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Abstract: The wheeled mobile robot is a nonlinear system. The trajectory tracking problem is solved using the sliding 
mode control. In this paper an optimization technique is investigated in order to obtain the best values for 
the sliding mode control law parameters. The performances of the control law with the optimum parameters 
are analyzed in order to establish some rules. The conclusions are based on the simulation results. 

1 INTRODUCTION 

To solve the trajectory tracking problem for a 
Wheeled Mobile Robot (WMR) it is used a 
nonlinear model (Slotine and Li, 1991):  

 ( ) utxbtxfx n ⋅+= ),(),(  (1) 

where x is the state variable; ( ) ( )],,,,[ 1−= nn xxxxx …��� ; 
( )nx  is the nth-order derivative of x; f is a nonlinear 

function; b is the gain and u is the control input. 
The design of a variable structure control (VSC) 

(Gao and Hung, 1993) for a nonlinear system 
implies two steps: (1). "reaching mode" or 
nonsliding mode; (2). sliding mode. 

For the reaching mode, the desired response 
usually is to reach the switching manifold s, 
described by: 
 0)( =⋅= xcxs T  (2) 

in finite time with small overshoot with respect to 
the switching manifold. 

The distance between the state trajectory and the 
switching manifold, s is stated as: 
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where x~  is the tracking error and λ  is a strictly 
positive constant which determines the closed-loop 
bandwidth. For example, if n = 2, 
 

 xxs ~~ ⋅+= λ�  (4) 
Hence the corresponding switching manifold is 

s(t)=0. For a system having m inputs, m switching 

functions are needed. 
It is proved that the most important virtue of the 

VSC systems is robustness. Properly design of the 
switching functions for a VSC system ensures the 
asymptotic stability. A number of design criteria 
exist for this purpose (Utkin and Young, 1978; 
Dorling and Zinober, 1986). Sliding Mode is also 
known to possess merits such as the invariance to 
parametric uncertainties. Dynamic characteristics of 
the reaching mode are very important, and this type 
of control suffers from the chattering phenomenon 
which is due to high frequency switching over 
discontinuity of the control signal.  

The parameters of the control laws have to be 
positive, and their values influence the reaching rate 
and the chattering. The values of these parameters 
are not specified in the literature. In this paper the 
optimal values for these parameters will be searched.  

Many optimization methods were proposed in 
literature. Recently, the Particle Swarm Optimizer 
(PSO) proposed by Eberhart and Kennedy (Kennedy 
and Eberhart, 1995), gained a huge popularity due to 
its algorithmic simplicity and effectiveness. The 
PSO is presented in Section 2. Section 3 is dedicated 
to the Trajectory Tracking Problem for the WMR. 
This problem is solved within the Sliding Mode 
approach and the result is the sliding-mode 
trajectory-tracking controller. The parameters pi and 
qi of the control law are not specified in the 
literature. In Section 4 PSO is used to determine the 
optimal values of the control law parameters in order 
to ensure maximum possible reaching rate of the 
switching manifold and minimum chattering and the 
results obtained are presented. Section 5 is dedicated 
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to experimental results. Section 6 is dedicated to the 
conclusion and future work directions. 

2 PARTICLE SWARM 
OPTIMISATION ALGORITHM 

Particle swarm optimization (PSO) is one of the 
evolutionary computation techniques introduced in 
1995 (Kennedy and Eberhart, 1995). The algorithm 
is initialized with a population of random solutions 
and searches for optima by updating generations. 
One entity of the population is named particle. PSO 
makes use of a velocity vector to update the current 
position of each particle in the swarm. Each particle 
keeps track of its coordinates in the problem space 
which are associated with the best solution it has 
achieved so far. This value is called personal best. 
The fitness value of personal best is also stored. 

Another "best" position that is tracked by the 
PSO is the best one, obtained so far by any particle 
in the neighbours of the particle. This position is 
called local best. When a particle takes all the 
population as its topological neighbours, the best 
position is called global best. The PSO concept 
consists of, at each time step, changing the velocity 
of each particle toward its personal best and local 
best locations (local version of PSO). Every 
component of velocity is weighted by a random 
term, which assures the exploration of problem 
space. 

This process is iterated a set number of times, or 
until a stop criterion is achieved, for example a 
threshold of distance (absolute or relative) between 
the two last positions, below which it is not 
necessary to go. Using a population of solutions 
allows PSO to avoid, in most cases, convergence to 
local optimum. 

