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Abstract: Sleep disorders affect a great percentage of the population. The diagnostic of these disorders is usually made 
by a polysomnography, requiring patient’s hospitalization. Low cost ambulatory diagnostic devices can in 
certain cases be used, especially when there is no need of a full or rigorous sleep staging. In this paper, 
several methods to extract features from 6 EEG channels are described in order to evaluate their 
performance. The features are selected using the R-square Pearson correlation coefficient (Guyon and 
Elisseeff, 2003), providing this way a Bayesian classifier with the most discriminative features. The results 
demonstrate the effectiveness of the methods to discriminate several sleep stages, and ranks the several 
feature extraction methods. The best discrimination was achieved for relative spectral power, slow wave 
index, harmonic parameters and Hjorth parameters. 

1 INTRODUCTION 

About a third of the population suffers from sleep 
disorders, including the obstructive sleep apnea 
syndrome (Doroshenkov et al, 2007). The diagnosis 
of such diseases is performed by a polysomnography 
(PSG) which requires the patient's hospitalization 
with costs and discomfort for the patient. 
Ambulatory diagnostic devices may have an 
important role in order to mitigate these factors. The 
PSG consists on the acquisition of various electrical 
biosignals including electroencephalogram (EEG), 
electrooculogram (EOG) and electromyogram 
(EMG). The signals are segmented into epochs of 30 
seconds and assigned to a sleep stage by an expert 
(Iber et al, 2007). This is a tedious and time 
consuming task. Automatic sleep stages 
classification (ASSC) is therefore an attractive 
solution. However, the general opinion is that most 
of the experts do not rely on ASSC software, 
because they usually present a low performance (i.e. 
present a high level of disagreement). One of the 
main reasons is due to the high variability between 
subjects which makes it difficult to obtain robust 
models for classification. The expert uses sometimes 
heuristics difficult to implement in the algorithms 

and combines a macro and micro perspective of the 
overall epochs. It should be highlighted that there is 
also some level of disagreement between experts.  

This work describes part of an apnea detection 
system to be used in ambulatory situations by 
patients at home. It does not intend to substitute the 
PSG, but only to determine primarily if the patient is 
sleeping at the occurrence of the apnea episode, and 
secondly to determine in which sleeping stage it did 
occur. The stage classification relies only on EEG 
signals. This paper investigates several feature 
extraction methods to compare their performance 
aiming to achieve improved results in the following 
sleep detection stages: wake (W) vs. sleep (S), 
NREM (NR) sleep vs. REM (R) sleep, NREM N1 
vs. NREM N2 + NREM N3, NREM N1 + NREM 
N2 vs. NREM N3, NREM N1 vs. NREM N2, 
NREM N2 vs. NREM N3 and NREM N1 vs. REM 
sleep (Iber et al, 2007). Moreover, a feature 
selection method based on the squared Pearson 
correlation coefficient (Guyon and Elisseeff, 2003), 
henceforth designated R-square criteria, is applied 
with the purpose of finding a reduced set of 
discriminative features. These features are used to 
provide additional information to the expert, and 
also to automatically classify each sleep stage with 
some   degree   of  certainty.   The  classification  is  
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Figure 1: Classification methodology. 

performed by a Bayesian classifier using 2-class 
detection. Scoring sleep is done according to rules of 
the American Academy of Sleep Medicine (AASM) 
Manual for Scoring Sleep (Iber et al, 2007), an 
actualization of the rules of Rechtschaffen and Kales 
(Rechtschaffen and Kales, 1968). According to 
AASM Manual, sleep is divided into five stages: 
wake, NREM (Non Rapid Eye Movement) sleep 
(N1, N2 and N3) and REM (Rapid Eye Movement) 
sleep. Considering only EEG signals, the wake stage 
is characterized by a low amplitude alpha activity 
(8-13 Hz); N1 by a low amplitude theta activity (3-7 
Hz); in N2 the predominant frequencies are in the 
0.7-4 Hz range and there is the arising of sleep 
spindles and K-complexes; N3 presents at least 20% 
of the epochs with delta activity (<2 Hz) with 
amplitude greater than 75 µV; REM is characterized 
by frequencies mostly between 2 and 6 Hz with low 
amplitude. Sleep staging based only on EEG 
presents some difficulties because different stages 
such as wake, REM and NREM N1 present similar 
patterns. The ASSC has been addressed by many 
research groups. In (Tang et al, 2007), Hilbert-Hang 
transform and wavelet transform were applied to 
extract harmonic parameters from EEG signals, 
(Hese et al, 2001) implemented a semi-automatic 
method based on k-means clustering algorithm. 
(Ebrahimi et al, 2008) used neuronal networks and 
wavelet packet coefficients to discriminate between 
different sleep stages. Doroshenkov et al. (2007) 
have developed a classification algorithm based on 
Hidden Markov Models using only EEG signals. 
(Zoubek et al, 2007) have used feature selection 
algorithms to find the relevant features extracted 
from PSG signals. Schwaibold et al (2003) have 
implemented a neuro-fuzzy algorithm to model the 
rules of Rechtschaffen and Kales. Although some 
studies show good performance, they are very 
limited to specific groups of patients and it has not 
been possible yet to create generalized models that 
provide results accepted by the experts. Moreover, it 
remains difficult to discriminate between certain 
sleep stages using only EEG signals.  

