However, the structural typing implementation of
Scala is not implicit, forcing the programmer to ex-
plicitly declare part of the structure of types. In ad-
dition, intersection types should be used when more
than one operation is applied to a variable, making
programming more complicated. Although OCaml

2If it walks like a duck and quacks like a duck, it must be
a duck.

A PROGRAMMING LANGUAGE TO FACILITATE THE TRANSITION FROM RAPID PROTOTYPING TO
EFFICIENT SOFTWARE PRODUCTION

43



provides implicit structural typing, variables should
only have one type in the same scope, and this type
is the most general possible (principal) type (Freeman
and Pfenning, 1991). Principal types are more restric-
tive thanduck typing, because they do not consider all
the possible (concrete) values a variable may hold.

The StaDynprogramming language offers static
duck typing. The benefit provided byStaDynis not
only that it supports (implicit)duck typing, but also
that it is provided statically. Whenever avar ref-
erence may point to a set of objects that implement
a public m method, them message could be safely
passed. These objects do not need to implement a
common interface or an (abstract) class with them
method. Since this analysis is performed at compile
time, the programmer benefits from both early type
error detection and runtime performance.

We have implemented staticduck typingmaking
the static type system ofStaDyn flow-sensitive. This
means that it takes into account the flow context of
eachvar reference. It gathersconcretetype infor-
mation (opposite to classicabstract type systems)
(Plevyak and Chien, 1994) knowing all the possible
types avar reference may hold. Instead of declar-
ing a reference with an abstract type that embraces all
the possible concrete values, the compiler infers the
union of all possible concrete types avar reference
may point to. Notice that different types depending
on flow context could be inferred for the same refer-
ence, using the type inference mechanism mentioned
above.

Code in Figure 5 shows this feature. The reference
reference may point to either anStringBuilder or
aString object. Both objects have theLength prop-
erty and, therefore, it is statically safe to access to this
property. It is not necessary to define a common inter-
face or class to pass this message –in fact, their only
common superclass isObject. Since type inference
system isflow-sensitiveand usesconcretetypes, the
programmer obtains a safe static duck-typing system.
public static int f(bool condition) {

var reference;

if (condition)

reference = new StringBuilder("ICSOFT");

else

reference = "ICSOFT'2010";

return reference.Length;

}

Figure 5: Staticducktyping.

The key technique we have used to obtain
this concrete-type flow-sensitiveness isunion types
(Pierce, 1992). Concrete types are first obtained by
the abovementioned unification algorithm (applied in
assignments and method calls). Whenever a branch is

detected, a union type is created with all the possible
concrete types inferred. Type checking of union types
depends on the dynamism concern (next section).

3.3 From Dynamic to Static Typing

StaDynpermits the use of both static and dynamic
var references. Depending on their dynamism con-
cern, type checking and type inference would be
more pessimistic (static) or optimistic (dynamic), but
the semantics of the programming language is not
changed (i.e., program execution does not depend
on its dynamism). This idea follows thepluggable
type system approach described in (Bracha, 2004) and
(Haldiman et al., 2009). Since the dynamism concern
is not explicitly stated in the source code, it is possi-
ble to customize the trade-off between runtime flex-
ibility of dynamic typing, and runtime performance
and robustness of static typing. It is not necessary
to modify the application source code to change its
dynamism. Therefore, dynamic references could be
converted into static ones, and vice versa, without
changing the application source code.
using System;

using System.Text;

public class Test {

public static int g(string str) {

var reference;

switch(Random.Next(1,3)) {

case 1: reference=new StringBuilder(str);

break;

case 2: reference = str; 

break;

default: reference=new Exception(str);

}

return reference.Lenght;

}

}

Figure 6: Staticvar reference.

The source code in Figure 6 defines ag method,
wherereference may point to aStringBuilder,
String or Exception object. If we want to compile
this code to rapidly develop a prototype, we can pass
the compiler theeverythingDynamicoption. How-
ever, although we are compiling the code in the op-
timistic configuration, the compiler shows the follow-
ing error message:

Error No Type Has Member (Semantic error).
The dynamic type ‘

∨
([Var(8)=StringBuilder]

,[Var(7)=String] ,[Var(6)=Exception])’ has
no valid type type with ‘Lenght’ member.

The error is produced because no publicLenght
property (it has been misspelled) is implemented in
the String, StringBuffer or Exception classes.

