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Abstract: A hybridized genetic algorithm is proposed to determine a repair schedule for a network of bridges. The 
schedule aims for the lowest overall cost while maintaining each bridge at satisfactory quality conditions. 
Appreciation, deterioration, and cost models are employed to model real-life behaviour. To reduce the 
computational time, pre-processing algorithms are used to determine an initial genome that is closer to the 
optimal solution rather than a randomly generated genome. A post-processing algorithm that locates a local 
optimal solution from the output of the genetic algorithm is employed for further reduction of computational 
costs. Experimental work was carried out to demonstrate the effectiveness of the proposed approach in 
determining the bridge repair schedule. The addition of a pre-processing algorithm improves the results if 
the simulation period is constrained. If the simulation is run sufficiently long all pre-processing algorithms 
converge to the same optimal solution. If a pre-processing algorithm is not implemented, however, the 
simulation period increases significantly. The cost and deterioration tests also indicate that certain pre-
processing algorithms are better suited for larger bridge networks. The local search performed on the 
genetic algorithm output is always seen as a positive add-on to further improve results. 

1 INTRODUCTION 

There is an increasing need for immediate and long-
term infrastructure renewal of provincial and 
municipal highways and roads, buildings, water 
supply systems, wastewater treatment facilities, 
sanitary and storm sewers, and bridges and 
overpasses. The gross value of these assets 
amounted to $286.2 billion in 2007. The need of the 
renewal is caused in part by the large scale boom in 
infrastructure that occurred 30 to 60 years ago. The 
average life of these structure ranges from 28.2 years 
for highways and roads to 43.3 years for bridges and 
overpasses (CBC News, 2008). As such, 
governments have the arduous task of budgeting for 
a backlog of repairs and reconstructing of existing 
infrastructure. To limit the current budgets, 
alternative systems are presented to seek the optimal 
cost per cycle solutions to support the repair or 
reconstruction of the aging infrastructure. 

Once built, bridges receive little maintenance, 
unlike other infrastructures, such as roads and water 
infrastructure, which are  maintained or repaired 
periodically. Changing weather conditions and the 
steady rise in traffic levels have caused existing 
bridges to depreciate at a much higher rate. 
According to a 2006 Statistics Canada study, bridges 
are at 49% of their useful life (Charles Mandel, 
2007). Saeed Mirza in (Charles Mandel, 2007) states 
that the current situation is disastrous and estimates 
that $100 billion should be invested to upgrade 
existing bridges and other infrastructure. A 2007 
report issued by the Residential and Civil 
Construction Alliance of Ontario warns that 40% of 
Ontario’s bridges will require significant repair over 
the next few years (Bruce Campion-Smith, 2007). 
The catastrophic collapse of the I-35 Bridge in 
Minneapolis, Minnesota on August 2, 2007 has 
increased public awareness of the importance of 
maintaining bridges.  Clearly there is an increasing 
need to invest in bridge infrastructure.  
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Traditionally, in bridge maintenance systems 
(BMSs), experts use their judgment and experience 
to determine which bridges to repair and the extent 
of repair each year. However, as the number of 
bridges increases, this task evolved into a complex 
optimization problem that is well beyond the 
abilities of even the most experienced experts. In 
fact, this problem is a nondeterministic polynomial 
(NP) problem, which is computationally intractable 
for traditional methods. Genetic Algorithms (GAs) 
have been shown to be effective in solving NP-hard 
problems, and thus are good candidates for solving 
this problem.  

The bridge inventory contains a list of all the 
bridges in the network. Each bridge component has a 
condition rating. The deterioration and improvement 
models quantify how much the bridge components 
degrades or improves its condition each year, 
depending upon whether a repair takes place or not. 
The cost model determines how much a repair will 
cost. This model depends on the current condition 
rating of the bridge. All models occur over a 
predetermined time period. The evolutionary 
algorithms try to optimize (minimize) the total cost 
spent over the time period. The total cost is 
optimized by determining which bridges to repair 
and which components on the bridge to repair. 