2 DATABASE 

Data from all-night PSG records were provided by 
the Laboratory of Sleep from Centro Hospitalar de 
Coimbra. The PSG was recorded by the model 
Somnostar Pro from Viasys at a sampling frequency 
of 200 Hz. The database comprises seven patients 
(five males and two females) with ages between 27 
and 64 years old (mean = 50 years; standard 
deviation = 12.88 years). Only six EEG channels 
were used: F3-A2, C3-A2, O1-A2, F4-A1, C4-A1 
and O2-A1. All recordings were segmented into 
epochs of 30 seconds and labelled by an expert. 

The dataset was initially composed by 6558 
epochs. In order to avoid the over-fitting in the 
learning and testing of algorithms, the number of 
sleep epochs in the database was reduced to 3000, 
balancing the distribution of epochs of different 
sleep stages according to a normal night sleep 
distribution as presented in Table 1. Since the sleep 
stages N2 and N1 are the ones with the highest and 
lowest occurrence during a normal night sleep, 
respectively, they were set as the stages with major 
and minor number of epochs in the dataset, 
respectively, and the other sleep stages have a 
number of epochs between these limits. 

Table 1: Full and reduced datasets. 

Sleep 
Stages 

 NREM  
Wake N1 N2 N3 REM 

Full 
dataset 1293 784 2431 1154 896 

Reduced 
dataset 560 410 760 520 750 

3 AUTOMATIC SLEEP SCORING 

The classification methodology is illustrated in the 
block diagram presented in figure 1. The EEG 
signals are filtered and segmented. Different types of 
features  extraction   are  used.  These  features  are  
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then selected using the correlation criteria R-square 
measure in order to provide the classification stage,  
a Bayesian-based classifier, with the most 
discriminative ones. The training process uses data 
from a pool of patients and some data from the 
patient being monitored, namely, the wake recorded 
epochs before the patient fall asleep. This way, the 
wake model can be improved. Moreover, the wake 
epochs can be used for calibration of sleep stages. 
The performance analysis of the of feature extraction 
algorithms was done through ten-fold cross 
validation. The patients’ database is partitioned into 
ten groups with the same number of epochs from 
each sleep stage. Nine of them are used to perform 
the models of classification and one for testing. This 
process is repeated 10 times using a different group 
for testing. 

4 FEATURE EXTRACTION AND 
SELECTION 

In ASSC, the EEG is traditionally analyzed in 
frequency domain because, according with AASM 
Manual, each sleep stage is essentially distinguished 
by some spectral properties. However, temporal 
analysis provides also useful information. For each 
EEG channel, 34 features were extracted using 
several methods as described in the following. 

Spectral analysis provides some of the most 
important features. For each sleep epoch, an 
autoregressive method solved by the Yule-Walker 
algorithm was applied to estimate the power spectral 
density (PSD) (Yilmaz et al, 2007). The spectrum is 
divided into ten frequency sub-bands as represented 
in Table 2.  

Table 2: Spectral sub-bands used in RSP computation. 

Bands Sub-bands 
Bandwidth 
{fL,fH} (Hz) 

Delta 
Delta 1 {0.5,2.0} 
Delta 2 {2.0,4.0} 

Theta 
Theta 1 {4.0,6.0} 
Theta 2 {6.0,8.0} 

Alpha 
Alpha 1 {8.0,10.0} 
Alpha 2 {10.0,12.0} 

Sigma 
Sigma 1 {12.0,14.0} 
Sigma 2 {14.0,16.0} 

Beta 
Beta 1 {16.0,25.0} 
Beta 2 {25.0,35.0} 

For each sub-band, the relative spectral power (RSP) 
was computed. This parameter is given by the ratio 

between the sub-band spectral power (BSP) and the 
total spectral power, i.e., the sum of all 10 BSP sub-
bands. This normalization is important to increase 
classification robustness during the recording 
session. 

Some spectral bands can be highlighted over 
slow wave bands by means of slow wave index 
(SWI) defined by the following ratios: 

/( )= +Delta Theta AlphaDSI BSP BSP BSP  (1)

/( )= +Theta Delta AlphaTSI BSP BSP BSP  (2)

/( )= +Alpha Delta ThetaASI BSP BSP BSP , (3)

where DSI, TSI and ASI stand for delta-slow-wave 
index, theta-slow-wave index and alpha-slow-wave 
index, respectively (Agarwal et al, 2001). 