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

44



This message shows how type-checking is performed
at compile time even in dynamic scenarios, providing
early type error detection. This feature improves the
way most dynamic languages work. As an example,
in the erroneous program in Figure 2 that C# compiles
without any error,StaDyndetects the error at compile
time.

It is worth noting that setting a reference as dy-
namic does not imply that every message could be
passed to that reference; static type-checking is still
performed. The major change is that the type sys-
tem is more optimistic when dynamicvar references
are used. The dynamism concern implies a modifica-
tion of type checking over union types. If the implic-
itly typedvar reference inferred with a union type is
static, type checking is performed over all its possible
concrete types. However, if the reference is dynamic,
type checking is performed over those concrete types
that do not produce a type error; if none exists, then a
type error is shown.

Once the programmer has found out the mis-
spelling error, she will modify the source code to cor-
rectly access theLength property. If the program is
once again compiled with theeverythingDynamicop-
tion, the executable file is generated. In this case, the
compiler accepts passing theLength message, be-
cause bothString andStringBubuilder (but not
Exception) types offer that property. With dynamic
references, type checking succeeds if at least one of
the types that compose the union type is valid. The
actual type will be discovered at runtime, checking
that theLength property can be actually accessed, or
throwingMissingMethodException otherwise.

Actually, the programmer does not need to set all
thevar references in a compilation unit as dynamic.
It is possible to specify the dynamism of each sin-
gle reference by means of a XML file. As discussed
above, the programmer does not manipulate these
XML documents directly, leaving this task to the IDE.
EachStaDynsource code file may have a correspond-
ing XML document specifying its dynamism concern.

The generatedg function program will not pro-
duce any runtime type error because the random num-
ber that is generated will always be 1 or 2. How-
ever, if the programmer, once the prototype has been
tested, wants to generate the application using the
static type system, she may use theeverythingStatic
option. When this option is used, no XML dynamism
file is analyzed and static typing is performed over
everyvar reference in that compilation unit. In this
case, the compilation of theg method will produce
an error message telling thatLength is not a property
of Exception. The programmer should then mod-
ify the source code to compile this program with the

robustness and efficiency of a static type system, but
without requiring to translate the source code to a new
programming language.

3.4 Constraint-based Type System

Concrete type reconstruction is not limited to local
variables. StaDynperforms a globalflow-sensitive
analysis of implicitvar references. The result is an
implicit parametric polymorphism (Cardelli, 1988)
more straightforward for the programmer than the
one offered by Java, C# (F-bounded) and C++ (un-
bounded) (Canning et al., 1989).

Implicitly typed parameter references cannot be
unified to a single concrete type. Since they repre-
sent any actual type of an argument, they cannot be
inferred the same way as local references. This ne-
cessity is shown in the source code of Figure 7. Both
methods require the parameter to implement a spe-
cific method, returning its value. In thegetString
method, any object could be passed as a parameter be-
cause every object accepts theToString message. In
the upper method, the parameter should be any ob-
ject capable of responding to theToUpper message.
Depending on the type of the actual parameter, the
StaDyncompiler generates the corresponding compi-
lation error.
public static var upper(var parameter) {

return parameter.ToUpper();
}
public static var getString(var parameter) {

return parameter.ToString();
}

Figure 7: Implicitly typed parameters.

For this purpose we have enhanced theStaDyn
type system to be constraint-based (Odersky et al.,
1999). Types of methods in our object-oriented lan-
guage have an ordered set of constraints specifying
the set of restrictions that must be fulfillled by the
parameters. In our example, the type of theupper
method is:

∀αβ.α → β|α : Class(ToUpper : void→ β)

This means that the type of the parameter (α)
should implement a publicToUpper method with no
parameters (void), and the type returned byToUpper
(β) will be also returned byupper. Therefore, if an in-
teger is passed to theupper method, a compiler error
is shown. However, if a string is passed instead, the
compiler reports not only no error, but it also infers
the resulting type as a string. Type constraint fulfil-
llment is, thus, part of the type inference mechanism
(the concrete algorithm could be consulted in (Ortin,
2009)).

