
ACCESS CONTROL MODELS FOR BUSINESS PROCESSES

Vahid R. Karimi and Donald D. Cowan
Cheriton School of Computer Science,University of Waterloo, Waterloo, Ontario, Canada

Keywords: Access control models and policies, Business processes, Patterns, RBAC, REA.

Abstract: A business model describes certain operations of an enterprise, and an important aspect of business operations
deals with the specification of access control policies, which are used to constrain the business operations by
adding what should, could, or must be. We describe the use of patterns for presenting access control models
and policies. Our goal is to specify access control policies such that they are based on access control models
and have the capability of policy languages, thereby making the foundational blocks of these policies and
operational models identical. Thus, the integration of these policies into operational models is straightforward.
To show our approach, we use Role-based Access Control (RBAC), a well-known access control model, and
also select a business process model whose foundational building blocks are Resources, Events, and Agents
(REA). We make three main contributions: 1) the use of the same foundational building blocks and similar
models to describe business processes and access control models, 2) access control policies that are based on
an access control model, and 3) access control policies that are rule-based and akin to policy languages. As a
result, such models are more understandable, and their future modifications are more straightforward.

1 INTRODUCTION

The separation of access control policies from ap-
plications has several benefits: it makes possible the
change of access control policies independent of ap-
plications, enables analysis of these policies sepa-
rately, and provides the ability to document them
clearly. Despite these benefits, this approach creates
a problem: integrating these policies into applications
(Ray et al., 2004). Our presentation is intended to
provide some guidelines for this integration but not
necessarily for their inclusion in applications.

The Resources, Events, Agents (REA) (Geerts
and McCarthy, 2006) approach for describing busi-
ness processes was initially introduced by McCarthy
and has been extended over the years. REA has
been chosen to represent business processes for two
reasons: REA includes rules for constructing busi-
ness models, making this process more straightfor-
ward than other representational notations. Moreover,
REA describes both static and dynamic aspects of
business processes by using UML class and activity
diagrams. Both types of diagrams are important, pro-
viding a more comprehensive approach than others
that mainly use a variation of activity diagrams. (A
dynamic REA model has not been discussed in this
paper.) Exchange and conversion models represent
two broad categories of REA business processes. Any

number of exchanges and conversions can be com-
bined to build a larger model. Sales and loans exem-
plify exchange models, whereas production of new
items and repair of existing items represent conver-
sion models. A basic REA exchange model describes
agents participating in events at which resources are
exchanged. Figure 1(a) shows an example in which
an employee receives a client’s cheque and provides
an account modification; similarly, the client provides
a cheque and receives an account modification.

In our work, the word “pattern” is used to mean
“an idea that has been useful in one practical con-
text and will probably be useful in others,” or sim-
ilarly, “groups of concepts that represent a common
construction in business modeling” (Fowler, 1997).
For instance, Figure 1(b) shows a policy pattern and
can be described as a rule-based statement: e.g., if
the kind of account is savings with a foreignCur-
rency and the kind of modification is a withdrawal,
then a maximumAmount for a withdrawal is permit-
ted. Therefore, the rule-based nature of these types of
specifications makes them akin to policy languages.
Figure 1(b) can subsequently be combined with Fig-
ure 1(a) in which resource (account) and event (ac-
countModifying), their common entities, are merged
together. Note: The class policy in Figure 1(b) and
in other figures of this paper is included to empha-
size that policies exist. Only one policy class to de-

489
R. Karimi V. and D. Cowan D. (2010).
ACCESS CONTROL MODELS FOR BUSINESS PROCESSES.
In Proceedings of the International Conference on Security and Cryptography, pages 489-498
DOI: 10.5220/0002959904890498
Copyright c© SciTePress



<<provide>>
maximumModification

kind

<<policy>>

accountModifyingPolicy
account

<<resource>> <<resource−flow>> <<event>>

accountModifying 

amount

amount<<resource>>

<<resource−flow>>

(a)

kind

foreignCurrency

<<resourceType>>

accountType

<<apply>>

<<receive>>

<<provide>>

<<receive>>

chequeReceiving

<<event>>

client

<<agent>>

cheque

<<duality>>

(b)

account

<<resource>>

<<typification>>

<<resource−flow>>

<<resource−flow−type>>

amount

accountModifyingType 

<<typification>>

<<apply>>

<<event>>

accountModifying

<<eventType>>

employee

<<agent>>

Figure 1: (a) A REA exchange model, (b) a policy.

fine access control policies exists for each application.
For instance, for Figure 1(b), policies can be defined
by the association between accountType and account-
ModifyingType classes.