Harmonic parameters allow the analysis of a 
specific band in the EEG spectrum. They include 
three parameters: center frequency (fc), bandwidth 
(fσ) and spectral value at center frequency (Sfc), 
defined as follows (Tang et al, 2007): 
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where, Pxx(f) denotes the PSD, which is calculated 
for the frequency bands {fL,fH} (see Table 2).  

The Hjorth parameters provide dynamic 
temporal information of the EEG signal. 
Considering the epoch x, the Hjorth parameters are 
computed from the variance of x, var(x), and the first 
and second derivatives x’, x’’ according to (Ansari-
Asl et al, 2007) 

)var(xActivity =  (7)

)var()'var( xxMobility =  (8)

2)'var()var()''var( xxxComplexity ×= . (9)

The entropy gives a measure of signal disorder 
and can provide relevant information in the detection 
of some sleep disturbs. It is computed from 
histogram of the EEG samples of each sleep epoch, 
according with (Zoubek et al, 2007) 
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where n is the number of samples within the sleep 
epoch, N is the number of bins used in computation 
of histogram and ni is the number of samples within 
the ith bin. 

The skewness is a measure of symmetry. The 
kurtosis is a measure of wether the data are peaked 
or flat relative to a normal distribution.  Defining the 
kth order moment mk as (Zoubek et al, 2007) 
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where n is the number of samples of an epoch and 
y  is the mean of these samples, the skewness and 

kurtosis are given by 

223 mmmskewness ×=  (12)
and  

224 mmmkurtosis ×= . (13)

Features are usually selected by wrapper or filter 
methods using sequential approaches. The results 
from wrappers methods are dependent of the choice 
of the classification algorithm. Our option fell on an 
R-square filter approach which is independent of the 
classifier, based on the Pearson correlation 
coefficient defined as (Guyon and Elisseeff, 2003): 
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=ℜ , (14)

where X and Y represent two random distributions of 
samples, and cov and var designates covariance and 
variance, respectively. Considering xi and yi as the 
sample values of feature i labelled with class 1 and 
class 2, respectively, the value R(i) for the feature i 
is given by: 
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where ix and iy  represent the mean value of xi and 
yi of the m samples. The R-square, computed as 
R(i)2, provide a level of discrimination between the 
two classes. High values of R-square indicate large 
inter-class separation and small within-class 
variance. The R-square provides a feature 
discrimination ranking. 

5 BAYESIAN CLASSIFICATION 

The conditional density function of the class i is 
modelled as a multivariate distribution under 
gaussian assumption 

( ) ( ) ( )( )1| , exp / 2T
i i i i iP Y K Y Yμ μ μ−Σ = − − Σ − , (16)

where, 
( )( )21221 i

nK Σ= π , (17)

Y is the feature vector resulting from concatenation 
of the extracted features, µi and Σi are respectively, 
the mean and covariance matrices computed for each 
class wi from the training data. The Bayes decision 
function is written as: 
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where P(wi) is the ith class prior probability and Δi 
an adjustment parameter to control the rate of false 
positives and false negatives (Heijden et al, 2004).  

6 RESULTS AND DISCUSSION 

The feature extraction process provides a vector of 
204 features, 34 features per each EEG channel: 10 
RSP, 3 SWI, 15 harmonic parameters, 3 Hjorth 
Parameters, 1 entropy feature, 1 skewness and 1 
kurtosis. Next, the features are sorted in a decreasing 
order of level of discrimination by applying the R-
squared based selection approach. Figure 2 shows 
the percentage of disagreement for wake/sleep 
detection between our ASSC system and expert 
classification (i.e. the percentage of epochs for 
which the automatic classification differs from 
manual classification made by the expert), as 
function of the number of features, i. e., the n-most 
discriminative features with n = 1,…,52. The 
disagreement values are obtained from a ten-fold 
cross validation. The lowest disagreement value was 
reached using the first 19 ranked features. Table 3 
presents the results for each binary classifier, using 
1, 2, 3, 19 most discriminative features and all 204 
features. Selecting the relevant features reduces the 
number of features used in the ASSC leading to an 
increased robustness of the classifiers. 

The feature selection also enables to identify the 
type of features and channels that lead to higher 
discrimination results for each 2-class discriminator  
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Figure 2: Percentage of disagreement vs. number of 
features used in wake vs. sleep classification. 

Table 3: Percentage of disagreement obtained using 1, 2, 3 
and the 19 most discriminative features and all 204 
features. 

