
ENGINEERING PROCESS FOR CAPACITY-DRIVEN WEB
SERVICES

Imen Benzarti, Samir Tata
Institut TELECOM, TELECOM SudParis, CNRS UMR, Samovar, Evry, France

Zakaria Maamar
Zayed University, Dubai, U.A.E.

Nejib Ben Hadj-Alouane, Moez Yeddes
National School of Computer Sciences, Tunis, Tunisia

Keywords: Web service, Capacity-driven Web service, Engineering process.

Abstract: This paper presents a novel approach for the engineering of capacity-driven Web services. By capacity, we
mean how a Web service is empowered with several sets of operations from which it selectively triggers
a set of operations with respect to some run-time environmental requirements. Because of the specificities
of capacity-driven Web services compared to regular (i.e., mono-capacity) Web services, their engineering
in terms of design, development, and deployment needs to be conducted in a complete specific way. Our
approach define an engineering process composed of five steps: (1) to frame the requirements that could be
put on these Web services, (2) to define capacities and how these capacities are triggered, and last but not
least link these capacities to requirements, (3) to identify the processes in term of business logic that these
Web services could implement, (4) to generate the source code, and (5) to generate theC apacity-driven Web
Services Description Language (C -WSDL).

1 INTRODUCTION

Web services are gaining momentum in academia
and industry by achieving the promise of develop-
ing loosely-coupled, cross-enterprise business appli-
cations. To sustain this momentum, we stressed sev-
eral times the importance of designing and developing
Web services along the flexibility, stability, and auton-
omy perspectives1 (Maamar et al., 2006). By flexibil-
ity, we refer to a Web service that can adapt itself so
that, it accommodates the characteristics of the busi-
ness scenario it implements. By stability, we refer to
a Web service that can resist to unforeseen changes so
that, it maintains operation continuity and recovers to
normal levels of operation after disturbances. Finally,
by autonomy, we refer to a Web service that can eval-
uate the possible rewards it is entitled to so that, it

1These perspectives make Web services sensible to con-
text.

either accepts or rejects processing clients’ requests.
A client could be a user or another Web service.

In (Maamar et al., 2009b), we discuss the notion
of capacityand how it can smoothly be woven into
Web services. By capacity, we mean how a Web
service is empowered with several sets of operations
from which it selectively triggers a set of operations
with respect to some run-time environmental require-
ments. The description of these sets of operations
is included in theC apacity-driven Web Services De-
scription Language (C -WSDL) document of the Web
service. In this paper, we continue our discussions
on capacity-driven Web services with focus this time
on how one could engineer such Web services upon
which enterprise applications could be built. The ra-
tionale of examining capacities is backed by the claim
that “most Web services platforms are based on a
best-effort model, which treats all requests uniformly,
without any type of servicedifferentiation or priori-
tization” (Malay Chatterjee et al., 2005). We qualify

84
Benzarti I., Tata S., Maamar Z., Ben Hadj-Alouane N. and Yeddes M. (2010).
ENGINEERING PROCESS FOR CAPACITY-DRIVEN WEB SERVICES.
In Proceedings of the 12th International Conference on Enterprise Information Systems - Databases and Information Systems Integration, pages 84-95
DOI: 10.5220/0002976600840095
Copyright c© SciTePress

the Web services in (Malay Chatterjee et al., 2005) as
mono-capacity.

Capacity is an intrinsic element of the approach
we developed in (Maamar et al., 2009b) in response
to the specificities that characterize and the challenges
that underpin each of the aforementioned perspec-
tives. In this approach, we decided to let Web services
first, assess themselves before they accept to partici-
pate in any composition scenario, and then identify
the requirements and track the changes that are posed
by and made in the execution environment, respec-
tively, before these Web services select a certain ca-
pacity to trigger. On the one hand, requirements could
be related to network reliability, security measures,
and data quality. On the other hand, changes could
be related to drop in network bandwidth, peer appear-
ance/disappearance without prior notice, and comput-
ing resources mobility and sometimes failure.

The deployment of capacity-driven Web services
sheds the light on the importance of assisting those
who are put in the front line of designing, develop-
ing, and maintaining such Web services. There is a
lack of guidelines that would offer the needed assis-
tance to service engineers. A part of this assistance is
usually known as requirement engineering in the soft-
ware field (Sommerville, 2001). Our contributions in
this paper are manifold: define an engineering pro-
cess for capacity-driven Web services; provide guide-
lines to identify capacities of Web services; identify
the requirements that the environment poses on Web
services so that these Web services can satisfy them
through capacities; and, propose techniques for the
generation of the code and the description of capacity-
driven Web services.

This paper is organized as follows. Section 2
presents motivating example, provides an overview of
the related work and recalls the definition of capacity-
driven Web services. Section 3 define our engineer-
ing process for capacity-driven Web services. Finally,
conclusions are drawn in Section 4.

2 BACKGROUND

This section consists in four parts. The first part
presents a running example that we will use in this
paper for illustration purpose. The second present
a review of the related work. The third part of this
section recalls the definitions of Capacity-driven Web
services. The last part presents environment assess-
ment in service composition and invocation.