2 A HYBRIDIZED GA FOR COST 
ESTIMATION IN A BMS 

The GA derives a solution based on a fitness 
function and constraints. Parameters such as 
mutation rate, the number of generations and 
crossover rate are also to be tuned.  The fitness 
function is to minimize the overall repair cost for the 
bridge network over the desired time period. The 
overall repair cost is calculated by summing the 
costs for each year. The other option was to make 
the fitness function based on the quality of the 
bridges.  However, due to safety considerations, the 
bridge quality was deemed better suited as a hard 
constraint. Several constraints were added to the 
implemented system including:  

1. Repairs Constraint: 
A bridge can only be repaired maximum of two 
times over a 5 year period, or 5 times over a 20 year 
period. This constraint reflects real life constraints. 
Bridges that are repaired constantly incur higher 
costs (both construction costs and user costs).  
2. Condition Constraint: 
The condition of a bridge cannot fall below 30. Fur- 

thermore, a bridge cannot be repaired if its condition 
exceeds 90. These conditions maintain a satisfactory 
bridge quality level and eliminate the possibility of 
repairing well-conditioned bridges.   
3. Cost Constraint: 
A predefined yearly budget is be defined. The yearly 
budget is related to the number of bridges within the 
system. This constraint reflects real life budget 
restraints. 

In order to reduce the time to develop an 
acceptable solution, some pre-processing of the data 
must take place. The initial data set that the GA uses 
to optimize the fitness function should be 
conditioned to be within the ball park of the final 
solution. For example, we know that in any given 
year, because of budgetary limits, only several 
bridges are repaired. Therefore, the GA chromosome 
(i.e. bridges to repair) will initially be setup to repair 
only a small percentage of the bridges per year. In 
order to determine these initial values, we will use 
fuzzy sets, among other approaches (to be 
investigated). The fuzzy set outputs will be no 
repair, light repair, medium repair and extensive 
repair. They will correspond to the condition of the 
bridge – the input fuzzy sets. 

A post-processing algorithm can be used to 
locate a local optimal solution. Genetic algorithms 
are capable of determining the optimal solution. 
However, even with the inclusion of pre-processing, 
determining the optimal solution may take a 
substantial amount of time. The post-processing 
algorithm can determine a better solution by slightly 
altering the bridge repair schedule (represented as 
the genome). For example, if a heavy repair is made 
in year X for a bridge, the post-processing algorithm 
can determine if a local optimal solution is found by 
downgrading the repair severity to a medium or light 
repair, or altering the time or repair to year X+1 or 
year X−1. The post-processing algorithm can also be 
used to check the output from the genetic algorithm. 
An emphasis is made to limit the computations 
required for the post-processing algorithm. 

2.1 Pre-processing 

The motivation behind pre-processing the genome is 
to reduce the computational time required to produce 
the optimal solution. Four pre-processing algorithms 
were implemented. 

The first algorithm randomly generates genome. 
For any bridge/year combination, it has a 5% chance 
of assigning a level 1 repair, a 3% chance of 
assigning a level two repair, a 2% chance of 
assigning  a  level  three repair, and a 90% chance of 
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assigning no repair at all. 
The second algorithm repairs 10% of the bridges 

every year. If the bridge’s quality is below 35 it 
assigns a level 3 repair. If the quality is between 35 
and 50, it assigns a level 2 repair. If the quality is 
above 50, it assigns a level 1 repair. After assigning 
the repairs for each year, it recalculates the bridge 
qualities for the subsequent years. 

The third algorithm will repair any number of 
bridges. If the bridge’s quality falls below 40, it will 
be repaired. Given a five year study if this occurs in 
the first year, a level 3 repair will be assigned. If the 
quality falls below 40 in the second or third year, a 
level 2 repair will be assigned. If it falls below 40 in 
the fourth or fifth year, a level 1 repair will be 
assigned. 