We use patterns as the basis for representing an ac-
cess control model. The benefits of patterns are com-
monly acknowledged in software engineering. For in-
stance, patterns can enable us to reuse and prevent us
from reinventing the same solutions over and over;
in addition, one can take advantage of the guidelines
on how and when to use patterns (Blaha and Rum-
baugh, 2005). As an additional contribution, we use
the REA model and present an access control model
(i.e., RBAC as an example of a well-known access
control model) for it. This capability is possible be-
cause all the components needed to express an ac-
cess control model exist in our approach. To clarify
this statement, we would like to point to a description
from Ferraiolo et al. (Ferraiolo et al., 2007): almost
any access control model can be described by the ele-
ments of users, subjects, objects, operations, permis-
sions, and the relationships between these notions. A
comparison between these elements and the building
blocks of our model follows: users, objects, oper-
ations, and permissions of an access control model
correspond to the ontological concepts of agents, re-
sources, events, and attributes of agents or some com-
binations of agents, events, and resources, respec-
tively. The subject also corresponds to an application
built by using such ontological building blocks. Fur-
thermore, the terms agents, resources, events appear
to be more intuitive than users, objects, and opera-
tions, at least for describing business processes.

Some researchers (Finin et al., 2008) describe a
synergy between efforts in the development of access
control models (e.g., RBAC) and policy languages
(e.g., eXtensible Access Control Markup Language
(XACML)) as valuable. Our presentation has the
same goal because policies are based on an access
control model, and in addition, the rule-based nature
of these policies resembles the declarative approach
of policy languages.

The question of whether an access control meta-
model for specifying access control policies exists has
been asked (Ferraiolo and Atluri, 2008). Our pre-
sentation describing both access control models and
business models with the same foundational building
blocks is directed toward solving this problem.

2 BACKGROUND

Geerts and McCarthy (Geerts and McCarthy, 2006)
introduced policy-level specification for REA mod-
els. Their general policy patterns, shown in Figure 2,
are illustrated using a plane and flight scenario in Fig-
ure 3.

Operational 

Hybrid

Operational 

: object classes

Legend:

Level

Policy

Level

Policy

Level

MirrorBasic

Root

: associations but not of typification or grouping

: typification or grouping : policy definitions

Compromise
Level

Figure 2: Patterns for policy-level specifications.

Figures 2 and 3 can be described in the follow-
ing manner (Geerts and McCarthy, 2006): The Basic
pattern includes flight, flightType, and a single typifi-
cation association between them. A policy is defined
by a flightType attribute: based on a scheduled de-
parture of a flightType, a policy can state that a flight
should take off at a certain time (which can be differ-
ent from the flight’s actual departure time). In these

SECRYPT 2010 - International Conference on Security and Cryptography

490



two figures, a typification relationship denotes an “is
a-kind-of” association, whereas a grouping associa-
tion represents an “is a-member-of” association.

The Mirror pattern is presented among planeType,
flightType, plane, and flight (i.e., two typification or
grouping associations and two other associations). A
policy can express the type of plane to be used for
the type of flight. In the Compromise pattern, a vari-
ation of Mirror, one typification or grouping is com-
promised such that it consists of one typification or
grouping and two other associations–one of which is
at the policy level. Compromise includes routeType,
cancelationType, and flight; and a cancelationType
can be defined per routeType. The Hybrid pattern,
another variation of Mirror, includes plane, fleet, and
serviceOperator and consists of one typification or
grouping and two other associations–none of which
is at the policy level. This pattern is used when one
class has a small number of instances on which the
policy is validated (e.g., a list of people who can pro-
vide service to a fleet).

consumption

Target

PlaneType

actual departure time

actual fuel consumption
ServiceOperator

scheduled departure time

Mirror Basic

Flight

Plane

CancellationType

Compromise

FlightType

targeted fuel 

Compensation

perks

Legend:

PlaneCategory

Fleet

Root

Hybrid

RouteType

Operational−Level Object Class

Grouping Object ClassType Object Class 

P2

O

P4

G

P5

T

P3

T

T

T

GT

O

P1

T

O

O

Figure 3: A flight example for policy-level specifications.

Finally, the Root pattern is defined among fleet,
planeType, and fleet and applies to cases in which
one operational-level object participates in more than
one typification or grouping (e.g., the typification of
plane and planeType and the grouping of plane and
fleet). This pattern consists of two typification or
grouping associations and another association at the
policy level (e.g., a plane should be of a specific plan-
eType to be a member of a fleet).

3 OUR APPROACH

We adapt the general policy patterns. By this adap-
tation, we represent both access control policies and
an access control model (i.e., RBAC). Our adaptation
is based on an examination of several access control
policy expressions and a review of the RBAC model.
Figure 4 (Ferraiolo et al., 2001) shows RBAC.

Constraints

(PA)

(S)
Sessions

(U)

Users

Sessions

(R)

(UA)

User Assignment (RH)

HierarchyRole

Roles

Roles

Permission 

Assignment

PRMS

OBSOPS

Users

Figure 4: RBAC with permissions as operations on objects.