2.1 Running Example

Our running example concerns a real-state office that
runs and sells different types of properties such as vil-
las and flats. The office is equipped with a set of PCs,
while the staff in charge of conducting the visits are
equipped with various heterogeneous handheld de-
vices. The staff are usually in contact with customers
as per the following description. The customers con-
tact the office to request an estimate, purchase, or rent
a property. The office can also contact customers as
per their initial requests.

“Get the map of properties in the vicinity” is
among the services that the real-state staff use in their
day-to-day business. This service returns all the prop-
erties that the office manages and are within a walking
distance from a staff. This distance and other criteria
like price range and number of bedrooms are set by
the staff. “Get the map of properties in the vicinity” is
treated as a composite Web service that relies on in-
ternal and external Web services as per the following
description:

1. “LocateAgent” returns the current position of a
staff in terms of latitude and longitude.

2. “LocatetProperties” retrieves the list of properties
(identifier, location, etc.) that are in the vicinity
of the staff (at a maximum distance from her) and
whose characteristics match her criteria.

3. “GenerateMap” produces a navigation map that
shows some properties in response to the staff’s
request.

4. “Display” displays the map on the device of the
staff.

It is worth mentioning that “LocateAgent” and
“GenerateMap” services are context aware. Their per-
formance depends on the characteristics of the staff’s
device: network interfaces type (GSM, WiFi, GPS,
etc.), quality of the signal strength of the connexion,
screen size, etc.

2.2 Related Work

Our literature review identified a good number of re-
search initiatives that looked into the engineering Web
services (Chris Gibson, 2004; Jha, 2006; Kirda et al.,
2003; Robinson, 2003; Tsai et al., 2007; van Eck and
Wieringa, 2004). Unfortunately none of these initia-
tives is adapted to capacity-driven Web serivces. Fur-
thermore, our literature review included some other
initiatives on requirement engineering like (Damas
et al., 2006; Donzelli, 2004; Elghazi, 2007).

In (Chris Gibson, 2004), Chris Gibson stresses the
importance of developing a requirement specification

ENGINEERING PROCESS FOR CAPACITY-DRIVEN WEB SERVICES

85

for software applications built around Web services.
The author reports that deficiencies in software re-
quirements are the leading cause of failure in software
projects. The use of Web services to provide B2B on-
line solutions turns out useful; it simplifies applica-
tion development and reduces development risk and
cost. The requirement engineering process of Chris
Gibson is commonly adopted by the IT community
through the steps of elicitation, analysis, modeling
and specification, and verification.

In (Jha, 2006), Jha develops an approach based on
problem frames for Web services’ requirements. The
approach aligns initiatives on Web services with the
strategies of a business so that, the objectives, needs,
and context of this business are captured. Jha adopts
the definition of Zave and Jackson that requirements
are all about describing a client’s problem domain, de-
termining what desired effects the client wants to ex-
ert upon that domain, and specifying the external face
of the proposed systems to enable those desired ef-
fects to occur and to give designers a specification that
guides them build such systems (Zave and Jackson,
1997). To capture an organization’s objective, needs,
and context, Jha suggests two steps: understand the
organization’s business strategy and overall objective,
and use progression of problems to describe this orga-
nization’s business objective and the business context
from strategy to implementation.

In (Kirda et al., 2003), Kirda et al. note that the
problem of supporting the automatic integration of
Web services into Web sites has received little atten-
tion from the research community. To remedy this
problem, they describe how Web services can be mod-
eled, implemented, composed, and automatically in-
tegrated into Web sites using the Device-Independent
Web Engineering (DIWE) framework. DIWE pro-
motes the separation between three layers known as
layout, content, and application logic.

In (Tsai et al., 2007), Tsai et al. discuss
Service-Oriented System Engineering (SOSE) with
focus on Service-Oriented Requirement Engineer-
ing (SORE). SORE is different from other tradi-
tional requirement engineering approaches because
the concerned applications have to comply with
the general guidelines of service-oriented architec-
ture. Tsai et al. indicate the following charac-
teristics of SORE: reusability-oriented and cumula-
tive, domain-specific, framework-oriented analysis,
model-driven development, evaluation-based, user-
centric analysis and specification, and finally, policy-
based computing.

Last but not least, in (van Eck and Wieringa,
2004), van Eck and Wieringa examine the require-
ments of a specific type of Web services. This type

of Web services supports other services that are not
themselves Web services. van Eck and Wieringa
use the wording of product experience augmenters to
qualify such Web services. The authors claim that
most Web services in the future will augment existing
products or services, rather than constituting an inde-
pendent economic offering. Some characteristics that
feature product-experience-augmenters Web services
include: their functional maintenance is the respon-
sibility of the marketing & sales department or the
departments that offer the primary product, and they
need to properly fit into the business processes.