A PROGRAMMING LANGUAGE TO FACILITATE THE TRANSITION FROM RAPID PROTOTYPING TO
EFFICIENT SOFTWARE PRODUCTION

45



3.5 Assignment Constraints

Using implicitly typed attribute references, it is possi-
ble to create the genericNode class shown in Figure 8.
TheNode class can hold any data of any type. Each
time thesetData method is called, the new concrete
type of the parameter is saved as thedata field type.
By using this mechanism, the two lines with com-
ments report compilation errors. This coding style is
polymorphic and it is more legible that the parametric
polymorphism used in C++ and much more straight-
forward than the F-bounded polymorphism offered
by Java and C#. At the same time, runtime perfor-
mance is equivalent to explicit type declaration (see
Section 5). Since possible concrete types ofvar ref-
erences are known at compile time, the compiler has
more opportunities to optimize the generated code,
improving runtime performance.

public class Node {
private var data;
private var next;
public Node(var data, var next) {

this.data = data;
this.next = next;

}
public var getData() { return data; }
public void setData(var data) { 

this.data=data; 
}

}
public class Test {
public static void Main() {

var node = new Node(1, 0);
int n = node.getData();int n = node.getData();
bool b = node.getData(); // * Error
node.setData(true);
int n = node.getData(); // * Error
bool b = node.getData(); 

}
}

Figure 8: Implicitly typed attributes.

Implicitly typed attributes extend the constraint-
based behavior of parameter references in the sense
that the concrete type of the implicit object param-
eter (the object used in every non-static method in-
vocation) could be modified on a method invocation
expression. In our example, the type of thenode
attribute is modified each time thesetData method
(and the constructor) is invoked. This does not imply
a modification of the wholeNode type, only the type
of the singlenode object –thanks to theconcretetype
system employed.

For this purpose we have added a new kind ofas-
signmentconstraint to the type system (Ortin, 2009).
Each time a value is assigned to avar attribute, an

assignment constraint is added to the method being
analyzed. This constraint postpones the unification
of the concrete type of the attribute to be performed
later, when an actual object is used in the invocation.
Therefore, the unification algorithm is used to type-
check method invocation expressions, using the con-
crete type of the actual object (a detailed description
of the unification algorithm can be consulted in (Or-
tin, 2009)).

3.6 Using both Static and Dynamic
References

StaDyn performs static type checking of both dy-
namic and staticvar references. This makes possi-
ble the combination of static and dynamic code in the
same application, because the compiler gathers type
information in both scenarios.

Code in Figure 9 uses thegetString andupper
methods of Figure 7. reference may point to a
string or integer. Therefore, it is safe to invoke the
getString method, but a dynamic type error might
be obtained when theupper method is called.

Since type-checking of dynamic and static code
is different, it is necessary to describe interoperation
between both types of references. In casereference
had been set as a dynamic, the question of whether or
not it could have been passed as an argument to the
upper or getString methods (Figure 7) arises. That
is, how optimistic (dynamic) code could interoperate
with pessimistic (static) one. An example is shown in
Figure 9.

var reference;
string aString;
if (new Random().NextDouble() < 0.5)

reference = "String";
else

reference = 3;
aString = getString(reference);
aString = upper(reference); // * Error
// (correct if we set parameter to dynamic)

Figure 9: Dynamic and static code interoperation.

The first invocation is correct regardless of the dy-
namism ofparameter. Being either optimistic or
pessimistic, the argument responds to theToString
method correctly. However, it is not the same in the
second scenario. By default, a compilation error is
obtained, because the parameterreference is static
and it may point to an integer, which does not imple-
ment a publicToUpper method. However, if we set
the parameter of theupper method as dynamic, the
compilation will succeed.

This type-checking is obtained taking into consid-
eration the dynamism of references in the subtyping

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

46



relation of the language. A dynamic reference is a
subtype of a static one when all the concrete types of
the dynamic reference promote to the static one (Or-
tin, 2009). Promotion of static references to dynamic
ones is more flexible: static references should fulfill
at least one constraint from the set of alternatives.

3.7 Type-based Alias Analysis

The problem of determining if a storage location may
be accessed in more than one way is calledAlias Anal-
ysis (Landi and Ryder, 1992). Two references are
aliased if they point to the same object. Although
alias analysis is mainly used for optimizations, we
have used it to know the concrete types of the objects
a reference may point to.

