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Abstract: Finding the best learning strategy for a new domain/problem can prove to be an expensive and time-
consuming process even for the experienced analysts. This paper presents several enhancements to a meta-
learning framework we have previously designed and implemented.  Its main goal is to automatically 
identify the most reliable learning schemes for a particular problem, based on the knowledge acquired about 
existing data sets, while minimizing the work done by the user but still offering flexibility. The main 
enhancements proposed here refer to the addition of several classifier performance metrics, including two 
original metrics, for widening the evaluation criteria, the addition of several new benchmark data sets for 
improving the outcome of the neighbor estimation step, and the integration of complex prediction strategies. 
Systematic evaluations have been performed to validate the new context of the framework. The analysis of 
the results revealed new research perspectives in the meta-learning area. 

1 INTRODUCTION 

Ever since the beginning of the information age, 
companies, organizations, universities all around the 
world have been taking advantage of technological 
advances to store large amounts of data. The 
increase of virtual space made available by new and 
cheaper storage devices has encouraged people to 
keep records specific to all activities taking place in 
their institutions. Advances in database systems have 
made searching and organizing the stored data easier 
for experts – but the technology for automatically 
obtaining valuable information from this data has 
only recently started to gain popularity. Data mining 
approaches employ methods from different fields, 
such as statistics, artificial intelligence, meta-
learning, to induce models from large amounts of 
data. These models enable the characterization of 
data by summarizing the class under study in general 
terms, discovering frequently occurring 
subsequences (in transactional datasets), classifying 
new data, predicting numeric values, grouping 
similar items in a database, analyzing outliers for 
fraud detection and analyzing the trends of objects 
whose behavior changes over time. 
An important step in the data mining process is 
selecting the right learning algorithm for the 
analyzed data. This initial assessment is time 

consuming since one has to decide which of the 
learning strategies is most suited given the context. 
No definite way of discovering the best learning 
algorithm for a new problem has been devised yet, 
but many proposals for selecting a good technique 
exist in the literature. Selecting a suitable learning 
algorithm for a new data set is a complex task even 
for an experienced data analyst. Moreover, some 
hidden knowledge could be present in data. Such 
knowledge can sometimes be surmised by the 
domain experts, yet not so often by the data analyst. 
Therefore, an initial assessment should always be 
performed, in order to identify the most promising 
knowledge extraction methodology for the given 
problem.  The process usually involves training 
several models with different learning algorithms 
whose parameters settings vary and evaluating their 
performance (perhaps under several metrics) with 
respect to the requirements of the problem. The 
analyst can then choose the learning algorithm and 
the settings which register the best performance. The 
time required to build a model increases with the 
complexity of the model and with the size of the 
input data. Running and evaluating all known 
learning algorithms is therefore unfeasible.  

A more suitable approach involves comparing 
the new problem with a set of problems for which 
the learning algorithm performance is already 
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known (Aha,1992) (Bensusan,2000) (Giraud-
Carrier,2000) (Vilalta,2004). The analyst must 
identify the problem which resembles the analyzed 
data the most. Consequently, the same learning 
algorithm and settings that obtained the best results 
on the former problem is expected to achieve similar 
performance on the new problem. To make use of 
this approach, the expert must have access to a large 
set of problems that have already been evaluated 
with various techniques. Also, the success of the 
selected learning algorithm on the new problem 
depends on the expert’s strategy for selecting similar 
problems. 

Creating a framework which brings together all 
the tools necessary to analyze new problems and 
make predictions related to the learning algorithms’ 
performance would automate the analyst’s work. 
This will result in a significant speed-up and an 
increased reliability of the learning algorithm 
selection process. Such a framework would prove to 
be valuable for an experienced data analyst and 
could also help new users discover a good classifier, 
regardless of their knowledge of the data mining 
domain and the problem context (for users that do 
not know if maximizing the accuracy or minimizing 
the false-positive rate is  preferable in the given 
problem context). We have already proposed such a 
tool in (Cacoveanu, 2009) and developed an 
implementation based on classifiers provided by the 
Weka framework (Witten,2005). Our initial focus 
was on selecting a wide range of dataset features and 
improving the classifier prediction time. We also 
wanted to facilitate the addition of new datasets such 
that our system continuously improves its 
performance.  