2.3 Capacity-driven Web Services

Capacity is an aggregation of a set of actions that im-
plement the functionality of a Web service (Maamar
et al., 2009b).. Functionality (e.g., currencyConver-
sion) is usually used to differentiate a Web service
from other peers, though it is common that indepen-
dent bodies develop Web services with similar func-
tionalities but different non-functional properties (Bui
and Gacher, 2005; Maamar et al., 2009a). Concretely
speaking, the actions in a capacity correspond to op-
erations in a WSDL document and vary according to
the business-application domain. As per our proposed
running example, the actions in LocateProperties Web
service could be:

• Retrieve a list of properties’ identifiers in the
vicinity of the staff using the coordinates (latitude,
longitude) of the staff and the maximum distance.

• Select from the list of identifiers the properties
that satisfy the staff’s requirements.

• Locate (latitude, longitude) the identified proper-
ties.

In Fig. 1 we illustrate a simple specification of
the real-state office service using a finite state ma-
chine (Harel and Naamad, 1996). The component
Web services that agreed to participate in this compo-
sition are “LocateAgent”, “LocateProperties”, “Gen-
erateMap” and “Display”. If one of these Web ser-
vices rejects the participation, the discovery step is
reactivated again.

Several capacities along with their respective ac-
tions satisfy the unique functionality of a Web service
in different ways. Which capacity to select and make
active out of the available capacities in a Web service
requires assessing the environment so that appropri-
ate details are collected and prepared for this selec-
tion. Depending on the characteristics of the staff’s
device, “LocateAgent” can be carried out with one of
the following capacities:

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

86

Figure 1: Specification of the real-state office example.

• “GPSGeoLocation” capacity that is an internal
function of the device if the device is equipped
with a Global Positioning System (GPS).

• “GSMGeoLocation” capacity that provides the
position of the staff’s device if the device
is equipped with a Global System for Mo-
bile (GSM).

• “AddressGeoLocation” capacity that provides the
position (latitude, longitude) of the staff from the
standardized address.

2.4 Environment Assessment

Environment assessment identifies the requirements
that a Web service has to satisfy before this Web ser-
vice first, accepts to participate in a new composition
scenario (on top of its ongoing participations in other
compositions) and second, selects a capacity to trig-
ger after accepting this participation. As a result, en-
vironment assessment is about satisfying two types
of requirements. Those associated with composition
scenarios and those associated with capacity activa-
tion. An example of composition requirement could
be the maximum number of compositions that a Web
service takes part in at a time. And an example of
capacity requirement could be the minimum network
bandwidth to maintain so that a Web service can guar-
antee regular live-content delivery to users of hand-
held devices.

3 ENGINEERING
CAPACITY-DRIVEN WEB
SERVICES

In this section, we answer the question: How to de-
velop a capacity-driven Web service. The develop-
ment of a monocapacity Web service can be done in
two different ways: The first is to generate the skele-
ton of the code source service from the WSDL specifi-
cation before completing it with the business code, the
second one is to generate WSDL specification from a
web service code source before deploying the Web
service.

Because of the specificities of capacity-driven
Web services compared to regular (i.e., mono-
capacity) Web services, their engineering in terms
of design, development, and deployment needs to be
conducted in a complete specific way. Our approach
define an engineering process composed of five steps:
(1) to frame the requirements that could be put on
these Web services, (2) to define capacities and how
these capacities are triggered, and last but not least
link these capacities to requirements (3) to identify
the processes in term of business logic that these Web
services could implement (4) to generate the source
code and (5) to generate theC apacity-driven Web Ser-
vices Description Language (C -WSDL).

As prsented in Fig. 2, the proposed engineering
process for capacity-driven Web services is composed
of five steps:

1. Step 1: requirement engineering,

2. Step 2: capacity engineering,

3. Step 3: business logic engineering,

4. Step 4: source Code generation,

5. step 5: CWSDL description gnration

In the following, these five steps are detailed. We
use the example presented in Section 2.1 to illustrates
these steps.

3.1 Requirement Engineering

In this first step of the engineering approach, the goal
is to contribute towards (i) reflecting the dynamic na-
ture of the environment, (ii) understanding the types
of requirements that this environment poses on Web
services, and last but not least (iii) linking some of
these requirements to capacity development. By dy-
namic nature, we mean Web services appearing and
disappearing without prior notice, Web services re-
suming and suspending operation, sudden drop in net-
work bandwidth, etc. As per the definition of “en-
vironment assessment” , we identify two goals and
associate them with “composition requirements” and
“capacity requirements”, respectively. The former
goal is meant to secure the participation of a Web ser-
vice in a new composition scenario, and the latter goal
is meant to secure the activation of at least one capac-
ity in a Web service at run-time.

ENGINEERING PROCESS FOR CAPACITY-DRIVEN WEB SERVICES

87

Figure 2: Engineering process for capacity-driven Web services.

3.1.1 Composition Requirements

In (Maamar et al., 2006), we introduced the Web ser-
vices instantiation principle that illustrates the condi-
tional participation of a Web service in composition
scenarios. Upon acceptance, this participation hap-
pens through a Web service instance. In compliance
with this instantiation principle, a Web service is or-
ganized along three dimensions: past compositions,
current compositions, and forthcoming compositions.
Requirements apply to forthcoming compositions and
thus, could limit the participation of a Web service in
these compositions.

Definition 1 (Composition Requirement). The com-
position requirement on a Web service is a tuple
C O RW S = (argi, ropi ,vali ,desci ,Ont) where:

- argi is the name of a type of composition require-
ment.