Code in Figure 10 uses theNode class previously
shown. Initially, thelist reference points to a node
whose data is an integer. If we get thedata inside the
Node object inside theList object, we get an integer.
Then a newNode that holds abool value is inserted
at the beginning of thelist. Repeating the previous
access to thedata inside theNode object inside the
List object, abool object is then obtained.

public class List {

private var list;

public List(var data) {

this.list = new Node(data, 0);

}

public void insert(var data) {

this.list = new Node(data, this.list);

}

public static void Main() {

var aList = new List(1);

int n1 = aList.list.getData(); 

aList.insert(true);

int n2 = aList.list.getData(); // * Errorint n2 = aList.list.getData(); // * Error

bool b = aList.list.getData(); 

}

}

Figure 10: Alias analysis.

The alias analysis algorithm implemented is type-
based (uses type information to decide alias) (Di-
wan et al., 1991), inter-procedural (makes use of
inter-procedural flow information) (Landi and Ryder,
1992), context-sensitive (differentiates between dif-
ferent calls to the same method) (Emami et al., 1994),
and may-alias (detects all the objects a referencemay
point to; opposite tomustpoint to) (Appel, 1998).

Alias analysis is an important tool for our type-
reconstructive concrete type system, and it is the key
technique to implement the next (future) stage: struc-
tural reflective type evolution.

4 IMPLEMENTATION

All the programming language features described in
this paper have been implemented over the .NET

Framework 3.5 platform, using the C# 3.0 program-
ming language. Our compiler is a multiple-pass lan-
guage processor that follows thePipes and Filters
architectural pattern. We have used the AntLR lan-
guage processor tool to implement lexical and syn-
tactic analysis (Parr, 2007). Abstract Syntax Trees
(ASTs) have been implemented following theCom-
positedesign pattern and each pass over the AST im-
plements theVisitor design pattern.

Currently we have developed the following AST
visits: two visitors for the SSA algorithm; two visitors
to load types into the types table; one visitor for sym-
bol identification and another one for type inference;
and two visitors to generate code. Once the final com-
piler is finished, the number of AST visits will be re-
duced to optimize the implementation. The type sys-
tem has been implemented following the guidelines
described in (Ortin et al., 2007).

We generate .NET intermediate language and then
assemble it to produce the binaries. At present, we use
the CLR 2.0 as the unique compiler’s back-end. How-
ever, we have designed the code generator module fol-
lowing theBridgedesign pattern to add both the DLR
(Dynamic Language Runtime) (Hugunin, 2007) and
thezROTOR (Redondo and Ortin, 2008) back-ends in
the future.

5 RUNTIME PERFORMANCE

We have evaluated the performance benefits obtained
with the inclusion of dynamic and static typing in the
same programming language. In this paper we only
summarize the results –detailed information can be
consulted in (Ortin et al., 2010). We have compared
C# 4.0 Beta 2, Visual Basic 10 (VB) and current ver-
sion ofStaDyn. These have been the results:

• Tests with explicit type declaration revealed that
the three implementations offer quite similar run-
time performance. C# offers the best runtime per-
formance, being VB almost as fast as C# (C# is
only 0.64% better than VB). Finally, runtime per-
formance ofStaDyn, when variables are explic-
itly typed, is 9.22% lower than VB, and 9.92%
in comparison with C#. This difference may be
caused by the greater number of optimizations
that these production compilers perform in rela-
tion to our implementation.

• The performance assessment ofStaDynwhen the
exact single type of avar reference is inferred

A PROGRAMMING LANGUAGE TO FACILITATE THE TRANSITION FROM RAPID PROTOTYPING TO
EFFICIENT SOFTWARE PRODUCTION

47



shows the repercussion of our approach. Runtime
performance is the same as when using explicitly
typed references (in fact, the code generated is ex-
actly the same). In this special scenario,StaDyn
shows a huge performance improvement:StaDyn
is more than 2,322 and 3,195 times faster than VB
and C# respectively. This vast difference is caused
by the lack of static type inference of both VB and
C#. When a reference is declared as dynamic,ev-
ery operation over that reference is performed at
runtime using reflection. Since the usage of re-
flective operations in the .NET platform has an
important performance cost (Ortin et al., 2009),
the execution time is significantly incremented.

• While the number of possible types inferred by
our compiler increases, execution time shows a
linear raising regarding to the number of types
inferred by the compiler. However, C# and VB
maintain their runtime performance almost con-
stant. Therefore, the performance benefit drops
while the number of possible types increases. As
an example, the runtime performance benefit of
StaDyndrops to 40 and 56 times better than VB
and C# respectively, when the compiler infers 100
possible types for avar reference.