The fourth algorithm repairs a set number of 
bridges each year. Given a five year study, three 
bridges are repaired each year. It applies a level 2 
repair to the worst bridge and level 1 repairs to the 
other two bridges. It will not repair a bridge unless it 
is below a quality of 50 and will not repair the same 
bridge twice. 

2.2 Post-processing 

It was noticed during the testing that even with a 
relatively small study size, the genetic algorithm 
took a very long time to converge to the optimal 
solution (6-7 hours).  In order to combat this, a post-
processing algorithm was implemented. In these 
cases, the post-processing algorithm can be run on 
any results the GA produced before it was stopped to 
improve upon those results. 

The post-processing algorithm looks at each 
repair that is being made, and examines the effect of 
lowering it one level (e.g. level 3 repair to level 2, or 
level 1 to no repair). If lowering the repair level does 
not cause any bridge to fall below the quality 
threshold of 30, it will be lowered. Otherwise it will 
be kept at the same level. This is a local search that 
is used to refine the genetic algorithm results. 

2.3 Appreciation Model 

After a repair, the quality of the bridge will increase. 
The amount of increase is dependent on the severity 
of the repair. There are three levels of repair in the 
proposed system: light repair, medium repair, and 
heavy repair. Light repair is used to recondition the 
bridge elements; this includes but is not limited to 
resurfacing the deck. Medium repair is used to 
replace elements within the bridge. Elements can 
include  joints  within  the  bridge  structure.   Heavy 

repair is used to replace most of the bridge. 
Given the limited information on the 

deterioration of the bridges, all three types of repair 
will produce a static improvement in the bridge 
quality. For example, if a light repair is used on 
bridge A, the quality of bridge A will increase by ten 
points. A medium repair will result in an increase of 
30 points. Heavy repair results in an increase of 50 
points. All three types of repair are independent of 
the age and existing condition of the bridge. The 
maximum bridge quality after any repair is 90.  

The formula used to calculate the condition of a 
bridge after a repair is made is shown below and 
Table 1 lists the iC and I constants for each repair 
level. 

C

1 )

where:

C  bridge condition

P  previous bridge condition

i condition improvement percentage

I  bridge improvement 

CC P(  i I
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






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Table 1: Appreciation Model Constants. 

Repair Level iC I 
Light 15% 10 

Medium 20% 30 
Heavy 30% 50 

2.4 Deterioration Model 

The deterioration of the bridge is the process of 
decline from its original condition under normal 
operating circumstances (Abed-Al-Rahim, I. and 
Johnston, W., 1995). This process excludes rare 
phenomena such as natural disasters and includes 
physical and chemical changes (Hatem Elbehairy, 
2007) (Yang, Ming-Wing, 2007). Examples of each 
include general wear to components of the bridge 
like the deck and the bridge’s joints, and rusting on 
bridge members. 

Common factors which affect the rate at which a 
bridge will deteriorate include the bridge’s age, the 
average traffic levels, exposed environment 
conditions, the design of the bridge, and the quality 
of the material used to construct the bridge. The only 
available information for this study is the bridge’s 
age, its current depreciation, and it’s expected 
remaining lifespan. As such, the depreciation model 
will only reflect these parameters. 

For this study a mechanistic deterioration model 
(Hatem Elbehairy, 2007) will be employed. A 
mechanistic model employs a known nonlinear 
relationship in the form of Equation 2. The 
mechanistic deterioration model is simple to 
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implement and computationally inexpensive. The 
values of A and B can be assigned or determined 
using fuzzy inference. The mechanistic model 
reflects changing deterioration per year, where the 
deterioration rate decreases as the bridge gets older.  