We describe modeling every element of Figure 4:
a) roles and user assignments and, in addition, the way
roles are assigned to users, which is not described by
RBAC, b) permissions and permission assignments
(RBAC does not describe permission assignment to
roles.), c) role hierarchies, and d) constraint descrip-
tions of users, roles, permissions, role hierarchies, and
static and dynamic separation of duties.

A description of our use of patterns to model all
the cases above follows shortly. We adapt the general
policy patterns, shown in Figures 2 and 3, as a start-
ing point because these patterns differ from ours for
the following reasons:
a) We extend these patterns in various ways.
b) The building blocks of described patterns are

classes and are not identified as the foundational
building blocks of REA (i.e., resources, agents,
events). We show specifically the foundational
building blocks and their types needed for build-
ing access control policies: one of our intentions
is to demonstrate that access control policies and
business processes can be built by the same build-
ing blocks.

c) Our adapted patterns represent a well-known ac-
cess control model and, in addition, describe ac-
cess control policies when they are combined. No
specific rules exist to structure policy definitions
using the patterns of Section 2, but certain com-
binations of our adopted patterns represent access
control policy definitions.

d) We explicitly illustrate the modeling of roles and
user assignments, permissions, role hierarchies,
and their constraints. This modeling is important

ACCESS CONTROL MODELS FOR BUSINESS PROCESSES

491



because not only does RBAC comprise these com-
ponents but also any access control model consists
of some of these elements.

3.1 Metadata and Powertype

In our approach and patterns, we use the concept of
type, such as an event type or a resource type, in the
sense of metadata (i.e., the data about data) or a meta-
class (i.e., a class that describes another class) to be
consistent with the current UML modeling approach.
Figure 5 (Blaha and Rumbaugh, 2005) shows a Car-
Model and a PhysicalCar.

* *Company

CarModel

basePrice

year

modelName

color

serialNumber

options

PhysicalCar

11 *
manufacturer

1
owner

Person
Describes

Figure 5: Metadata and data.

Figure 5 represents a CarModel class as metadata
or a metaclass in relation to the PhysicalCar class be-
cause a CarModel, such as a 2005 Toyota Camry, de-
scribes many PhysicalCars with various serialNum-
bers and colors (i.e., a car model is a car type.)
Data and metadata are relative to each other; other-
wise, “models are inherently metadata, since they de-
scribe the things being modeled (rather than being the
things)” (Blaha and Rumbaugh, 2005).

In our upcoming presentation of patterns, we do
not differentiate between policy and operational lev-
els, for the same reason that models are intrinsically
metadata, and such differentiation between policy and
operational levels is not necessary. To be consistent
with the current UML modeling approach, we use an
event type and a resource type as metaclasses relative
to their resource and event counterparts as described
above. Furthermore, our use of type and typification
is also related to the concept of a power type.
Type and Power Type. Power type is an advanced
technique and is mainly used in the analysis phase
(OMG, 2009). A power type describes a class whose
instances are subclasses of another class; therefore,
power types are metaclasses with an extra condition
applied to their instances such that the instances are
also subclasses of a superclass (Martin and Odell,
1998). Figure 6 (OMG, 2009) shows an example.

account classifier 

Savings
AccountAccount

Account

Checking 

* 1
Account Type

{disjoint, incomplete}

account

Figure 6: Types and Power Types.

3.2 A Running Example

Figure 7 shows a small running example that is related
to a banking application and is described by Chan-
dramouli (Chandramouli, 2000).
Convention. For the rest of this paper for readability
purposes, we do not use capital letters or underscores
to join words in class names or their attributes; there-
fore, “loan officer” and “day of week” are used in-
stead of loanOfficer and dayOfWeek. The same con-
vention holds when tables are presented.

4 PATTERN USE TO REPRESENT
ACCESS CONTROL MODELS

Groups are usually a collection of users but do not
usually represent a collection of permissions (Sandhu
et al., 1996); therefore, a role and a group of users are
not considered identical concepts. In general, policies
apply to group and type entities rather than an individ-
ual entity. A group can have only one member, and a
policy can apply to a group with only one member.