 
Figure 1: Diagram for the concept of 3-Stages approach. 

3 TRAJECTORY TRACKING 
PROBLEM 

In this paper the model used for the controlled robot 
is a 2-order MIMO (Multiply Input Multiply Output) 
nonlinear system that is "linear in control".  
The model and the control law used are: 

 utxxBtxxfx ⋅+= ),,(),,( ����  (5) 
 ),,( txxpu �=  (6) 

where [ ]nxxxx ,,, 21 "= , nx ℜ∈ , f is a vector of 

nonlinear functions, f∈L n
2 , B is a matrix of gains, 

nnB ×ℜ∈ ; ( ) 0det ≠B ; u is the control vector, nu ℜ∈ .  
For the 2nd-order MIMO nonlinear system 

having the model shown in (6) efficient sliding 
mode control can be achieved via the following 
stages (see Figure 1): 

1st reaching phase motion; during this stage the 
trajectory is attracted towards the switching 
manifold (if the reaching condition is satisfied); 
characterized by 0~,0~,0 ≠≠≠ iii xxs �  

2nd sliding mode motion; during this stage the 
trajectory stays on the switching manifold, i.e. 

0~,0~,0 ≠≠= iii xxs �  
3rd steady state; during this stage both the state 

variable and the state velocity will converge to the 
steady state value, therefore:  

⎪⎩

⎪
⎨
⎧

==
→→

=
0~,0~

0~,0~
and,0

ii

ii
i xx

orxxs �
�  

The reaching law is a differential equation which 
specifies the dynamics of a switching function s(x). 
The differential equation of an asymptotically stable 
s(x), is itself a reaching condition. In addition, by the 
choice of the parameters in the differential equation, 
the dynamic quality of the VSC system in the 
reaching mode can be controlled. 

Gao and Hung (Gao and Hung, 1993) proposed a 
reaching law which directly specifies the dynamics 
of the switching surface by the differential equation 

 )h(sPsgn(s)Qs ⋅−⋅−=�  (7) 

where  [ ] niqqqqdiagQ in ,,2,1,0,,,, 21 …" =>=   
            [ ] nippppdiag in ,,2,1,0,,,,P 21 …" =>=  
and ( ) ])sgn(,,)sgn(,)sgn([sgn 21

T
nssss "=  

T
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In this paper, a constant plus proportional rate 
reaching law proposed in Gao and Hung is 
investigated: 
 ( ) sPs ⋅−⋅−= ssgnQ�  (8) 
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Figure 2: WMR model and symbols. 

Clearly, by using the proportional rate term sP ⋅− , 
the state is forced to approach the switching 
manifolds faster when s is large.  

The purpose of the trajectory tracking is to 
control the non-holonomic WMR to follow a desired 
trajectory, with a given orientation relatively to the 
path tangent, even when different disturbances exist. 
In the case of trajectory-tracking the path is to be 
followed under time constraints. Trajectory tracking 
is formulated as having the WMR following a 
virtual target which is assumed to move exactly 
along the path with specified velocity profile. 

3.1 Kinematic Model of a WMR 

Figure 2 presents a WMR with two diametrically 
opposed drive wheels (radius R) and free-wheeling 
castors. Pr is the origin of the robot coordinates 
system. 2L is the length of the axis between the drive 
wheels. ωR and ωL are the angular velocities of the 
right and left wheels. Let the pose of the mobile 
robot be defined by the vector, T

rrrr yxq ][ θ=  where 
T

rr yx ][  denotes the robot position on the plane and 
θr the heading angle with respect to the x-axis. In 
addition, vr denotes the linear velocity of the robot, 
and ωr the angular velocity around the vertical axis. 

 
Figure 3: Lateral, longitudinal and orientation errors  
(trajectory-tracking). 