 1 2 3 19 204 
W vs. S 11,4 10,7 8,8 7,0 16,7 
R vs NR 22,5 21,4 19,5 15,6 30,8 

N1 vs. N2/N3 15,1 15,7 15,7 10,6 72,5 
N1/N2 vs. N3 15,7 14,7 14,6 15,5 30,3 

N1 vs. N2 21,9 22,6 18,5 15,6 63,9 
N2 vs. N3 19,0 18,2 16,7 17,7 39,8 
N1 vs. R 25,5 24,7 24,4 25,0 64,7 

Mean 18,7 18,3 16,9 15,3 45,5 

(Table 4). As it can be seen, the feature entropy 
(Ent), Skewness (Skw) and kurtosis (Krt) never 
appear in the 20 most discriminative features. On the 
other hand, the most frequents are the RSP and 
harmonic parameters. Analyzing the origin of the 20 
most discriminative features for each case, the 
parameters of Hjorth (PHj) are most evident in 
N1/N2 vs. N3 and N2 vs. N3, but they have no 
weight in R vs. NR and N1 vs. R. The harmonic 
parameters are more frequent in W vs. S, N1 vs. 
N2/N3 and N1 vs. N2, but are not relevant in R vs. 
NR, N1 vs. N2/N3, N2 vs. N3 and N1 vs. R. For the 
RSP and SWI, they have a similar number of 
features in all discriminations, except for N1 vs. R, 
where the RSP has several features with good 
discrimination, and for N1 vs. N2, where SWI does 
not assume any importance. Analyzing the EEG 
channels, it can be seen that O1A2 (O1) and O2A1 
(O2) are the most relevant in discrimination wake 
vs. sleep; F3A2 (F3) and F4A1 (F4) in REM vs. 
NREM; and C3A2 (C3) and C4A1 (C4) in N2 vs. 
N3. In the remaining discriminations, they all have a 
relatively uniform distribution, except in N1 vs. R, 
in which the channels O1A2 and O2A1 do not have 
any type of contribution. Figure 3 shows the type of 
features and channels that lead to higher 
discrimination results, taking all discriminators 
together. Summarizing, the best ranked 
discriminative features never include entropy 
features, skewness or kurtosis. These parameters are 

related to the signal shape. However, since the EEG 
signal patterns are very random, it is difficult to 
obtain useful information from these parameters. 

Instead, the set of most discriminatory features 
between sleep stages was composed mainly by RSP 
and Harmonic Parameters. This result emphasizes 
the fact that the spectral analysis has more 
discriminative information than temporal signal 
analysis as already concluded in (Hese et al, 2001; 
Tang et al, 2007). 

Table 4: Number of feature type and channels within the 
20 most discriminative features. 
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Figure 3: Number of times that each group of features and 
each channel appears in the 20 most discriminative 
features. 

On the other hand, all the 6-six EEG channels 
provide useful features for sleep staging 
discrimination. Analyzing the results for each of the 
binary classifiers, there is greater disagreement in the 
case of N1 vs. R sleep. This situation relates to the 
fact that, in terms of EEG, the patterns presented in 
these two stages are very similar. Finally, a decision 
tree was implemented based on 2-class detection, as 
represented in Figure 4. At each step, a new level 
was introduced from a wake/sleep to all stages 
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classification. The results were compared with and 
without feature selection (Table 5). The 
improvements from feature selection are evident. The 
results obtained with our ASSC system are 
comparable to the ones obtained in other methods 
based on EEG only described in literature (zoubek et 
al, 2007; Doroshenkov et al, 2007). 

 

 
Figure 4: Decision tree based on 2-class detection. 

Table 5: Disagreement obtained with using 19 most 
discriminative features and all 204 in 2, 3, 4 and 5 sleep 
stages classification. 

Classification Diasagreement (%) 
All Features 19 

2 Class 36 7 
3 Class 62 18 
4 Class 83 22 
5 Class 83 29 

7 CONCLUSIONS 

In this paper, the use of several feature extraction 
methods was investigated in the context of EEG-
based sleep staging. The first conclusion was that the 
most discriminative features were determined by 
RSP, SWI, Harmonic Parameters and Parameters of 
Hjorth. All the 6-EEG channels provide useful 
information. On the other hand, the application of 
the feature selection method improved, in general, 
the process of discrimination by selecting the set of 
features that provided a lower percentage of 
disagreement. One of the biggest problems in 
automatic sleep staging based on EEG is the 
similarity between patterns of different sleep stages 
such as REM and NREM N1. This can be improved 
recurring to other biosignals, such as EOG and 
EMG. Another problem in ASSC is the high level of 
variability between patients. Using an ambulatory 
system, the patient can perform periodic recordings 
at home. This way, the first session can be fully 
analysed by the expert. The labelled data can be 
used to obtain classification models specific to the 
patient. Further sessions can then use these robust  
user-dependent      models.      This     approach     is  

under research presently. 
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