The patterns presented here are not complex and
are therefore consistent with the general presentation
of patterns in the literature, e.g., (Fowler, 1997). Sim-
ilar to the pattern literature, we describe patterns uni-
formly. This description includes “context,” “prob-
lem,” and “solution”–as three main elements–based
on a common definition that a pattern describes a so-
lution to a problem that happens over and over in
a context. The “resulting context” is adopted from
Hruby’s form (Hruby, 2006). The pattern description
consists of the following elements:
Name. A short descriptive name for a pattern
Context. A description of the situation in which a
pattern applies
Problem. A brief explanation of the problem that a
pattern attempts to solve
Solution. An explanation of the way a pattern solves
a described problem; we intend to describe the solu-
tion in enough detail to be clear, but also to be general
enough to allow the solution to apply broadly.
Example. An example of the solution
Alternative Example. A secondary example that
may not be as common as the main example
Resulting Context. A clarification and the conse-
quences of the solution in a broader aspect

4.1 Modeling Roles & User Assignments

Name. Role Modeling and User Assignments Pattern
Context. Several research papers describe various ap-
proaches for discovering roles in an organization, but

SECRYPT 2010 - International Conference on Security and Cryptography

492



Banking Case Study (Chandramouli, 2000)

The banking application is used by tellers, customer service reps, loan officers, accountants, and accounting
managers.
Policies. The existing policies are as follows:
P1) A teller can modify customer deposit accounts.
P2) A customer service rep can create and delete customer deposit accounts and also has a teller’s permissions.
P3) A loan officer can create and modify loan accounts.
P4) An accountant can create general ledger reports.
P5) An accounting manager can modify ledger posting rules and also has the permissions of an accountant.
Hierarchical Role Relationships.
H1) A customer service rep role ranks higher than a teller role.
H2) An accounting manager role ranks higher than an accountant role.
H3) Customer service rep, loan officer, and accounting manager roles rank at the same level.
H4) A branch manager ranks the highest.
Static Separation of Duties. A single user cannot hold the following pair of roles:
1) customer service rep and accounting manager 2) loan officer and accounting manager
3) teller and accountant 4) teller and loan officer 5) accountant and loan officer
Dynamic Separation of Duties. One individual cannot hold the following two roles at the same time: customer
service rep and loan officer

Figure 7: A banking example.

our intention is not to determine possible roles. We
assume that these roles are already known and want
to describe these roles using various existing entities
and their attributes.
Problem. How can we model the roles of users?
The concept of roles in organizations is significant
because activities and tasks are associated with roles.
How are these roles assigned to individuals? In addi-
tion, how can different roles of an individual, if they
arise, be modeled?
Solution. The role modeling and user assignments
pattern (Figure 8) extends Basic and Root patterns
(Section 2) to make possible the modeling of roles and
user assignments to a certain level of detail. Based
on our adaptation, the entities of this pattern can only
be agents because our goal is to represent roles. Not
only the attributes of types (i.e., agent types), as in
the Basic pattern, but also the attributes of an agent
can determine an agent’s role in some detail.

In addition, the role modeling and user assign-
ments pattern also uses a similar approach to the Root
pattern (Figures 2 and 3) by including the “grouping”
relationship to enable an agent to hold more than one
role, depending on affiliation with different groups.
(REA models a group, such as an organization unit or
a team, by the “grouping” relationship.) By this inclu-
sion and extension, an agent can participate in a typ-
ification and grouping relationship, which is similar
to the Root pattern. The association between an agent
type and agent grouping that exists in a Root pattern is
also present in the UML class diagram of Figure 8(a);
as a result, roles can change in relation to various

groups. In addition, using various combinations of
agent attributes, we will be able to describe certain de-
tails of roles and their functions. REA Grouping and
aggregation are related concepts. One possible com-
mon approach for assigning roles to users is based on
the value of user attributes. An extension to this ap-
proach can include describing a role with a certain
level of detail based on the value of attributes, e.g., a
teller’s role is permitted to be active between 9 and 5.
Example. Figure 8(b) shows an example in which
attributes are present (“day of week performed” at-
tribute; e.g., Monday to Friday, or “daily start time”
and “daily end time” attributes.)

Table 1 includes agent, agent attribute, and role
columns and represents possible policy content, as
shown in Figure 8(b). In this table, one or two at-
tributes of an agent determine the agent’s role or the
existing constraints on the role. Several attributes can
contribute to the determination of roles by a similar
approach (to simplify, only one or two attributes are
chosen.) The banking example (Figure 7) does not
contain the roles shown in rows two and three of this
table, but these roles exist to explain that a richer de-
scription of policies is possible with just the use of
attributes. The second row of the table illustrates a
situation in which, based on the status and responsi-
bility attributes, a temporary teller role is recognized.
Finally, the next-to-the last row illustrates the possi-
bility of describing temporal aspects such that a teller
role is defined to be valid only for a permitted time
period (e.g., Monday to Friday and 9:00 to 5:00). The
introduction of temporal aspects is very important be-

ACCESS CONTROL MODELS FOR BUSINESS PROCESSES

493



<<grouping>>

employee type

<<typification>>

participate

attribute b1

role assignments 

0..*

0..*
<<group>>

1

0..*

<<agent type>>

<<typification>>

agent group

0..*

participate0..*

(a)

<<policy>>

role assignments 

to users (agents)

0..*<<apply>> <<apply>> 0..* <<policy>>

<<agent>>

to employees

attribute b...