For a unicycle WMR rolling on a horizontal plane 
without slipping, the kinematic model can be 
expressed by: which represents a nonlinear system. 
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3.2 Trajectory-tracking 

Without loss of generality, it can be assumed that the 
desired trajectory T

dddd ttytxtq )]()()([)( θ=  is 
generated by a virtual unicycle mobile robot (see 
Figure 3). The kinematic relationship between the 
virtual configuration qd(t) and the corresponding 
desired velocity inputs T

dd ttv )]()([ ω  is analogue 
with (9): 
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When a real robot is controlled to move on a 
desired path it exhibits some tracking error. This 
tracking error, expressed in terms of the robot 
coordinate system, as shown in Figure 3, is given by 
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Consequently one gets the error dynamics for 
trajectory tracking as 
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3.3 Sliding-mode Trajectory-tracking 
Control 

Uncertainties which exist in real mobile robot 
applications degrade the control performance 
significantly, and accordingly, need to be 
compensated. In this section, is proposed a sliding-
mode trajectory-tracking (SM-TT) controller, in 
Cartesian space, where trajectory-tracking is 
achieved even in the presence of large initial pose 
errors and disturbances. 

Let us define the sliding surface Tsss ][ 21=  as 

 ee xkxs ⋅+= 11 �  

 eeee ysgnkykys θ⋅⋅+⋅+= )(022 �  (13) 
where k0, k1, k2 are positive constant, xe, ye and θe are 
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Figure 4: SM-TT controller parameters optimization with PSO. 

the trajectory-tracking errors defined in (11). 
If s1 converges to zero, trivially xe converges to 

zero. If s2 converges to zero, in steady-state it 
becomes eeeee ysignkyky θ⋅⋅−⋅−= )(0� . 
For 00 >⇒< ee yy � if only if eeykk θ/20 ⋅< . 
For 00 <⇒> ee yy �  if only if eeykk θ/20 ⋅< . 
Finally, it can be known from s2 that convergence of 
ye and ey�  leads to convergence of θe to zero. 

From the time derivative of (13) and using the 
reaching laws defined in (8), yields: 
    ( ) 1spssgnqxkxs 111e1e1 ⋅−⋅−=⋅+= ����  
 ( ) =⋅⋅+⋅+= eeee ysgnkykys θ����� 022  (14) 
 ( ) 2222 spssgnq ⋅−⋅−=  

From (11), (12) and (14), and after some 
mathematical manipulation, the output commands of 
the sliding-mode trajectory-tracking controller 
result: 
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2
1V  as a Lyapunov function 

candidate, therefore its time derivative is 
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For V�  to be negative semi-definite, it is sufficient to 
choose qi and pi such that qi, pi ≥ 0.  
But   the   optima   values   for   qi,   pi ≥  0  will  be  
determined in the next section. 

The signum functions in the control laws were 
replaced by saturation functions, to reduce the 
chattering phenomenon (Slotine and Li, 1991). 

4 SLIDING MODE 
CONTROLLER PARAMETERS 
EVALUATED WITH PSO 

Solving the Trajectory Tracking Problem with a 
SMC, leads to the reaching laws (15). In literature, 
the parameters q1, q2, p1 and p2 are usual 
determined through experiments (Solea and 
Cernega, 2009) and have great impact on the 
performance of the controller. q1, q2 influence the 
rate at which the switching variable s(x) reach the 
switching manifold S. Parameters p1, p2 force the 
state x to approach the switching manifolds faster 
when s is large. 

Choosing parameters through experiments only 
depends on experience or repeated debugging. In 
this paper is presented a method of choosing the 
parameters of the Sliding Mode Controller using the 
PSO algorithm. The advantages of PSO are: 
simplicity and efficiency, proven in many other 
parameters training problems (Mendes et al., 2002; 
Kim et al., 2008). The optimisation algorithm is 
working off-line. The P and Q parameters found by 
PSO can be used in real-time implementation of 
SM-TT controller on PatrolBot Robot (see Figure 4). 

PSO algorithm is generating, at each step, a 
number of solutions equal to the number of particles. 
The quality (fitness) of the solutions is evaluated 
with the objective function. PSO algorithm requires 
current solutions fitness to calculate new solutions at 
the next iteration. The objective function used in 
PSO takes into account booth the speed  of  reaching  
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Figure 5: The evolution of best value found by PSO and of 
the mean criterion function over all particle. 

manifolds and the amplitude of the chattering. This  
is accomplished using the sum of root mean square 
of the two errors xe and ye (11). The evaluation of 
every set of parameters is achieved after running a 
numerical simulation of the SM-TT control structure 
implemented in a Matlab Simulink schema that 
contains the model of the robot. 

The horizon of simulation and initial conditions 
are chosen to allow a correct comparison between 
sets of parameters. The step of simulation is selected 
according to the one used to control the PatrolBot. 