• The final comparison to be established is when
the compiler gathers no static type information
at all. In this case, runtime performance is the
worst in the three programming languages, be-
cause method invocation is performed using re-
flection. However,StaDynrequires 33.85% and
22.65% the time that VB and C#, respectively,
employ to run the same program.

Differences between our approach and both C#
and VB are justified by the amount of type informa-
tion gathered by the compiler.StaDyncontinues col-
lecting type information even when references are set
as dynamic. Nevertheless, both C# and VB perform
no static type inference once a reference has been de-
clared as dynamic. This is the reason whyStaDynof-
fers the same runtime performance with explicit type
declaration and inference of the exact single type, in-
volving a remarkable performance improvement.

6 RELATED WORK

Strongtalkwas one of the first programming language
implementation that included both dynamic and static
typing in the same programming language. Strongtalk
is a major re-thinking of the Smalltalk-80 program-
ming language (Bracha and Griswold, 1993). It re-
tains the basic Smalltalk syntax and semantics, but a

type system is added to provide more reliability and
a better runtime performance. The Strongtalk type
system is completely optional, following the idea of
pluggabletype system (Bracha, 2004). This feature
facilitates the transition from rapid prototyping to ef-
ficient software production.

Dylan is a high-level programming language, de-
signed to allow efficient compilation of features com-
monly associated with dynamic languages (Shalit,
1996). Dylan permits both explicit and implicit vari-
able declaration. It also supports two compilation sce-
narios: production and interactive. In the interactive
mode, all the types are ignored and no static type
checking is performed. When the production con-
figuration is selected, explicitly typed variables are
checked using a static type system.

Boo is a recent object-oriented programming lan-
guage that is both statically and dynamically typed
(Codehaus Foundation, 2006). In Boo, references
may be declared without specifying its type and the
compiler performs type inference. However, refer-
ences could only have one unique type in the same
scope. Moreover, fields and parameters could not
be declared without specifying its type. The Boo
compiler provides theduckyoption that interprets the
Object type as if it wasduck, i.e. dynamically typed.

TheVisual Basic .Netprogramming language in-
corporates both dynamic and static typing. Com-
piled applications run over the .NET platform using
the same virtual machine. The main benefit of its
dynamic type system is that it supportsduck typing.
However, there are interoperation lacks between dy-
namic and static code because no static type inference
is performed over dynamic references.

As mentioned, C# 4.0 includes the support of dy-
namically typed objects. A newdynamic keyword
has been added as a new type. The compiler performs
no static type checking over anydynamic reference,
making all the type verifications at runtime.

There are some theoretical research works on hy-
brid dynamic and static typing as well.Soft Typing
(Cartwright and Fagan, 1991) was one of the first the-
oretical works that applied static typing to a dynami-
cally typed language such as Scheme. However, soft
typing does not control which parts in a program are
statically checked, and static type information is not
used to optimize the generated code either. The ap-
proach in (Abadi et al., 1991) adds aDynamic type
to lambda calculus, including two conversion oper-
ations (dynamic and type-case), producing a ver-
bose code deeply dependent on its dynamism. The
works ofQuasi-Static Typing(Thatte, 1990),Hybrid
Typing (Flanagan et al., 2006) andGradual Typing
(Siek and Taha, 2007) perform implicit conversion

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

48



between dynamic and static code, employing subtyp-
ing relations in the case of quasi-static and hybrid
typing, and a consistency relation in gradual typing.
None of them separates the dynamism concern. Grad-
ual typing already identified unification-based con-
straint resolution as a suitable approach to integrate
both dynamic and static typing (Siek and Vachhara-
jani, 2008). However, with gradual typing a dynamic
type is implicitly converted into static without any
static type-checking, because type inference is not
performed over dynamic references.

7 CONCLUSIONS

TheStaDynprogramming language includes both dy-
namic and static typing in the same programming lan-
guage, improving the runtime flexibility and simplic-
ity of the statically typed languages, and robustness
and performance of the static ones.StaDynallows
both dynamic and static references in the same pro-
gram, facilitating the transition from rapid prototyp-
ing to efficient software production. Each compila-
tion unit can be built in a dynamic or static configura-
tion, and the dynamism of each single reference can
be also specified without changing the semantics of
the whole program.

Dynamic and static code can be seamlessly inte-
grated because they share the same type system. Type
inference is performed over dynamic and static ref-
erences, facilitating the interoperation between dy-
namic and static code.