This paper presents several enhancements to a 
meta-learning framework we have previously 
designed and implemented.  Its main goal is to 
automatically identify the most reliable learning 
schemes for a particular problem, based on the 
knowledge acquired about existing data sets, while 
minimizing the work done by the user but still 
offering flexibility.  

The rest of the paper is organized as follows: In 
section 2 we present the meta-learning frameworks 
presented in literature. Section 3 presents a formal 
model of our tool, the characteristics we use to 
describe datasets and the metrics implemented in the 
system. Section 4 describes the prediction strategies 
we tested with our tool and the results. We conclude 
the paper by restating the improvements added to 
our framework and proposals for future 
development. 

2 RELATED WORK 

Aha (Aha,1992) proposes a system that constructs 
rules which describe how the performance of 
classification algorithms is determined by the 
characteristics of the dataset. 

Rendell et al. describe in (Rendel,1987) a system 
called VBMS. Their system tries to predict which 
algorithms will perform better for a given 
classification problem using the problem 
characteristics (number of examples and number of 
attributes). The main disadvantage of VBMS is that 
it is trained as new classification tasks are presented 
to it, which makes it slow. 

The approach applied in the Consultant expert 
system (Sleemann et al (Sleeman,1995)) relies 
heavily on a close interaction with the user. 
Consultant poses questions to the user and tries to 
determine the nature of their problem from the 
answers. It does not examine the user’s data. 

Schaffer (Schaffner,1993) proposes a brute force 
method for selecting the appropriate learner: execute 
all available learners for the problem at hand and 
estimate their accuracy using cross validation. His 
system selects the learner that achieves the highest 
score. This method has a high demand of 
computational resources. 

STATLOG (Michie,1994) extracts several 
characteristics from datasets and uses them together 
with the performance of inducers (estimated as the 
predictive accuracy) on the datasets to create a meta-
learning problem. It then employs machine learning 
techniques to derive rules that map dataset 
characteristics to inducer performance. The 
limitations of the system include the fact that it 
considers a limited number of datasets; it 
incorporates a limited set of data characteristics and 
uses accuracy as the sole performance measure. 

P. B. Brazdil et al. propose in (Brazdil,2003) an 
instance-based learner for obtaining an extensible 
system which ranks learning algorithms based on a 
combination of accuracy and time. 

3 A FRAMEWORK FOR 
SEARCHING FOR SUITABLE 
LEARNERS 

This section starts by presenting a formal model for 
a classifier prediction framework. The framework is 
built over a database containing stored problems 
already analyzed and classifiers used in the analysis 
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process. The IO part of the framework consists of 
the problem and requirements provided by the user 
and the result, a selection of suitable classifiers, 
returned by the framework. The second part of the 
section describes the features we used to describe 
data mining problems. The last part of this section 
presents the metrics we use to evaluate the 
performance of a classification model. 

 
Figure 1: System diagram. 

3.1 A formal Model of our Tool 

In this section we present a formal model for an 
automated learner selection framework (Figure 1). 
The basic functionality of a learner selection system 
is to evaluate, rank and suggest an accurate learning 
algorithm for a new problem submitted to the 
system, together with the user’s requirements. The 
suggested algorithm can then be used on the 
problem to induce a model which achieves the best 
performance while meeting the user’s requirements. 
The user involvement is limited to providing the 
input problem (i.e. a data set which the user needs to 
classify) and specifying the requirements. The result 
is presented to the user as an ordering of learning 
algorithms, arranged in decreasing performance 
order. Recommending more than a single learning 
algorithm is important as it allows the user to decide 
on the specific strategy they want to follow (they 
might prefer a faster but least accurate algorithm to a 
very accurate one, or an algorithm they are 
accustomed to). The system should also minimize 
the time it takes to provide the results. 