1

attribute a1

0..*

<<agent type>>

attribute a...
0..*

organization unit

<<agent group>>

daily end time

daily start time

day of week performed

specific responsibilities

status

name
responsibilities[1..*]

<<grouping>>

employee

<<agent>>

(b)

0..*

0..*

0..*

0..*

0..*

Figure 8: (a) Pattern for modeling roles and user assignments, (b) an example.

Table 1: Entities and attributes of the role modeling and user assignments pattern in a table format.

pattern name user (agent) agent type attribute agent group role
role modeling employee responsibilities - teller

and user employee status, responsibilities - temporary teller
assignment employee day of week performed - teller (when)

pattern employee - branch teller

cause they enable the creation of dynamic and rich
models. The last row shows bank branch as an agent
group.
Resulting Context. More expressive models such as
temporal RBAC (TRBAC) (Bertino et al., 2000) exist;
with TRBAC, temporal aspects of roles are specified
such that some roles are active at certain times (e.g.,
as in the previous teller example). TRBAC achieves
the expression of temporal aspects of roles by their
activation and deactivation. It may be the case, as
we have described previously, that some features of
these extended models can be expressed by the origi-
nal RBAC model and by the use of temporal attributes
whenever they exist. On this note, we have also as-
sumed that certain attributes such as “responsibilities”
or “the time of an event” exist, an assumption that we
believe is quite realistic.
Alternative Example. An alternative representation
can use the power type concept.

4.2 Modeling Permissions

Name. Permission Modeling Pattern
Context. Permission is one of the main compo-
nents of any access control model and constitutes
an element of an access control policy. Describing
the processes of an organization not only includes
an explanation of what needs to be performed but
also includes permissions and restrictions in perform-
ing these activities. If an authorization is described
using the same entities and models as those used
for business processes, then the integration of these
authorizations into business processes will be more

straightforward.
Problem. How can role permission be modeled? In
general, how can permission as an element of an ac-
cess control model be described?
Solution. Permissions can be represented as opera-
tions on objects, as is shown by the right side of Fig-
ure 4. Operations translate to REA events, and objects
are equivalent to REA resources shown in Figure 9(a).
Therefore, the Mirror pattern presents a viable choice
for modeling this setting. The following brief descrip-
tion of events and operations can be useful and justify
the mapping of events to operations.

Events and Operations: Despite some differences,
these two terms are essentially two different views of
the same thing; an event includes an important or in-
teresting change of state whereas an operation is the
agent of this change (Martin and Odell, 1998). In
other words, the operation view considers the mecha-
nism for this change, and the event view is concerned
about the result of the operation (Martin and Odell,
1998). For instance, verify (order) represents an oper-
ation, whereas (order) verified describes an event oc-
currence.

The permission modeling pattern clarifies and
modifies the Mirror pattern for modeling permis-
sions. The clarification is based on the identification
of event, event type, resource, and resource type as
entities of this pattern, as shown in Figure 9(a). Oper-
ations (OPS), objects (OBS), two typification associa-
tions, and two other associations are also presented in
this figure. An extension to this pattern includes the
use of attributes of operations (i.e., events), objects
(i.e., resources), or both. Therefore, a permission can

SECRYPT 2010 - International Conference on Security and Cryptography

494



maximum modification

kind
currency

an event on a resource

0..*0..*

<<policy>>

1

0..*

1

based on curreny

1

<<apply>>

<<event>>

modification

max deposit account modification

<<policy>>
<<apply>> 0..*

<<resource−flow type>>

<<apply>>

0..*

1

<<typification>>

0..*

1

0..*

0..*

(operation)

0..*0..*0..*

resource type attribute a

resource type attribute a...

event type attribute a

<<event type>>
0..*

<<resource type>>

modification type

<<event type>>

<<event>>

(b)
(a)

<<resource>>

event type attribute a...

<<typification>>

1

<<typfication>>

1<<resource−flow>>0..*

<<resource type>>

account type

<<typfication>>

deposit account

<<resource>>1<<resource−flow>>0..*

<<resource−flow type>>0..*

<<apply>>

0..*

(operation)
OP

(object)
OBOB

(object)
OP

Figure 9: (a) Pattern for modeling permissions, (b) an example.

Table 2: Entities and attributes of permission modeling pattern.

pattern name event type event type resource type resource resource type
attribute attribute

permission modification - account deposit account -
modeling create - account loan account -

pattern modification maximum account modification deposit account currency

specify the maximum amount of modification to a de-
posit account if foreign currency is involved. The use
of attributes with this pattern describes constraints on
operations and objects.
Example. Figure 9(b) shows a permission and also
uses currency and maximum modification attributes.
Our running example includes a simpler permission:
the ability to modify a deposit account regardless of
the maximum amount of modification and the pres-
ence of a foreign currency. Similarly, a power type
representation is possible for an account as shown
previously in Figure 6.