- ropi is a relational operator (=,<,≤,>,≥, or 6=).

- vali is a value (numerical, string, etc.) assigned to
argi.

- desci is a narrative description of the composition
requirement.

- Ont refers to the ontology definingargi.

The set of all possible composition requirements
is denoted byC O R .

Examples: The following elements could popu-
lateC O R :

- arg1: number of participations, rop1: ≤, val1: 10,
desc1: the maximum number of participation for
a Web service in compositions at a time should not
exceed 10, Ont: ONTcomp−req.

- arg2: date of maintenance, rop2: =, val2: ev-
ery Wednesday of the week, desc2: on Wednes-
days, a Web service does not take part in any com-
position because of maintenance (upgrade, code
change, etc.), Ont: ONTcomp−req.

3.1.2 Capacity Requirements

A Web service implements the functionality it offers
through capacities. Which capacity to activate at run-
time depends on which requirements are put on this
Web service. We classify requirements on capacities
into different types with focus in this paper on the fol-
lowing three types (additional ones could be added, as
need be):

1. Data requirement is about the quality of data that
a Web service receives, manipulates, and proba-
bly sends out. Such a requirement could be about
freshness (when were data obtained), source (who
is the sender of data), and validity (when do data
expire) of data.

2. Network requirement is about the nature of com-
munication means that a Web service uses to in-
teract with users and peers. Such a requirement
could be about bandwidth, throughput, and relia-
bility.

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

88

3. Resource requirement is about the computing fa-
cilities upon which the performance of a Web ser-
vice is scheduled. Such a requirement could be
about availability and reliability.

Definition 2 (Capacity Requirement). The capacity
requirement on a Web service is a tupleC A RW S =
(argi , ropi ,vali ,desci , threi ,Ont) where:

- argi is the name of a capacity requirement.

- ropi is a relational operator (=,<,≤,>,≥, or 6=).

- vali is a value (numerical, string, etc.) assigned to
argi.

- desci is a narrative description of the capacity re-
quirement.

- threi is a threshold value that keeps the capacity
requirement illustrated withargi satisfied despite
changes in the environment that affectvali .

- Ont refers to the ontology definingargi.

The set of all possible capacity requirements is de-
noted byC A R .

Examples: The following elements could popu-
lateC A R :

- arg1: data freshness, rop1: =, val1: current,
desc1: all data to be used by a Web service need
to be of today, thre1: null, Ont: ONTcap−req.

- arg2: resource availability, rop1: ≤, val2: 80%,
desc2: resources upon which a Web service runs,
need to have an 80% availability, thre2: 5% de-
crease in resource availability is still acceptable
to the Web service and the current activated ca-
pacity can continue to be used, Ont: ONTcap−req.

3.2 Capacity Engineering

In this second step of the engineering approach, the
goal is to contribute towards (i) understanding the dif-
ferent ways of structuring capacities, (ii) assessing
how capacities are triggered, and last but not least
(iii) linking these capacities to requirements. As per
the definition of “capacity” in Section 2.3, we identify
goals with respect to the multiple capacities that em-
power a Web service. A capacity is a set of operations
that a Web service carries out upon receiving requests
from users or peers. A Web service could have several
capacities that are differently structured according to
the functionality it implements and the requirements
that these capacities can satisfy.

Definition 3 (Web Service Capacity). The capacity
in a Web service is a coupleC A PW S = (O P ,access)
where:

- O P is a set of operations. An operationOpi ∈
O P consists of a nameN, a set of input argu-
mentsInput along with their appropriate types,
and a set of output argumentsOuput along
with their appropriate types, and is written as
(N, Input,Out put).

- accessis the access modifier of a capacity whether
publicor private.

The set of all defined capacities is denoted by
C A P . The rationale of public and private access mod-
ifiers is given later.

Example: Let us consider C A P 1
PlaceBookingWS

of PlaceBookingWS. It is specified as follows:
({Op1,Op2}, public) where Op1 = (check-
place, in(date:Date), out(availability:Boolean)),
Op2 = (confirmplace, in(date:Date),
out(confirmation:Boolean)), and access is pub-
lic.

The selection of a capacity in a Web serviceW S
for triggering is subject to satisfying some capacity
requirements, i.e.,C A R i=1,..,n

W S
. As a result, we define

a function that associates a capacity with capacity re-
quirements as per Definition 4.

Definition 4 (Association Function). Let C A P and
C A R be respectively, the set of all capacities defined
in a Web service and the set of all possible capacity
requirements on Web services. The association func-
tion is defined as follows:Assoc: C A P W S → 2C A R .

The association functionAssocconnects each ca-
pacity in a Web serviceW S with a set (possibly
empty) of capacity requirements (2C A R is the power
set of C A R). This connection is done manually,
i.e., designer driven.

Example: Let us continue using
C A P 1

PlaceBookingWS. Assoc(C A P 1
PlaceBookingWS) =

{C A R 1
PlaceBookingWS} where C A R 1

PlaceBookingWS
is defined as follows: <
data f reshness,current, · · · ,null,Ontreq−cap>.