The process of obtaining the predictions is 
roughly divided into selecting the similar problems 
and obtaining predictions from similar problems. In 
order to be able to provide accurate predictions for 
new datasets the system relies on a database 
containing the problems and the solutions (classifier 
+ performance) obtained on those problems. The 
system must have the ability to increase its 
knowledge by adding new problems and the 
corresponding solutions. To do this, the first 

important functionality of the system is the ability to 
run learning algorithms and evaluate those 
algorithms. This occurs mainly in the initialization 
phase of the system.  

After a significant collection of problems has 
been stored in the database, the system is ready for 
the prediction phase. In this phase, a new problem is 
submitted to the system, along with its requirements. 
The system must now find similar problems in its 
database. This is done by computing the distance 
between the analyzed problem and the stored 
problems. Once the distances have been evaluated, a 
subset of the nearest stored problems is selected as 
neighbors of the analyzed problem.  

The results obtained by the learning algorithms 
for every neighbor problem are already present in 
the database. The performance score of each 
classifier is obtained by evaluating the results 
obtained by that classifier from the perspective of 
the user requirements. The framework then predicts 
the performance score for the classifier on the 
analyzed problem as a combination of the 
performance scores obtained by that classifier on the 
neighboring problems. The final list of 
recommended learning algorithms is ordered by 
their predicted performance scores. 

After a new prediction is performed, during the 
time the system is idle (it does not have to perform 
another prediction), it continues with an extension of 
the initialization phase. More specifically, it trains 
and evaluates models on each new problem added to 
the system and saves the new data to the database. 
This way, the system’s knowledge increases and its 
prediction capabilities improve. 

3.2 Problem  
Characterization – Meta-features 

In order to estimate the similarity (i.e compute the 
distance) between problems (i.e. data sets), a series 
of meta-features are extracted from the data sets. 
The meta-features we employ in this framework can 
be divided into four categories. One of these 
categories is focused on the type of the attributes in 
the data sets. It contains the total number of 
attributes of a data set (Michie,1994), the number of 
nominal attributes (Kalousis,2002), the number of 
boolean attributes (Kalousis,2002) (Michie,1994) 
and the number of continuous (numeric) attributes 
(Kalousis,2002). Another category is focused on 
analyzing the properties of the nominal and binary 
attributes of the data sets. This category contains the 
maximum number of distinct values for nominal 
attributes (Kalousis,2002) (Linder,1999), the 
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minimum number of distinct values for nominal 
attributes (Kalousis,2002) (Linder,1999), the mean 
of distinct values for nominal attributes 
(Kalousis,2002) (Linder,1999), the standard 
deviation of distinct values for nominal attributes 
(Kalousis,2002) (Linder,1999) and the mean entropy 
of discrete variables (1) (Kalousis,2002). 

෍݌ሺݔ௜ሻ݈݃݋௕൫݌ሺݔ௜ሻ൯
௡

௜ୀଵ

 (1) 

Similar to the previous category, the next category 
focuses on the properties of the continuous attributes 
the data sets have. It includes the mean skewness of 
continuous variables (2) (Kalousis,2002) 
(Michie,1994), which measures the asymmetry of 
the probability distribution, and the mean kurtosis of 
continuous variables (3) (Kalousis,2002) 
(Michie,1994) representing the peak of the 
probability distribution. 

ଵߛ ൌ
ଷߤ
ଷߪ

ൌ
1
݊∑ ሺ ௜ܺ െ തܺሻଷ௡

௜ୀଵ

ටሺ1݊∑ ሺ ௜ܺ െ തܺሻଶ௡
௜ୀଵ ሻଷ

   (2) 

ଶߛ  ൌ
ସߤ
ସߪ

ൌ
1
݊∑ ሺ ௜ܺ െ തܺሻସ௡

௜ୀଵ

ሺ1݊∑ ሺ ௜ܺ െ തܺሻଶ௡
௜ୀଵ ሻଶ

  (3) 