Table 2 presents the entities and attributes used for
describing permissions. The first two rows are cases
of the banking example, and the last row shows an ad-
ditional scenario in which the attributes of event and
resource types are also used.
Resulting Context. Using various combinations of
events, resources, and their attributes, we will be able
to describe permissions with a certain level of detail.

4.3 A Core Access Control Model by
Combining Patterns

Name. Core or Base Access Control Model Pattern
Context. A core or base access control model repre-
sents the basic functions of an authorization model. It
is desirable to describe authorization functions similar
to the explanation of business models. For instance,
RBAC0 represents a base access control model; ex-
cluding the constraints and role hierarchies from Fig-
ure 4 creates such a model.

Problem. How can a core access control model for
business processes be obtained using the same entities
and similar models of business processes? How can
access control policies be described such that these
policies are based on an access control model? The
synergy between an access control model and access
control policies previously mentioned (section 1) is
related to the latter question.
Solution. The combination of role modeling and user
assignments and permission patterns creates a base
model of authorization. Pattern combination has two
benefits: the combination of patterns enables us to
create an access control model (i.e., RBAC), and ac-
cess control policies can be described uniformly.
Example. Figure 10 shows the combination of these
patterns, and this combination presents an example of
a core RBAC model in which an employee role (i.e.,
teller) is determined in conjunction with one permis-
sion for this role.

Table 3 shows the policies of the banking example
from Figure 7. The columns of this table represent
the operation (event) type, object (resource) type, and
role used to define various access control policies. In
general, we use a table whose columns are REA enti-
ties or their attributes, or which are defined by these
entities and attributed (e.g., role) to express access
control policies. Figure 10(b) uses a UML class di-
agram and presents the first row of Table 3; the other
rows can be presented similarly. The policies of this
table can be described by an access control model:
this table presents policies based on the core RBAC.
Resulting Context. To summarize, the combination

ACCESS CONTROL MODELS FOR BUSINESS PROCESSES

495



<<grouping>>

status

responsibilities[1..*]

name

<<grouping>>

0..*

0..*

participate

0..*

<<agent>>

employee

<<agent>>

role attribute

teller role

specific responsibilities

<<group>>

employee type

daily end time

day of week performed

0..*<<apply>><<agent type>>

role 1

<<typification>>

daily start time

<<apply>>

<<agent group>>

employee group
0..*

role n

0..*

0..*

attribute b1

attribute b...

participate

<<typification>>

0..*

1

0..*
<<Policy>>

0..*

to Users (Agents)

Role Assignments 

attribute a...

1

0..*

agent group

<<agent type>>

attribute a1

0..*

0..*

<<typification>>

(operation)

currency

<<resource>>

<<apply>><<apply>>

deposit account

event type attribute a

event type attribute a... resource type attribute a...

resource type attribute a

<<resource type>>
10..* <<resource−flow type>>

0..*

0..* <<resource>><<resource−flow>>
<<event>>

(a)

0..* 0..*

<<apply>>

<<event>>

modification

<<event type>>

modification type
1

(b)

0..*

0..*

<<apply>>

0..*

<<typfication>>

0..* 1

<<resource−flow type>>

0..*

0..*

0..*

<<event type>>

1

1 0..*

1

<<typfication>>
<<typification>>

1

0..*

<<policy>>

teller deposit account modification policy

<<policy>>

an event on a resource
0..*

1

0..*

pattern

modeling

Permission 

0..*

1

0..*

pattern

user assignment 

Role modeling

<<resource−flow>>

deposit account type

<<resource type>>

kind

OP

(object)
OB

maximum modification

Figure 10: (a) A combination of two presented patterns, (b) an example.

Table 3: A table representation of policies for the banking example.

Permission
policies user type role operation type object type

(agent type) (event type) (resource type)
P1 employee teller modify deposit accounts
P2 employee customer service rep modify, create, delete deposit accounts
P3 employee accountant create general ledger reports
P4 employee accounting manager modify ledger posting rules
P5 employee loan officer create, modify loan accounts

of a role modeling and user assignments pattern with
a permission modeling pattern enables us to express a
large range of access control policies. This combina-
tion creates a core (base) access control model.

Furthermore, as Table 3 shows, it is possible to de-
scribe access control policies based on an access con-
trol model. For instance, a rule-based policy based
on the first row of this table states that if an agent is
an employee who fills the role teller, then a permis-
sion can exist for this role to allow the modification
of deposit accounts.