Based on Definition 3 and Definition 4, the following
comments are made:

- A capacity inW S , which does not have any re-
quirement to satisfy is referred to asdefaultca-
pacity, i.e.,Assoc(C A P i

W S) = /0. This capacity
is automatically selected when none of the exist-
ing capacities inW S satisfies the current capac-
ity requirements. By having a default capacity,
W S can always guarantee a user’s request satis-
faction.

- Independent capacities inW S could have com-
mon operations, i.e.,∩n

i=1C A P
i
W S 6= /0.

ENGINEERING PROCESS FOR CAPACITY-DRIVEN WEB SERVICES

89

- Common operations in independent capacities
could be overloaded if needed. For example,
Op1 could take one input argument inC A P 1

W S ,
e.g., in(username:String), and two input argu-
ments inC A P n

W S , e.g., in(username:String, pass-
word:String).

In Definition 3, capacity has either public or pri-
vate access-modifier like in object-oriented program-
ming languages (Fig. 3)2. On the one hand, public
capacities are offered to the external environment par-
ticularly to users and other Web services. Submitting
invocation messages to public capacities requires ful-
filling capacity requirements. On the other hand, pri-
vate capacities are hidden as their name hints and are
just called by public capacities. By doing so, the pri-
vacy of a Web service in terms of offered and existing
capacities is maintained; only the necessary capacities
are exposed. It should be noted that private capacities
might call each other if needed ((0,n) cardinality in
Fig. 3), but this is not the case with public capacities
((0,0) cardinality in Fig. 3) since they all implement
the unique functionality of a Web service.

Capacity

Public Private

Specialized into

Call (1,n) C
al

l
(0

.n
)

C
al

l
(0

.0
)Requirements

+
Invocation messages To trigger

Restrict/[Cap]

Call(min,max): min/max calls to a capacity

Legend

Figure 3: Capacity categorization.

3.3 Business Logic Engineering

In this third step of the engineering approach, the goal
is to contribute towards (i) understanding the current
practices in terms of business processes, (ii) motivat-
ing the need of changing these processes, and last but
not least (iii) linking these changes in processes to re-
quirement satisfaction.

As per the definition of “Web service functional-
ity” in Section 2.3, we identify a goal with respect
to the functionality (e.g.,currencyConversion) of a
Web service. A functionality is about a business logic
that describes the processes to execute in terms of
how, when, and where. A business logic is domain-
application dependent (e.g., education, tourism) and
varies from one case study to another according to

2In Fig. 3, Restrict/[Cap]means that requirements are
here to restrict the capacity that a Web service could se-
lect. And, Call(min,max)means the minimum and maxi-
mum times that a capacity could be called by another ca-
pacity; for exampleCall(0,0)means that a capacity is never
called by any other capacity; this applies to public capac-
ities, only. Contrarily, private capacities could be either
called or never calledCall(0,n).

different elements such as users (e.g., minimum age
to submit an application), security (e.g., maximum
length of encrypted key), and legal (e.g., minimum
VAT rate).

Definition 5 (Web Service Goal). The goal of a Web
service is a coupleGW S = (f ct,bl) where:

- f ct is a narrative description of the functionality.

- bl is a specification of the business logic.

The specification of a business logic uses
state chartsbut other techniques likepetri-netscould
be used.

Definition 6 (Web Service Business-logic). The
S tateC hartS C of the business logic of a Web service
is a tupleS CW S (bl) = (S ,S F ,L ,T ,s0) where:

- S is a finite set of state names.

- s0 ∈ S is the initial state inS CW S .

- S F ⊂ S is a finite set of final states.

- L is a set of labels. In state chart, a label con-
sists of an event componentE, a condition compo-
nentC, and an action componentA, and is written
asE[C]/A. For representation purposes in Fig. 4,
we just name labels without giving full details on
conditions and actions.

Figure 4: Business logic of the real-state office example.

In our engineering approach, conditionC is split
into pre-condition represented as•C and post-
condition represented asC•. If statesi is directly
connected to statesi+1, the post-conditions ofsi
subsume the pre-conditions ofsi+1, i.e.,si(C•)⇒
si+1(•C).

- T ⊆ (S × L × S) is a finite set of transitions.
Each transitiont ∈ T , t = (ssrc, l ,stgt) consists of
a source statessrc ∈ S , a target statestgt ∈ S , and
a transition labell ∈ L .

Example: Fig. 4 is a state chart that represents
weatherForecast functionality of WeatherWS. Several
states like city-located, report-delivered, and search-
canceled are included in this state chart. More-
over, this state chart includes various transitions such

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

90

as (city-located, unavailable, search-canceled) where
city-located and search-canceled are the source and
target states, respectively, and unavailableis the la-
bel of the transition.