A final category gives a characterization of the 
dimensionality of the data set. It contains the overall 
size, represented by the number of instances, and 
imbalance rate information (relative size) 
(Japkowicz,2002). The mean (5) and maximum (4) 
imbalance rates of the classes in the dataset are 
computed (in case there are only 2 classes, the mean 
and maximum imbalance rates are equal). 
ூோݔܽ݉ ൌ maxሺሼܴܫ௜|݅ ൌ 1, ܿതതതതሽሻ, ܴܫ௜ ൌ

୫ୟ୶ ሺሼ஼೔,ூି஼೔ሽሻ
୫୧୬ ሺሼ஼೔,ூି஼೔ሽሻ

 

I = number of instances, ܥ௜=number of instances 
belonging to class i, c=number of classes 

    (4) 

෍ሺܴܫ௜ כ
௜ܥ
ܫ
ሻ

௖

௜ୀଵ

    (5) 

3.3 Classifier Performance Metrics 

The performance score of a classifier depends on the 
problem requirements provided by the user. When 
designing the system, we have focused on 
minimizing its dependence of user input. We still 
need to provide the user with a method of guiding 
the search for a suitable learning algorithm. For this 
purpose, we employ nine metrics, divided into three 
categories, as proposed in (Caruana,2004). The 
metrics in Table 1, along with a general purpose 
metric are described in this section. 

Table 1: Performance metrics. 

Threshold Rank Probability 
Accuracy, 
Recall, False 
Positive Rate, 
True Negative 
Rate, False 
Negative Rate 

Area Under 
ROC, Precision  

Geometric Mean, 
Generalized 
Geometric Mean 

Most classifier performance metrics are generated 
from the confusion matrix produced by the induced 
model on a test sample. The confusion matrix is the 
most general indicator of the way a model identifies 
the right label of instances. An example of a 
confusion matrix for c classes is provided in Figure 
2. The entry from the ith row jth column represents 
the number of instances from class i that were 
labeled by the model as belonging to class j. 

቎
૚,૚ࡹ ڮ ࢉ,૚ࡹ
ڭ ڰ ڭ

૚,ࢉࡹ ڮ ࢉ,ࢉࡹ

቏ 

Figure 2: Confusion matrix for dataset with c classes. 

While most users will be concerned with the 
accuracy of the generated models, in some cases 
they might prefer to focus on improving a different 
performance criterion (for instance to maximize the 
sensitivity or specificity). This difference usually 
comes from the different costs associated to specific 
errors. As an example, the cost of an incorrect 
medical diagnosis is different for false positive and 
false negative errors.  

Problem requirements are the way users set the 
focus of the search for a learning algorithm. Users 
provide problem requirements in terms of 
performance metrics. When a classifier’s 
performance is measured, the resulting score is 
computed from the model’s confusion matrix or area 
under the ROC curve, based on the user 
requirements. Both the confusion matrix of a 
classifier and the area under ROC are computed in 
the initialization phase, when evaluating the 
performance of a trained model (using 10-fold cross 
validation). 

The Accuracy (6) of a classifier is the percentage 
of test instances that are correctly classified by the 
model (also referred to as the recognition rate). 
Accuracy selects learning algorithms with the 
highest rate of correct classification but it is a weak 
metric for imbalanced problems. For example, if the 
number of negative cases in the test sample is much 
larger than the positive cases, even if all positive 
cases are misclassified, the accuracy will still be 
very high.  
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The Recall (true positive rate) (7) is the 
proportion of positive cases that were correctly 
identified. This metric favors models which focus on 
identifying the positive cases, even if this leads them 
to misclassifying a number of negative cases as 
positive. The system also provides metrics that 
maximize the false positive rate (8), the true 
negative rate (9) and the false negative rate (10). 