4.4 Modeling Constraints and Role
Hierarchies

In general, constraints constitute a majority of autho-
rization specifications because many such conditions
occur in reality. For instance, constraints are an im-
portant part of RBAC and are sometimes considered
“to be the principle motivation behind RBAC (Sandhu
et al., 1996).” Constraints are also very significant
components of any access control policies. In terms
of RBAC, constraints can be on roles, permissions,

SECRYPT 2010 - International Conference on Security and Cryptography

496



0..*

0..*

0..*

0..*<<apply>>0..*
<<policy>>

policy

role hierarchies

<<policy>>

mutually exclusive 

roles policy

mutually exclusive 

<<group>>

agent group

<<group>>

attribute b1

attribute b...

role hierarchies

1
<<typification>>

<<grouping>>

0..*

0..*

<<apply>>

0..*

<<grouping>> 0..*

<<agent>>
<<group>>

0..*

<<role>> 0..*

0..* <<grouping>>

roles 

participate

0..*

Figure 11: Role hierarchies and mutually conclusive roles.

role hierarchies, and sessions. A major category of
constraints is related to the separation of duties.
Constraints on Agents, Roles, and Permissions. the
role modeling and user assignments pattern can model
constraints on agents such as by using “daily start
time” or/and “day of week performed” attributes or
constrain roles using role attributes (Figure 8), as de-
scribed in Section 4.1. Similarly, the permission mod-
eling pattern can model constraints on permissions
(i.e., operations on objects) using an operation (e.g.,
a “maximum adjustment” attribute) and/or an object
(e.g., the “currency” attribute of Figure 9). With con-
straints, it is possible to specify that a pilot (i.e., a
role) based on “skill” or other attributes is authorized
to fly (an operation or an event) certain type of planes
(objects or resources).
Role Hierarchies and Mutually Exclusive Roles.
Both role hierarchies and mutually exclusive roles can
be viewed as cases in which constraints on roles ex-
ist. A variation of the role modeling and user assign-
ments pattern (Section 4.1) is used to describe both
these cases.
Name. A variation of role modeling and user assign-
ments pattern
Context for Role Hierarchies. Role hierarchies in
organizations express the line of authorities or respon-
sibilities and exemplify certain constraints or relation-
ships among roles. Role hierarchies represent a par-
tially ordered set and are written as RH ⊆ R × R: the
set of roles with a binary relationship of inheritance
between roles. Role hierarchies are usually visualized
by a diagram in which, by definition, the roles with
higher permissions are located at higher positions of
the diagram.
Context for Separation of Duties. Separation of du-
ties is a well-known principle and has two broad cat-
egories: static and dynamic; the dynamic one con-
tains several variations (Simon and Zurko, 1997).
The static separation of duty and the basic form of
dynamic separation of duty represent constraints on
roles and sessions, respectively. The static separation
of duty represents a strong exclusion of roles in which
no user can ever take both roles A and B if these two
roles are exclusive (e.g., that a purchaser and an ap-
prover of an order must be different people is a com-

mon example provided frequently in the literature).
The assumption for mutually exclusive roles indicates
that these roles cannot gain the permission of their
counterpart through using a third role or a combina-
tion of roles.
Problem. How are role hierarchies modeled? How
can this constraint on roles be added to the previously
presented core access model? In general, how can
an ordered set be represented in this context? Since
roles and agents are closely related, agents must be
included in this presentation. In addition, how can the
static separation of duties be modeled?
Solution. Figure 11 presents role hierarchies and mu-
tually exclusive roles in which an agent is also shown.
Example. In Figure 11, if a role is a teller, then
the role hierarchies group contains teller, customer
service rep, and branch manager. Similarly, when-
ever a role is that of a teller, the mutually exclusive
roles group includes teller, accountant, and loan offi-
cer roles.
Resulting Context. Role hierarchies are a partially
ordered set; therefore, not every member (i.e., role)
of this set can be compared with each other. For in-
stance, the privileges of a loan officer and an account-
ing manager cannot be compared. RBAC mentions
dynamic separation of duties whose support needs a
dynamic model. In our future work, using a more de-
tailed example than the ones provided by the banking
case study, we intend to describe a dynamic model in
which dynamic separation of duties is supported.

5 RELATED WORK

Ferraiolo and Atluri (Ferraiolo and Atluri, 2008) ask
whether the movement in access control research has
been toward a unifying model or a meta-model. They
also ponder whether such a unifying framework is a
practical approach in view of the existence of a wide
range of policies. Finin et al. (Finin et al., 2008)
present ROWLBAC for the integration of RBAC (as a
representation of an access control model) with OWL,
as a language describing access control policies.