StaDynperforms type inference over dynamic and
static references, improving runtime performance and
robustness. A runtime performance assessment has
confirmed how performing type inference over dy-
namic references involves an important performance
benefit. Although this benefit decreases as the number
of possible inferred types increases, runtime perfor-
mance ofStaDynis still significantly better than C#
and VB when no type information ofvar references
is inferred at all.

Future work will be centered on integratingSta-
Dyn in a visual IDE suitable for both rapid prototyp-
ing and final efficient application development. Our
idea is to extend Visual Studio 2010 to offer services
such as interactive code evaluation, substitution of im-
plicitly typed dynamic references with explicit static
ones, refactoring facilities to make dynamic code be-
come statically typed, and showing type errors and
warnings even over dynamic code.

Current release of theStaDynprogramming lan-
guage and its source code are freely available at
http://www.reflection.uniovi.es/stadyn. A formal de-

scription of theStaDyntype system is detailed in (Or-
tin, 2009).

ACKNOWLEDGEMENTS

This work has been funded by Microsoft Research,
under the project entitledExtending dynamic fea-
tures of the SSCLI, awarded in thePhoenix and SS-
CLI, Compilation and Managed Execution Request
for Proposals, 2006. It has been also funded by the
Department of Science and Technology (Spain) under
the National Program for Research, Development and
Innovation; project TIN2008-00276 entitledImprov-
ing Performance and Robustness of Dynamic Lan-
guages to develop Efficient, Scalable and Reliable
Software.

REFERENCES

Abadi, M., Cardelli, L., Pierce, B., and Plotkin, G. (1991).
Dynamic typing in a statically typed language.ACM
Transactions on Programming Languages and Sys-
tems, 13(2):237–268.

Abadi, M., Cardelli, L., Pierce, B., Rémy, D., and Taylor,
R. W. (1994). Dynamic typing in polymorphic lan-
guages. Journal of Functional Programming, 5:92–
103.

Appel, A. (1998).Modern Compiler Implementation in ML.
Cambridge University Press.

Bracha, G. (2004). Pluggable type systems. InOOPSLA
workshop on revival of dynamic languages.

Bracha, G. and Griswold, D. (1993). Strongtalk: Type-
checking Smalltalk in a production environment. In
Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA), pages 215–230, New York, NY, USA.
ACM.

Canning, P., Cook, W., Hill, W., Olthoff, W., and Mitchell,
J. (1989). F-bounded polymorphism for object-
oriented programming. In Press, A., editor,Proceed-
ings of the fourth international conference on Func-
tional programming languages and computer archi-
tecture, pages 273–280.

Cardelli, L. (1988). Basic polymorphic typechecking.Sci-
ence of Computer Programming, (8):147–172.

Cartwright, R. and Fagan, M. (1991). Soft Typing. InPro-
ceedings of the SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI
’91), pages 278–292.

Codehaus Foundation (2006). Boo, a wrist friendly lan-
guage for the CLI. http://boo.codehaus.org.

Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N.,
and Zadeck, F. K. (1991). Efficiently computing

A PROGRAMMING LANGUAGE TO FACILITATE THE TRANSITION FROM RAPID PROTOTYPING TO
EFFICIENT SOFTWARE PRODUCTION

49



static single assignment form and the control depen-
dence graph. ACM Transactions on Programming
Languages and Systems, 13(4):451–490.

Diwan, A., McKinley, K., and Moss, J. (1991). Type-based
alias analysis. InProceedings of the SIGPLAN Con-
ference on Programming Language Design and Im-
plementation (PLDI ’91), pages 106–117.

Emami, M., Ghiya, R., and Hendren, L. (1994). Context-
sensitive inter-procedural points-to analysis in the
presence of function pointers. InProceedings of ACM
SIGPLAN’94 Conference on Programming Language
Design and Implementation, pages 224–256.

Flanagan, C., Freund, S., and Tomb, A. (2006). Hy-
brid types, invariants, and refinements for impera-
tive objects. InInternational Workshop on Foun-
dations and Developments of Object-Oriented Lan-
guages (FOOL).

Freeman, T. and Pfenning, F. (1991). Refinement types for
ML. In Proceedings of the ACM SIGPLAN Confer-
ence on Programming Language Design and Imple-
mentation (PLDI), pages 268–277.