ܥܥܣ ൌ  
∑ ௜,௜ܯ
௖
௜ୀଵ

∑ ∑ ௜,௝ܯ
௖
௝ୀଵ

௖
௜ୀଵ

        (6)
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௝ୀଵ

כ
௜ܥ
ܫ
ሻ

௖

௜ୀଵ

       (7)
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஼೔
ூ

௖
௜ୀଵ        (8)
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∑ ∑ ெೕ,ೖೖאሼభ…೎ሽೕאሼభ…೎ሽ\ሼ೔ሽ
, ܴܶܰ ൌ ∑ ܴܶܰ௜ כ

஼೔
ூ

௖
௜ୀଵ        (9)

௜ܴܰܨ  ൌ
∑ ெ೔,ೕೕאሼభ…೎ሽ\ሼ೔ሽ

∑ ெ೔,ೕೕאሼభ…೎ሽ
ܴܰܨ , ൌ ∑ ௜ܴܰܨ כ

஼೔
ூ

௖
௜ୀଵ       (10)

The precision is the proportion of the predicted 
positive cases that are correctly classified. By 
maximizing precision, a model rarely classifies 
negative cases as being positive, but may still 
misclassify positive cases as negative. 

The ROC graph is a representation of the true 
positive rate (sensitivity) as a function of the false 
positive rate (1-specificity). In case of a perfect 
classifier, the area under the ROC curve is 1, 
because the false positive rate is 0 while the true 
positive rate is 1. This metric is usually employed 
when searching for a classifier that maximizes the 
number of correctly classified instances. 

Besides the fundamental metrics the system 
evaluates for a data set, some combined metrics are 
available as well. The geometric mean metric (11) is 
used to maximize the true positive and the false 
positive rate at the same time. 

ඨ ܶܲ
ܶܲ ൅ ܰܨ

כ
ܶܰ

ܲܨ ൅ ܶܰ
       (11) 

We also propose the generalized geometric mean – a 
generalization of the geometric mean metric for 
datasets with more than two classes (12). 

ܯܩܩ ൌ ඩෑሺ
௜,௜ܯ

∑ ,݅ܯ ݆௖
௝ୀଵ

ሻ
௖

௜ୀଵ

೎

       (12) 

For allowing users from different areas of expertise 
which are interested in discovering a generally good 
classifier, we propose a metric which combines the 
accuracy, the geometric mean and area under the 
ROC curve (13). This metric is obtained by 
computing the average of three other metrics, each 
being the best in its category, as observed in 
(Caruana,2004). 

ܥܥܣ ൅ ܯܩ ൅ ܥܷܣ
3

     (13) 

4 EXPERIMENTS ON AN 
ENHANCED VERSION OF THE 
FRAMEWORK 

When first proposing a framework for classifier 
selection in (Cacoveanu, 2009) we focused on 
selecting a wide range of dataset features and 
improving classifier prediction time. In the attempt 
to improve the prediction capabilities of our 
framework, we automated the voluntary addition of 
new data sets.  The prediction was performed by 
using a KNN classifier which computed the 
distances between the analyzed data set and all data 
sets stored in the system. It then selected the three 
closest data sets as neighbors and estimated the 
predicted performance as the mean between the 
performances obtained by a classifier on the 
neighboring data sets. 

As an improvement to our data set classification 
system, we considered the possibility of using 
different strategies when selecting the similar 
problems to the one we are analyzing and the way 
neighboring problems affect the final performance 
predictions. We are also trying to answer the 
question of how different strategies behave when 
making performance predictions for different 
metrics. An ideal solution would be to find a set of 
approaches that gives the best results for all metrics, 
and always use them. However, if the selection of a 
given tactic influences the predictions for different 
metrics generated by the framework, we may 
consider always using the best strategies for the 
metric selected by the user. 

We have divided the classifier accuracy 
prediction process into three phases: distance 
computation, neighbor selection and prediction 
computation (or voting). For each of these phases we 
propose several strategies (detailed in the next sub-
sections). 

4.1 Distance Computation 

The distance computation phase consists in 
computing the distance between the currently 
analyzed dataset and all the datasets stored in the 
system database. The distance is computed by using 
the data set meta-features (all having numeric 
values) as coordinates of the data set. By 
representing a data set as a point in a vector space, 
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the distance can be evaluated using any metric 
defined on a vector space (14). 

݀௜( ଵ݂
௜,  ଶ݂௜,…,  ௠݂௜ ), m=number of features     (14) 

The first distance computation strategy implemented 
is the normalized Euclidean distance (E). The 
Euclidean distance is the ordinary distance between 
two points in space, as given by the Pythagorean 
formula (15). The obtained distances are normalized 
in the [0,1] set. 