The business logic in Fig. 4 is an example of how
a “regular” (i.e., mono-capacity) Web service for in-
stanceWeatherWSwould function independently of
the requirements of type capacity (could be of related
to security, network, trust, etc.) that could be posed on
this Web service, and thus could restrict the function-
ing of this Web service. Unfortunately, the specifica-
tion of a business logic is tightened to the functional-
ity to offer and does not show how these capacity re-
quirements need to be handled nor how this function-
ality might be affected because of these requirements.
To address this lack of handling, we review the busi-
ness logic of a Web service with focus on the needs
of each type of capacity requirement. As a result, we
define a conversion function that

- takes two inputs namely a business logicbl (repre-
sented here with a state chart) and a set of capacity
requirements, i.e.,C A R i=1,..,n

W S
(Definition 2), and

- returns one output, which is a revised business
logic blC A P that shows the capacities that are
needed to satisfy this set of capacity requirements.

This way of doing creates the missing link between
business logic and capacities through the link that
exists between capacities and capacity require-
ments (Definition 4). The conversion function is as
follows (Definition 7).

Definition 7 (Conversion Function). Let bl and
C A R be the business logic of a Web service and the
set of all possible capacity requirements on this Web
service, respectively. The conversion function is de-
fined as follows:Conv: bl×2C A R → blC A P .

The conversion functionConv takes a business
logic bl and a set (possibly empty) of capacity re-
quirements (2C A R is the power set ofC A R) and pro-
duces a revised business logicblC A P . This process is
done manually, i.e., designer driven. An illustration
of a revised business logic is given in Fig. 5.

Because of the conversion exercise, the initial
goal, which identifies the functionality of a Web ser-
vice, is reviewed with respect to the additional mech-
anisms (in terms of capacities) that empower this Web
service. These mechanisms are used for satisfying the
capacity requirements. This empowerment has to be
captured and reflected on the initial state chart of the
business logic of a Web service and could be imple-
mented through three types of actions:states to re-
peat, states to add, andstates to skip(the outcomes
of these actions are represented with dashed lines in

Fig. 5).

• States to Repeat.This occurs when the execu-
tion of the actions in a certain state did not permit
meeting a certain capacity requirement that is put
on the Web service. This is detected by check-
ing the post-conditions (C•) of this state, which
results in repeating the execution of these actions.

For example,report-deliveredstate in Weath-
erWS will be repeated if the minimum accept-
able network-bandwidth requirement drops below
a certain threshold (report-delivered’s C•: net-
work bandwidth did not improve). The objective
is to guarantee the delivery of weather-forecast re-
port. Report-deliveredstate is now bound to a ca-
pacity requirement of type network.

• States to Add.This occurs when the preparation
work that is carried out to execute the actions in
a certain state did not permit meeting the capacity
requirements that are put on the Web service. This
is detected by checking the pre-conditions (•C) of
this state, which results in adding new states to the
state chart of this Web service. The new states will
be executed several times (obviously bound to a
maximum number) until their post-conditions per-
mit satisfying the pre-conditions of the state they
precede.

For example,city-locatedstate will be preceded
by verificationstate if the minimum security-level
requirement is not guaranteed. The goal is to re-
strict the use ofWeatherWSin an unsecure en-
vironment (city-located’s •C: unsecure environ-
ment). Contrarily,verificationstate is simply ig-
nored.City-locatedstate is now bound to a capac-
ity requirement of type security.

• States to Skip. This occurs when the number of
times that the execution of the actions in a certain
state reaches the maximum following the contin-
uous unsatisfaction of a certain capacity require-
ment that is put on the Web service. This is de-
tected by checking the post-conditions (C•) of this
state, which results in skipping some of the next
states and make the Web service take on appropri-
ate states.

For example,weather collected, access-failed,
and search canceledstates will be ignored if
city-located state cannot satisfy the minimum
freshness-level requirement of the data it collects
out of the database. (city-located’s C•: data fresh-
ness is 2 days old). The objective is to guarantee
the use of up-to-date data.City-locatedstate is
now bound to a capacity requirement of type data.

• Note. The fact of repeating, adding, or skipping

ENGINEERING PROCESS FOR CAPACITY-DRIVEN WEB SERVICES

91

states3 impacts the set of transitions that are es-
tablished in the initial state chart of the business
logic of the Web service (Fig. 4). As a result, new
transitions are considered if needed.

Fig. 5 shows now the reviewed state chart of
WeatherWSafter making some changes in its initial
state chart (Fig. 4). These changes show some
requirement types that are anchored to some states in
this Web service.

Definition 8 (Web Service Reviewed Goal). The
reviewed goal of a Web serviceR GW S complies
with the definition of a goal as per Definition 5.While
the functionality of a Web service remains the same,
the business logic is reviewedR GW S = (f ct, rbl)
like Fig. 5 illustrates.

Definition 9 (Web Service Reviewed Business-
Logic). The state chart of the reviewed business-logic
a Web serviceR S CW S (bl) complies with the defini-
tion of a state chart as per Definition 6.

Figure 5: Reviewed business logic of GeoLocProp.