Let us suppose that the swarm is composed by  
n particles. Each particle i is recorded as a structure 
that transfer from the current iteration t to the next 
iteration the four elements specified below: 

• The current position of ith particle in the 
search space at the moment t is given through a 
vector with 4 components 

xi(t)=(xq1i(t), xq2i(t), xp1i(t), xp2i(t)). 
• The current velocity vi(t) of i particle is a 

vector with components for each direction of the 
search space too. 

• The best position found up to now by this 
particle is given by a vector li(t) with the same 
meaning as xi(t). 

• The quality of personal best position li(t). 
In order to compute the next position where to 

move, every particle of the swarm needs one more 
information: the best position found by its 
neighbours stored in the vector gi(t). Generally, this 
is written simply x, v, l, and g. The dth component of 
one of these vectors is indicated by the index d, for 
example xd. With these notations, the motion 
equations of a particle are, for each dimension  
d∈{ q1i, q2i, p1i, p2i}: 
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The   confidence   coefficients   are   defined   as  

 
Figure 6: Simulated trajectory with the parameters value 
found by PSO. Experimental SM-TT control starting from 
an initial error state (xe(0) = -0.5, ye(0) = -0.5, θe(0) = 0). 

follows: 
• c1  is  (confidence  in its own movement) the 

• inertia weight, with linear variance from 0.9 
to 0.4. 

• c2, c3 (respectively confidence in its best 
performance and that of its best informant) are 
randomly selected at each step according to an 
uniform distribution in the interval [0, cmax]. 

A circular neighbourhood is used as graph of 
influence. 

5 EXPERIMENTAL RESULTS 

Based on the above analysis, mathematical 
simulation software MATLAB was used to 
accomplish the experiment simulation study.  

The mobile robot PatrolBot used in simulation is 
assumed to have the same structure as in Figure 2. 
Parameter values of the PatrolBot are: mass of the 
robot body 46 [Kg], radius of the drive wheel  
0.095 [m], and distance between wheels 0.48 [m]. 
The parameters of sliding modes were held constant 
during the experiments: k1 = 0.75, k2 = 3.75, and  
k0 = 2.5; and the desired trajectory is given by  
vd = 0.5 [m/s], ωd = 0 [rad/s]. 

The experiments were done on the robot with the 
initial error (xe = -0.5 [m], ye= -0.5 [m], θe = 0 [deg]) 
and used the reaching law (8). 

Settings, used in Matlab implementation of PSO 
algorithm, are: particle number n = 20; maximal 
number of iteration = 30, cmax =1.9. The criterion 
function used for solution evaluation are the sum of 
root mean square (RMS) of the two errors 
longitudinal - xe and lateral - ye. RMS error is an old, 
proven measure of control and quality. Taking into 
account that parameters must be positive and value 
too large can causes chattering, the search interval 
for each SM parameters was selected to be [0.01 5]. 

In Figure 5 the evolution of criterion function  
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Figure 7: Longitudinal, lateral and orientation errors for 
experimental SM-TT control. 

 
Figure 8: Sliding surface for SM-TT controller. 

best value found by PSO is presented. Average value 
of criterion function for all particles is also recorded. 
Note that a number of 15 iterations are sufficient to 
find a good set of values of parameters. 

The parameters values for the considered 
PatrolBot, found by PSO are q1=0.4984, q2=1.9075, 
p1=1.0230 and p2=2.4872. 

In Figures 6 and 7, the simulation results for the 
case of optimised parameters are presented. 

In Figure 8 the two sliding manifolds are 
represented. In Figure 8 one can also see the value of 
the reaching time.  

Figure 9 presents the response of the robot 
corresponding to the situation of a poor choice of the 
control law parameters without any optimisation. 
It is easy to see the difference between the 
performances between Figures 6 and 9. 

 
Figure 9: An unfavourable case of experimental SM-TT 
control. 

6 CONCLUSIONS 

The paper proposed an efficient method to determine 
the optimum set of parameters for the sliding mode 
controller. The PSO algorithm proved to be adequate 
for this problem because it eliminates the need for 
repeated simulations in order to find a satisfactory 
set of parameters. The tests have proven that this 
optimization technique is efficient for the problem to 
be solved. A very good solution without chattering 
was found in a quite acceptable time interval and 
number of iterations. 

The search of the optimum values for the sliding 
mode trajectory tracking control laws parameters 
was done in order to use, in the future, such 
optimum parameters into a supervised control 
structure having the ability to switch between 
different controllers. 
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