,ா൫݀௫ݐݏ݅ܦ ݀௬൯ ൌ ඩ෍ሺ ௜݂
௫ െ ௜݂

௬ሻଶ
௠

௜ୀଵ

   (15) 

Another distance evaluation available in our 
framework is the Chebyshev distance (C). The 
Chebyshev distance is a metric defined on a vector 
space where the distance between two vectors is the 
greatest of their differences along any coordinate 
dimension. In our system, the largest difference 
between dataset features is the distance between two 
datasets (16). These distances are also normalized. 
,஼൫݀௫ݐݏ݅ܦ ݀௬൯ ൌ max ሺ൛ܾܽݏ൫ ௜݂

௫ െ ௜݂
௬൯ห݅ ൌ 1,݉തതതതതതሽሻ   (16) 

The advantage of the Chebyshev distance 
computation strategy is that it takes less time to 
decide the distances between datasets. A possible 
problem with the Chebyshev distance is allowing 
one single feature to represent a dataset. One single 
largest feature might not offer enough description of 
the dataset to lead to accurate neighbor selection and 
final predictions. As a solution we propose a 
variation of the Chebyshev distance (C3), where the 
largest three differences between features are 
selected and their mean is computed (17). By using 
this strategy, the dataset information that is used in 
the distance computation process increases but the 
computation remains more efficient than the 
Euclidean distance. 

ܨ ൌ ൛ܾܽݏ൫ ௜݂
௫ െ ௜݂

௬൯ห݅ ൌ 1,݉തതതതതതሽ,  
௞ݔܽ݉ ൌ max ሺܨ െ ൛݉ܽݔ௝ห݆ ൌ 1, ݇ െ 1തതതതതതതതതതሽሻ 

,஼ଷ൫݀௫ݐݏ݅ܦ ݀௬൯ ൌ
∑ ௟ଷݔܽ݉
௟ୀଵ

3
 

   (17) 

4.2 Neighbor Selection 

Neighbor selection decides which datasets will 
influence the performance predictions for the 
analyzed dataset. While considering as neighbors the 
datasets closer to the analyzed dataset is justified, 
how many datasets should be considered is an open 
problem. If we choose a fixed number of neighbors 
we make sure the prediction computation will 
always take the same amount of time. We implement 

the Top 3 neighbor selection strategy (T3) which 
selects the 3 closest datasets as neighbors. Selecting 
the closest n neighbors is a sensible decision for a 
strategy, but there could be cases in which the 
closest n datasets are still quite far. Another 
approach would be setting a threshold distance after 
which a dataset is not considered a neighbor 
anymore. By using a fixed threshold value we risk 
getting into situations in which not one dataset will 
be considered a neighbor and we will not be able to 
compute the performance predictions. A solution 
would be to have a variable threshold depending on 
the average distance between every two datasets in 
the system at the moment a new dataset arrives, but 
this solution means updating the average distance 
every time a new dataset arrives in the system and 
holding a different threshold value for all the 
distance computation strategies in the system. We 
chose to implement a strategy similar to the variable 
threshold considered above, only this time we 
compute the average distance between the analyzed 
dataset and all the datasets in the system and select 
as neighbors only datasets closer than this average 
distance. We call this strategy Above-Mean 
neighbor selection (AM). This strategy selects a 
variable number of neighbors every time and the 
performance predictions computation time increases 
considerably. 

4.3 Prediction Computation (Voting) 

In this last phase of the prediction process the 
classifier performance predictions are generated. 
Voting strategies define the way neighboring 
datasets influence the final predictions. Each 
neighbor casts a performance score to each classifier 
in the system. The performance score for a classifier 
depends on the performance of its model on the 
dataset (the confusion matrix, the area under ROC) 
evaluated from the point of view of the metric 
selected by the user. These scores are combined to 
obtain the final score for each classifier. This final 
score is the actual predicted performance for that 
classifier. Classifiers are then ordered based on the 
predicted performances. 