Rule-based RBAC (RB-RBAC) (Al-Kahtani and
Sandhu, 2002) presents an approach in which users

ACCESS CONTROL MODELS FOR BUSINESS PROCESSES

497



are dynamically assigned to roles based on a finite set
of rules. The attributes of users are the determining
factors within the rules that assign roles to users. Sev-
eral extensions to RBAC exist; temporal RBAC (TR-
BAC) has been mentioned previously. Bertino et al.
[14] propose TRBAC, which enables periodic activa-
tion and deactivation of roles and allows roles to be ei-
ther active or inactive within a certain time. They pro-
vide the syntax and semantics of TRBAC and show
an example. Various policy languages exist. Cur-
rently, eXtensible Access Control Markup Language
(XACML) (OASIS, 2005) is the XML standard ac-
cess control policy language. Knowledgable Agent-
oriented System (KAoS) (Tonti et al., 2003) enables
specification and resolution of policy conflicts where
policies are specified as an ontology. Hruby (Hruby,
2006) presents REA as a group of business patterns,
organized into two categories: operational and policy.

6 CONCLUSIONS

We describe an approach in which both business pro-
cesses and access control policies are specified us-
ing the same foundational building blocks and similar
models. As a result, the two models can be easily in-
tegrated. Access control policies are described in two
formats: the UML class diagram and a table format.
It has also been explained that the policies have the
advantage of being based on the RBAC model. In ad-
dition, we describe the RBAC model as a combination
of patterns, explained uniformly as is common in the
pattern community.

REFERENCES
Al-Kahtani, M. and Sandhu, R. (2002). A model for

attribute-based user-role assignment. In ACSAC’02,
18th Annual Computer Security Applications Confer-
ence, pages 353–364. IEEE Computer Society.

Bertino, E., Bonatti, P., and Ferrari, E. (2000). TR-
BAC: A temporal role-based access control model. In
RBAC’00, Fifth Workshop on Role-Based Access Con-
trol, pages 21–30. ACM.

Blaha, M. and Rumbaugh, J. (2005). Object-oriented Mod-
eling and Design with UML. Pearson Prentice Hall,
New Jersey, 2nd edition.

Chandramouli, R. (2000). Application of XML tools
for enterprise-wide RBAC implementation tasks. In
RBAC’00, pages 11–18. ACM.

Ferraiolo, D. and Atluri, V. (2008). A meta model for ac-
cess control: Why is it needed and is it even possi-
ble to achieve? In SACMAT’08, 13th Symposium on
Access Control Models and Technologies, pages 153–
154. ACM.

Ferraiolo, D., Kuhn, D., and Chandramouli, R. (2007).
Role-Based Access Control. Artech House, Boston,
2nd edition.

Ferraiolo, D., Sandhu, R., Gavrila, S., Kuhn, D., and Chan-
dramouli, R. (2001). Proposed NIST standard for role-
based access control. ACM Transactions on Informa-
tion and System Security, 4(3):224–274.

Finin, T., Joshi, A., Kagal, L., Niu, J., Sandhu, R., Wins-
borough, W., and Thuraisingham, B. (2008). ROWL-
BAC: Representing role based access control in OWL.
In SACMAT’08, pages 73–82. ACM.

Fowler, M. (1997). Analysis Patterns: Reusable Object
Models. Addison-Wesley, Menlo Park, California.

Geerts, G. and McCarthy, W. (2006). Policy-level specifica-
tions in REA enterprise information systems. Journal
of Information Systems, 20(2):37–63.

Hruby, P. (2006). Model-Driven Design Using Business
Patterns. Springer-Verlag, New York.

Martin, J. and Odell, J. (1998). Object-Oriented Methods: a
Foundation, UML Edition. Prentice Hall, New Jersey,
2nd edition.

OASIS (2005). eXtensible Access Control Markup Lan-
guage (XACML), Version 2.0. Organization for the
Advancement of Structured Information Standards.

OMG (2009). Unified Modeling Language (UML) Super-
structure, Version 2.2. Object Management Group.

Ray, I., Li, N., France, R., and Kim, D. (2004). Using UML
to visualize role-based access control constraints. In
SACMAT’04, pages 115–124. ACM.

Sandhu, R., Coyne, E., Feinstein, H., and Youman, C.
(1996). Role-based access control models. IEEE
Computer, 29(2):38–47.

Simon, R. and Zurko, M. (1997). Separation of duty in role-
based environments. In CSFW’97, 10th Computer Se-
curity Foundations Workshop, pages 183–194. IEEE
Computer Society.

Tonti, G., Bradshaw, J., Jeffers, R., Montanari, R., Suri, N.,
and Uszok, A. (2003). Semantic web languages for
policy representation and reasoning: A comparison
of KAoS, Rei, and Ponder. In ISWC’03, 2nd Inter-
national Semantic Web Conference, pages 419–437.
Springer.

SECRYPT 2010 - International Conference on Security and Cryptography

498