3.4 Source Code Generation

Our goal is to generate java code annotated with dif-
ferent capacities from the reviewed statechart. This
led us to study the generator of Java code from state-
charts diagrams (final state machine: FSM)

3.4.1 The Annotation of Java Code with
Capacity

Many APIs require a fair amount of boilerplate code.
For example, in order to write a JAX-RPC web ser-
vice, we must provide a paired interface and imple-
mentation. This boilerplate could be generated auto-
matically by a tool if the program were ”decorated”
with annotations indicating which methods were re-
motely accessible. Annotations play a critical role
in JAX-WS 2.0 (the successor of JAX-RPC API).
First, annotations are used in mapping Java to WSDL

3State skipping could be used to implement state dele-
tion if needed.

and schema. Second, annotations are used a run-
time to control how the JAX-WS runtime processes
and responds to web service invocations. In our case
we are interested to the mapping between java and
WSDL. We propose new annotation that will process
the transformation from java to WSDL annotated with
capacity (CWSDL).

Figure 6: Implementation of interface WebCapacity.

Figure 6 presents the implementation of the inter-
face WebCapacity that takes as parameters the name
capacity, visibility, requirements of type data, re-
sources and network.

3.4.2 Java Code Generators from FSM

According to our study of the generator FSM, we
distinguish two types of generator. (i) Generators
that generate the machine into a single class that
presents the business logic like FSMGneretor (Gurp
and Bosch, 1999) (ii) generator that generates a java
class for each state(Mura and Sami, 2008). On the
other hand, the specification of departure may be (i) a
java class (Sakharov, 2000) or (ii) in XML (Gurp and
Bosch, 1999).

Our goal is to generate java code from a state ma-
chine that describes the behavior of a web service and
annotated with the capacity for this service. The gen-
erated code must represent the business logic of web
service by a single Java class. The generation must
therefore be done in one class. On the other hand, the
specification of the state machine must be simple and
consistent with the definition of a state machine . The
specification is most consistent with the XML speci-
fication (Figure 7) ; the other code generated by this
tool is one class that describes the business logic of
the state machine.

3.4.3 Code Generator

Generating Java code from state machine of the web
service described in XML is based on the generator
FSMGenerator. The generated code also contains the
annotation @WebService and @WebCapacity.

Capacity requirements are extracted from the tran-
sitions added in the state diagram transition revised.

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

92

Figure 7: Specification of FSM of GeoLocProp in XML.

To associate these transitions with the type of capac-
ity requirements (data, resources, network) a model is
used. This led us to look into the existing approach
for requirement modeling. Modeling of requirements
must be divided into three subtypes (data, resources,
network) this has led us to study models of device ca-
pability.

As the number of user devices is proliferating and
as the capabilities of the devices are augmenting on
daily basis, there have been a number of different
approaches for describing devices capability. The
CC/PP (Kim and Lee, 2006)profile describes the ca-
pabilities of the device and, possibly, the preferences
of the user. It serves a model and provides core vo-
cabulary for the devices’ capabilities description. The
extended CC/PP presented in (Mukhtar et al., 2008)
model classifies device capability into hardware, soft-
ware and network categories. (Bandara et al., 2004)
introduces ontology for devices description intended
at providing a general framework to describe any type
of device. The information related to a device is
logically divided into five classes depending on the
type of information they provide: namely Device De-
scription, Hardware Description, Software Descrip-
tion, Device Status (including location) and Service.
These approaches have common characteristics that
they are both based on languages designed for se-
mantic matching purposes (OWL and RDF). We rely
on these models to create a modeling for capacity re-
quirements (Figure 8) . We associate the data level to
software level while adding other concepts, resources
level to hardware level and network level is already in
the models already presented.

To define the different types of capacity in FSM
the generator uses this model to associate each transi-
tion to capacity in order to generate the annotation in

Figure 8: Modelling for capacity requirements.

the Java code. Part of the generated code is presented
in Fig Figure 9.

3.5 CWSDL Description Generation

CWSDL generation is done with the same process as
generating WSDL. We studied the source code for the
JAX-WS API. This API uses the tool wsgen that in-
terprets different annotations in java code and gener-
ates the wsdl while relying on the XML schema for
WSDL.

To generate the CWSDL by JAX-WS we went
through the following steps: (1)development of the
class interface WebCapacity (2)replace the XML
schema of the WSDL CWSDL (3)modified the tool
wsgen that it interprets the new annotation. The Fig-
ure 10 present a fragment of the generated cwsdl for
the service GeoLocProp.

ENGINEERING PROCESS FOR CAPACITY-DRIVEN WEB SERVICES

93

Figure 9: The generated code for GeoLocProp.

Figure 10: A fragment of the generated cwsdk for the ser-
vice GeoLocProp.

4 CONCLUSIONS

In this paper we presented the concepts, definitions,
issues, and solutions that underpin the design, de-
velopment, and deployment of capacity-driven Web
services. We recalled the concept of capacity as a
new way of making Web services take appropriate
actions in response to some environmental require-
ments. Then we defined a novel approach for en-
gineering capacity-driven Web services composed of
five steps: to frame the requirements, to define capac-
ities, to identify the business logic, (4) to generate the
source code, and (5) to generate theC apacity-driven
Web Services Description Language (C -WSDL).

In term of future we identified different research
issues that need to be addressed such as requirement

consistency and capacity types and Capacity-driven
web service deployment based on the extension of
Web service containers .

REFERENCES

Bandara, A., Payne, T. R., de Roure, D., and Clemo, G.
(2004). An ontological framework for semantic de-
scription of devices. InInternational Semantic Web
Conference (ISWC).