We have implemented two voting strategies in 
the system, the first one of them being equal, or 
democratic, voting (D). Each neighbor selected in 
the previous phase predicts a performance for the 
current classifier. We sum all the performances and 
divide them by the number of neighbors (18). The 
result is the predicted performance of the current 
classifier. Each neighbor has the same influence in 
deciding the final performance of a classifier. 
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௖ܲ ൌ
∑ ௖ܲ

௜௡
௜ୀଵ

݊
,  

n = number of neighbors 

௖ܲ
௜= performance obtained on dataset i, 

with classifier c, 
௖ܲ = predicted performance for classifier c 

  (18) 

The second voting strategy is weighted voting (W). 
For this, the distances between the analyzed dataset 
and its neighbors act as the weight of the neighbor 
vote – a closer dataset will have a higher weight and 
more influence on the final prediction (19). 

௜ݓ ൌ
1 െ ,ሺ݀ݐݏ݅݀ ݀௜ሻ

∑ ൫1 െ ,ሺ݀ݐݏ݅݀ ݀௜ሻ൯௡
௝ୀଵ

 

௖ܲ ൌ ∑ ௖ܲ
௜ כ ௜ݓ

௡
௜ୀଵ , ݀= analyzed dataset, ݀௜= neighbor i 

 (19)

  

4.4 Experimental Results 

This section presents the results of the evaluations 
performed with our framework to find the 
combination of strategies that works best in 
predicting performance scores for the learning 
algorithms in the system. 

We initialized our system with 26 benchmark 
datasets that range from very small to medium sizes 
(up to 4000 instances) (UCI, 2010). Also, the 
following classifiers are available: BayesNet, J48, 
MultilayerPerceptron, AdaBoost, NaiveBayes, 
SMO, PART, libSVM. 
 We have performed evaluations with all the 
possible combinations of the implemented strategies 
for distance computation, neighbor selection and 
performance score prediction (Table 2). 

Table 2: Strategy combinations. 

Distance 
computation 
strategy 

Neighbor 
selection 
strategy 

Voting 
strategy 

Notation 

E T3 D E-T3-D 
E T3 W E-T3-W 
E AM D E-AM-D 
E AM W E-AM-W 
C T3 D C-T3-D 
C T3 W C-T3-W 
C AM D C-AM-D 
C AM W C-AM-W 
C3 T3 D C3-T3-D 
C3 T3 W C3-T3-W 
C3 AM D C3-AM-D 
C3 AM W C3-AM-W 
E = Normalized Euclidean distance 
C = Normalized Chebyshev distance 
C3 = Normalized Top 3 Chebyshev distance 
T3 = Top 3 neighbor selection 
AM = Above Mean neighbor selection 
D = Equal (Democratic) voting 
W = Weighted voting 

For a test, we selected a performance metric and 
executed the following steps: 
1. Selected a strategy combination 

a. Selected a dataset and used it as the analyzed 
dataset 

i. Used the remaining 25 datasets as datasets 
stored in the system 

ii. Used the selected strategy combination to 
predict performances 

iii. Compare the predicted performances with 
the actual performances obtained in the 
initialization stage on the selected dataset 

b. Select next dataset 
2. compute the deviation mean and the absolute 

deviation mean on all datasets and classifiers for 
this strategy 

3. select next strategy combination 
 We have applied the above strategy for the 
following metrics: accuracy, geometric mean, 
generalized geometric mean, area under ROC, 
general purpose metric. 
 In total, we ran 312 prediction tests for each 
selected metric. 

We have computed the deviation between the 
predicted and true performance as the difference 
between the performance prediction and the actual 
performance (20). If the system predicted a classifier 
will obtain a higher performance than it actually 
obtains, this value will be negative. 

ܦ ൌ ௔ܲ െ ௣ܲ 
௔௕௦ܦ ൌ | ௔ܲ െ ௣ܲ| 

௣ܲ=performance prediction, ௔ܲ=actual performance 
(20) 

The absolute deviation between a performance 
prediction and the actual performance is the absolute 
value of the difference between the two (20). 