( ) BtC t Ae  (2)

Since the deterioration of the bridge is the 
process of decline from its original condition under 
normal operating circumstances, a simple decaying 
exponential was used to approximate the 
deterioration. In the formula used to calculate 
deterioration shown in equation (2), the deterioration 
is related to deterioration rate provided in the 
original data. The inclusion of the deterioration rate 
reflects the different rate of decay for each bridge. 
The multiplier is a constant for each bridge. The 
multiplier was modified until it conformed to a 
deterioration rate found in various literature sources 
on the subject. 

The deterioration and appreciation models were 
combined to produce a single model which updates 
the condition of the bridges on a yearly basis. 

1

where:

C  bridge condition

P  previous bridge condition

d deterioration rate

m  multiplier 
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2.5 Cost Model  

The cost model is used to determine the costs 
associated with repairing a bridge within the 
network of bridges. Generally there are two cost 
models associated with a BMS: the user cost model 
and the repair cost model. The cost model used in 
our approach will only look at repair costs. User 
costs are extra costs which are paid by the bridge 
user (i.e. financial cost of time spent in traffic). User 
costs are omitted from our approach because they 
are generally subjective. 

Table 2: Repair Unit Costs. 

 

The repair costs can be expressed either as a unit 

cost or a percentage of the initial cost of the bridge. 
Unit costs are associated with the costs of repairing 
individual items of the bridge (Saito, M., and Sinha, 
K., 1990). An example of user costs is shown in 
Table 2. Our approach will determine the cost of 
repair as a percentage of the initial cost. This 
approach is less computational. Furthermore the 
limited information provided for each bridge makes  
the unit cost approach impossible to implement. 

The formula to calculate the cost of a repair is 
based on the initial construction cost of the bridge, 
which was provided. The formula for the repair cost 
is shown below and Table 3 lists the multiplier 
constants for each repair level. 

where:

RC  repair cost

C  construction cost (specified for each bridge)

M repair type multiplier

RC CM







(4)

Table 3: Cost Model Constants. 

Repair Level M 
Light 0.1 

Medium 0.4 

Heavy 0.6 

3 EVALUATION 

Testing is focused on finding the best pre-processing 
algorithm. The first step was to establish a set of 
testing conditions which would allow us to properly 
compare the different algorithms.  We then changed 
the testing conditions to observe the effect on the 
optimal solutions. 

To keep our testing consistent, we needed to fix 
the number of bridges (study sample size) and the 
number of years (study period). Although we had 
data for 161 bridges, and could extrapolate the 
bridge quality for any number of years using the 
deterioration and appreciation models, we elected to 
use a sample of 20 bridges over a 5 year period. The 
crossover and mutation rate used for the genetic 
algorithm was set at 0.5 and 0.1 respectively. 

As mentioned, the main testing parameter will be 
the pre-processing type. In addition to testing the 
effectiveness of each pre-processing type, additional 
tests will be conducted to determine the effects of 
changing the deterioration rate and costs. 

3.1 Pre-processing Algorithms 
Comparison 

Although we created four pre-processing algorithms,  
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the first one, which was random, either failed to find 
valid solutions or took a very long time to do so in 
our testing. As a result, we concluded that this was 
not a suitable method for pre-processing (as 
expected) and focussed our attention on the 
remaining three algorithms. 

In order to compare the effectiveness of the three 
remaining pre-processing algorithms, tests were run 
that involved setting all the variables in the system 
constant while only changing the pre-processing the 
algorithm. Table 4 shows the systems settings for the 
initial comparison. 

Table 4: Initial Pre-Processing Comparison Settings. 

 

Looking at the above table we see that the tests 
were run for 8500 trials, which is a relatively short 
period of time but sufficient enough to show a 
system trend. Table 5 shows the results obtained 
from running the tests with each pre-processing 
algorithm over 5 runs. 

Table 5: Initial Pre-Processing Results. 