Haldiman, N., Denker, M., and Nierstrasz, O. (2009). Prac-
tical, pluggable types for a dynamic language.Com-
puter Languages, Systems & Structures, 35:48–62.

Hudak, P., Jones, S., , and Wadler, P. (1991). Report on the
programming language haskell version 1.1. Technical
report, Departments of Computer Science, University
of Glasgow and Yale University.

Hugunin, J. (2007). Just glue it! Ruby and the DLR in
Silverlight. InMIX Conference.

Hürsch, W. and Lopes, C. (1995). Separation of concerns.
Technical Report UN-CCS-95-03, Northeastern Uni-
versity, Boston, USA.

Landi, W. and Ryder, B. (1992). A safe approximate algo-
rithm for interprocedural pointer aliasing. InConfer-
ence on Programming Language Design and Imple-
mentation, pages 473–489.

Meijer, E. and Drayton, P. (2004). Dynamic typing when
needed: The end of the cold war between program-
ming languages. InProceedings of the OOPSLA
Workshop on Revival of Dynamic Languages.

Milner, R. (1978). A theory of type polymorphism in pro-
gramming.Journal of Computer and System Sciences,
17:348–375.

Milner, R., Tofte, M., and Harper, R. (1990).The Definition
of Standard ML. The MIT Press.

Odersky, M., anb C. Röckl, V. C., and Zenger, M. (2002).
A nominal theory of objects with dependent types. In
European Conference on Object-Oriented Program-
ming (ECOOP), pages 201–224.

Odersky, M., Sulzmann, M., and Wehr, M. (1999). Type
inference with constrained types.Theory and Practice
of Object Systems, 5(1):35–55.

Ortin, F. (2009). The StaDyn core type system. Technical
report, Computer Science Department, University of
Oviedo, Spain.

Ortin, F. and Perez-Schofield, J. B. G. (2008). Supporting
both static and dynamic typing. InProgramming and
Languages Conference (PROLE), pages 215–232.

Ortin, F., Redondo, J. M., and Perez-Schofield, J. B. G.
(2009). Efficient virtual machine support of runtime
structural reflection.Science of Computer Program-
ming, 74.

Ortin, F., Zapico, D., and Cueva, J. M. (2007). Design pat-
terns for teaching type checking in a compiler con-
struction course. IEEE Transactions on Education,
50(3):273–283.

Ortin, F., Zapico, D., Perez-Schofield, J. B. G., and Garcia,
M. (2010). Including both static and dynamic typing
in the same programming language.IET Software, (to
be published).

Parr, T. (2007).The Definitive ANTLR Reference: Building
Domain-Specific Languages. Pragmatic Bookshelf.

Pierce, B. C. (1992). Programming with intersection types
and bounded polymorphism. Technical Report CMU-
CS-91-106, School of Computer Science, Pittsburgh,
PA, USA.

Pierce, B. C. (2002).Types and Programming Languages.
The MIT Press.

Plevyak, J. and Chien, A. (1994). Precise concrete type in-
ference for object-oriented languages. InSIGPLAN
Notices 29, 10, Proceeding of the OOPSLA Confer-
ence.

Redondo, J. M. and Ortin, F. (2008). Optimizing reflec-
tive primitives of dynamic languages.International
Journal of Software Engineering and Knowledge En-
gineering, 18(6):759–783.

Rémy, D. and Vouillon, J. (1998). Objective ML: ‘An ef-
fective object-oriented extension to ML’.Theory And
Practice of Object Systems, 4(1):27–50.

Shalit, A. (1996).The Dylan reference manual: the defini-
tive guide to the new object-oriented dynamic lan-
guage. Addison Wesley Longman Publishing Co.

Siek, J. G. and Taha, W. (2007). Gradual typing for objects.
In Proceedings of the 21st European Conference on
Object-Oriented Programming (ECOOP).

Siek, J. G. and Vachharajani, M. (2008). Gradual typing
with unification-based inference. InDynamic Lan-
guages Symposium.

Thatte, S. (1990). Quasi-static typing. InProceedings of the
17th ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages (POPL), pages 367–
381, New York, NY, USA. ACM.

Tucker, A. B. (1997).Type Systems. The Computer Science
and Engineering Handbook. CRC Press.

Venners, B. (2009). Twitter on Scala. a conversation with
Steve Jenson, Alex Payne, and Robey Pointer.Artima
Developer.

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

50