 
Figure 3: Absolute deviation mean. 
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Our interest is to select the strategies that minimize 
the deviation means for all the metrics. By studying 
the absolute deviation mean results (Figure 3), we 
observe that voting strategies do not influence the 
final predictions very much. Weighted voting (W) 
obtains better results than democratic voting (D), but 
the difference is so small that it does not justify the 
additional resources needed to compute the weight 
of each neighbor. Moreover, we observe that the 
distance computation and neighbor selection 
strategies that obtain the smallest absolute deviations 
are, in order: (1) Top 3 Chebyshev distance with 
Top 3 neighbor selection, (2) Chebyshev distance 
with Top 3 neighbor selection and (3) Chebyshev 
distance with Above Mean neighbor selection. 
By analyzing the deviation mean results table 
(Figure 4) we can deduce more details on how each 
of the three selected strategy combinations work. 
Our first choice, Top 3 Chebyshev distance with Top 
3 neighbor selection, has negative deviation means 
for all the metrics. From this we deduce that the 
strategy combination is overly optimistic – most of 
the time it will predict performances that are not met 
when we derive the model and evaluate it. We 
would prefer that our system slightly underestimates 
the performance of a model on a new dataset. We 
can observe that the second strategy combination, 
Chebyshev distance with Top 3 neighbor selection, 
makes optimistic 

 
Figure 4: Deviation mean. 

predictions for all metrics except accuracy. This 
strategy combination is the best choice when 
predicting classifier accuracy, but is not appropriate 
for the other metrics in the system. The last strategy 
combination, Chebyshev distance with Above Mean 
neighbor selection, obtains positive deviation means 

for all metrics. This is the preferred behavior for our 
system and we can conclude that this is the best 
combination of strategies. 

We can observe from both Figure 4 and Figure 
3 that the deviation mean of the general purpose 
metric is close to the average deviation means of the 
other metrics. Therefore, we can confirm the 
conclusion in (Caruana,2004) that a general-purpose 
metric has the best correlation with the other 
metrics. 

5 CONCLUSIONS AND FUTURE 
WORK 

This paper describes the architecture of an 
automated learner selection framework. We focus on 
the enhancements considered and tested for the 
system described in (Cacoveanu, 2009). These 
enhancements consist in increasing the dataset pool, 
adding new performance metrics and meta-features 
and improving the prediction accuracy of the 
system. The increase in metrics widens the 
evaluation criteria and allows a more problem-
specific assessment of classifiers. Two of the newly 
added metrics, the generalised geometric mean and 
the general purpose metric, both of them 
representing original proposals. Moreover, the 
general-purpose metric proposed has suggested a 
new approach in dealing with data sets inputs with 
no associated metrics. Another enhancement was the 
addition of new benchmark data sets. The increase in 
the data available to the system improves the 
outcome of the neighbor estimation step. We also 
implemented the context for adding complex 
prediction strategies. We implemented and evaluated 
12 strategy combinations for computing the final 
performance predictions for classifiers. The analysis 
of the results suggest as a best strategy the 
Chebyshev distance with Above Mean neighbor 
selection and Democratic voting. This strategy will 
predict performances close to the actual 
performances, without surpassing them. The tests 
also reveal that the voting strategies do not 
significantly influence the final results. Moreover, in 
the case of the accuracy metric we can improve the 
performance of our system by using Chebyshev 
distance with Top 3 neighbor selection and 
Democratic voting. 

Since the Chebyshev distance computation 
strategy obtains the best results in our system, our 
present focus is on discovering the most relevant 
data set features, by performing feature selection on 
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the meta-data set or deriving new and more relevant 
features (Niculescu-Mizil, 2009). We attempt to 
improve the Above Mean neighbor selection 
strategy, by computing and constantly updating a 
mean distance between every two datasets in our 
database. Limiting the neighbor selection strategy as 
the number of problems in the system increases is 
another present concern. We also want to improve 
the system by generating a “best-possible” model. 
For this we intend to use different classifiers, each 
classifier optimized to increase the true positive rate 
on its class, thus maximizing the prediction power of 
the model. 
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