 

We can see that pre-processing algorithm 2 starts 
in a state with the lowest total cost, among the three, 
and finishes with the lowest total cost. Similarly, the 
first pre-processing algorithm has the highest staring 
and end total cost. This indicates that, with all 
variables set, the quality of the starting state dictates 
how good the end state will be, in a given amount of 
time.  

Table 6: Optimized Pre-Processing Constants. 

 

Of course, over a long enough time period all 
solutions will converge to a global optimum, but our 
concern is to determine which method will do this 
the quickest or which method will produce the best 
result in a given time frame. 

To confirm that all methods will converge to an 
optimum the tests were run for much longer. The 
new systems constants are shown in Table 6. 

The stop condition was changed from 8500 trials 
to 30 minutes. The population size was reduced to 
50 to reduce the consumption of computer memory. 
The bridge repairs per year and yearly budget 
constraints were reduced to find a solution with 
fewer repairs. The random pre-processing algorithm 
was also included. The test results are summarized 
in Table 7. 

Table 7: Optimized Pre-Processing Results. 

 

The total cost converges to around $200,000 for 
all of the pre-processing algorithms. This clearly 
shows that there is a global optimum that is 
eventually reached. 

3.2 Other Parameter Testing  

Changes to the cost and the deterioration models 
were made to evaluate the effects on the optimal 
solution determined in section 2.2. The random pre-
processing method was omitted from both tests. 

The first test was to determine the effect of 
changing the cost model. The repair type multiplier 
for light repairs was changed to 0.2. Table 8 displays 
the system constants used for the test. The test 
results are shown in Table 9. 

Table 8: Test Constants for Cost Model Testing. 

 

The second test was to determine the effect of 
changing the deterioration model. The deterioration 
multiplier was changed from 10 to 5. Table 10 
displays the system constants used for the test. The 
test results are shown in Table 11. 
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Table 9: Test Results for Cost Model Test. 

 

Table 10: Test Constants for Deterioration Model Testing. 

 

Table 11: Test Results for Deterioration Model Test. 

 

As expected, the optimized total costs increased 
for both tests. A more profound discovery is that the 
pre-processing 2 algorithm outperformed the other 
two algorithms for the deterioration model test. By 
increasing the multiplier, the deterioration per year 
increased significantly. As a result more bridges 
required repair. Pre-processing algorithm 2 is better 
equipped at handling larger bridge repair demands 
since it is capable of repairing a constant number of 
bridges per year. Pre-processing algorithms 3 and 4 
will only repair the lowest quality bridges. If there is 
a large number of bridges that fit this criterion in a 
single year the algorithm may have difficulties 
addressing all the bridges. 

3.3 Post Processing Results 

To demonstrate the effectiveness of the post-
processing algorithm, it was applied to the three 
simulations for the network of 20 bridges over a five 
year study term. The cost improved from $224,000 
to $7,800. 

4 CONCLUSIONS 

Experimental tests showed that when a pre-
processing algorithm was applied prior to the genetic 
algorithm, the genetic algorithm was able to obtain a 
better solution in a fixed period of time than when 
no pre-processing took place. More specifically, pre-
processing algorithms 3 and 4 generally resulted in 
the best performance. However, when the 
deterioration model was modified to increase the 

rate of bridge deterioration, pre-processing 
algorithm 2 was the top performer. This shows that 
pre-processing algorithm two is the most flexible of 
those tested. This is important, as different 
municipalities or government may have very 
different models for appreciation, depreciation and 
repair cost.  Pre-processing algorithm 2 is best 
equipped to deal with these variations as the number 
of bridges repaired is not static (as is the case in pre-
processing algorithms 3 and 4). 

A post-processing algorithm was devised to 
improve upon the genetic algorithm solution.  While 
the algorithm was implemented and preliminary 
tests showed that it was successful in improving 
upon the solution obtained by the genetic algorithm, 
more testing is required with a wider range of 
conditions to confirm that the post-processing 
algorithm is effective. 
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