Bui, T. and Gacher, A. (2005). Web Services for Negoti-
ation and Bargaining in Electronic Markets: Design
Requirements and Implementation Framework. In
Proceedings of The 38th Hawaii International Con-
ference on System Sciences (HICSS’2005), Big Island,
Hawaii, USA.

Chris Gibson, J. (2004). Developing a Requirements Spec-
ification for a Web Service Application. InProceed-
ings of The 12th IEEE International Requirements En-
gineering Conference (RE’2004), Kyoto, Japan.

Damas, C., Lambeau, B., and van Lamsweerde, A. (2006).
Scenarios, Goals, and State Machines: a Win-Win
Partnership for Model Synthesis. InProceedings
of the 14th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE’2006),
Portland, Oregon, USA.

Donzelli, P. (2004). A Goal-driven and Agent-based Re-
quirements Engineering Framework.Requirement En-
gineering, Springer, 9(1).

Elghazi, H. (2007). A Goal-driven Method for Automated
Systems Requirements Engineering. InProceedings

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

94

of the First International Conference on Research
Challenges in Information Science (RCIS’2007),
Ouarzazate, Morocco.

Gurp, J. V. and Bosch, J. (1999). On the implementation
of finite state machines. Inin Proceedings of the 3rd
Annual IASTED International Conference Software
Engineering and Applications, IASTED/Acta, pages
172–178. Press.

Harel, D. and Naamad, A. (1996). The STATEMATE Se-
mantics of Statecharts.ACM Transactions on Soft-
ware Engineering and Methodology, 5(4).

Jha, A. (2006). Problem Frames Approach to Web Ser-
vices Requirements. InProceedings of the 2nd Inter-
national Workshop on Advances and Applications of
Problem Frames (IWAAPF’2006), Shanghai, China.

Kim, H.-M. and Lee, K.-H. (2006). Device-independent
web browsing based on cc/pp and annotation.Inter-
act. Comput., 18(2):283–303.

Kirda, E., Kerer, C., Kruegel, C., and Kurmanowytsch,
R. (2003). Web Service Engineerning with DIWE.
In Proceedings of the 29th EUROMICRO Conference
2003, New Waves in System Architecture (EUROMI-
CRO’2003), Belek-Antalya, Turkey.

Maamar, Z., Benslimane, D., and Narendra, N. C. (2006).
What Can Context do for Web Services?Communi-
cations of the ACM, 49(12).

Maamar, Z., Subramanian, S., Bentahar, J., Thiran, P., and
Benslimane, D. (2009a). An Approach to Engineer
Communities of Web Services - Concepts, Architec-
ture, Operation, and Deployment .International Jour-
nal of E-Business Research, IGI Global, 5(4).

Maamar, Z., Tata, S., Belaı̈d, D., and Boukadi, K. (2009b).
Towards An Approach to Defining Capacity-Driven
Web Services. InProceedings of the 23rd Interna-
tional Conference on Advanced Information Network-
ing and Applications (AINA’2009), Bradford, UK.

Malay Chatterjee, A., Pal Chaudhari, A., Saurav Das, A.,
Dias, T., and Erradi, A. (2005). Differential QoS Sup-
port in Web Services Management.SOA World Mag-
azine, 5(8).

Mukhtar, H., Belaı̈d, D., and Bernard, G. (2008). A model
for resource specification in mobile services. InSIPE
’08: Proceedings of the 3rd international workshop
on Services integration in pervasive environments,
pages 37–42, New York, NY, USA. ACM.

Mura, M. and Sami, M. G. (2008). Code generation from
statecharts: Simulation of wireless sensor networks.
In DSD ’08: Proceedings of the 2008 11th EUROMI-
CRO Conference on Digital System Design Architec-
tures, Methods and Tools, pages 525–532, Washing-
ton, DC, USA. IEEE Computer Society.

Robinson, W. N. (2003). Monitoring Web Service Require-
ments. InProceedings of The 11th IEEE International
Requirements Engineering Conference (RE’2003),
Monterey, California, US.

Sakharov, A. (2000). A hybrid state machine notation for
component specification.SIGPLAN Not., 35(4):51–
56.

Sommerville, I. (2001).Software Engineering, 6th Edition.
Addison-Wesly Publishers Limited.

Tsai, W. T., Jin, Z., Wang, P., and Wu, B. (2007). Re-
quirement Engineering in Service-Oriented System
Engineering. InProceedings of the 2007 IEEE
International Conference on e-Business Engineer-
ing (ICEBE’2007), Hong Kong, China.

van Eck, P. and Wieringa, R. (2004). Web Services as Prod-
uct Experience Augmenters and the Implications for
Requirements Engineering: A Position Paper. InPro-
ceedings of the International Workshop on Service-
oriented Requirements Engineerings (SoRE’2004),
Kyoto, Japan.

Zave, P. and Jackson, M. (1997). Four Dark Corners of Re-
quirements Engineering.ACM Transactions on Soft-
ware Engineering and Methodology, 6(1).

ENGINEERING PROCESS FOR CAPACITY-DRIVEN WEB SERVICES

95

