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Abstract: In this work we give technical conditions which guarantee the global attractivity of bacterial linear metabolic
pathways (reversible and irreversible structures) where both genetic and enzymatic controls involve the end
product through metabolic effectors. To reach this goal, we use the negative feedback theorem of the monotone
control systems theory, and we represent all conditions needed to apply the negative feedback theorem to the
bacterial linear metabolic pathways in convenient deduced forms.

1 INTRODUCTION

The bacterial metabolic machinery and its regulation
make up a complex system involving many cellular
components such as metabolites and enzymes. In
this paper, we focus on the dynamical behavior of the
control structures used in a large number of bacterial
biosynthesis pathways where both the genetic and en-
zymatic controls involve the last product as metabo-
lite effector (Goelzer et al., 2008). Stability analysis
of these biological structures is recognized as an issue
of great importance in order to deduce key biological
properties of the bacterial metabolic pathways. In the
literature, many studies focused on the analysis of the
metabolic and genetic networks separately. For in-
stance, using the stability results about cyclic dynam-
ical systems (Tyson and Othmer, 1978), (Sanchez,
2009), (Arcak and Sontag, 2006), one can state nice
stability conditions of the irreversible linear metabolic
pathways with allosteric regulation. One can also use
the stability results about tridiagonal systems (Angeli
and Sontag, 2008), (Wang et al., 2008) to analyze the
stability of the reversible metabolic pathways. How-
ever, few works have considered structures with both
genetic and allosteric regulation. Thus, in this pa-
per we investigate stability of the common structures
shared by many bacteria cells and yeasts. These struc-
tures are called end product structures, because both
genetic and enzymatic controls involve the end prod-
uct of the pathway (Grundy et al., 2003), (Gollnick
et al., 2005), (Goelzer et al., 2008).

We will use the monotone control system theory

developed in (Angeli and Sontag, 2003) to deal with
stability issue of biological systems. In particular,
the negative feedback theorem has been applied to a
model of Mitogen-Activated Protein Kinase (MAPK)
cascades in (Angeli and Sontag, 2003), and more re-
cently to Goldbeter’s circadian model (Angeli and
Sontag, 2008). The main contribution of this work
consists in providing technical conditions to check all
the required assumptions to apply the negative feed-
back theorem to end product structures (under irre-
versible and reversible forms).

This paper is structured as follows. Section 2
presents the mathematical models for the linear re-
versible and irreversible bacterial metabolic pathways
and states the main results of this paper which consist
in propositions 1 and 2. Section 3 recalls some def-
initions and properties of monotone control systems
theory and introduces the negative feedback theorem.
Section 4 addresses the stability analysis of the dy-
namical models introduced in section 2 and proves the
two propositions.

2 LINEAR METABOLIC
PATHWAYS

Consider a linear pathway with n metabolites in-
volved in enzymatic reactions, an input flux n1 and
an output flux nn as depicted in Figure 1. Each Xi
and Ei correspond to a metabolite and an enzyme re-
spectively. We assume that the pool X1 of the first
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Figure 1: End product control linear structure.

metabolite is maintained by the input flux n1 which
corresponds to a supply flux. Hence its concentration
x1 is strictly positive constant. The output of the path-
way is the flux nn which corresponds to the bacterium
requirement for the metabolite Xn. Hereafter, for each
i 2 f2; : : : ;ng we denote by xi the nonnegative con-
centration of the metabolite Xi, and by Ei the assumed
constant positive concentration of the enzyme Ei. The
three phenomena, enzymatic reactions, allosteric reg-
ulation and genetic regulation (with respect to E1),
presented in Figure 1 can be described by a set of in-
terconnected nonlinear differential equations. In the
sequel, we analyze global stability of two types of the
interconnected differential equations, namely the re-
versible and irreversible metabolic pathways.

2.1 Reversible Pathways

The common end product structure of linear re-
versible metabolic pathways is described by the fol-
lowing dynamical system:8>>>><>>>>:

ẋ2 = E1 f1(x1;x2;xn)�E2 f2(x2;x3)
ẋ3 = E2 f2(x2;x3)�E3 f3(x3;x4)
...

...
...

...
ẋn = En�1 fn�1(xn�1;xn)�En fn(xn)
Ė1 = g(xn)�µE1

(1)

where the Lipschitz functions fi denote the reaction
rates of the enzymes Ei. Note that, in the reversible
structures all reaction rates depend on the product and
substrate concentrations and have the following prop-
erties:

� For the first enzyme: we assume that the metabo-
lite Xn modulates the activity of the enzyme E1
through, for example, an allosteric effect. The
function f1(x1;x2;xn) is increasing in its first ar-
gument and decreasing with respect to its second
and third arguments, and we have for any x1 > 0,
x2 � 0 and xn � 0, f1(x1;x2;xn) > 0 and for any
xn � 0; f1(0;0;xn) = 0. In addition, there exists

M1 > 0 such that for any x1 > 0; x2� 0 and xn� 0,
f1(x1;x2;xn) 2 [0; M1). We also assume that for
any x1 > 0 and xn � 0 there exists x�2 > 0 such
that f1(x1;x�2;xn) = 0. Finally, for any x1 > 0 and
x2 > 0 we have,

lim
xn!+¥

f1(x1;x2;xn) = 0:

� For the intermediate enzymes: fi; i 2 f2; : : : ;n�
1g; is increasing in xi and decreasing in xi+1.
For any xi > 0; fi(xi;0) > 0, and for any xi+1 >
0; fi(0;xi+1) < 0 and fi(0;0) = 0. Moreover,
there exists Mi > 0 and M0i � 0 such that for any
xi > 0 and xi+1 � 0, fi(xi;xi+1) 2 (�M0i ; Mi). Fi-
nally, we assume that for any xi > 0 there exists
x�i+1 > 0 such that fi(xi;x�i+1) = 0:

� For the final enzyme: En describes the properties
of the remainder part of the metabolic network
and summarizes the relation between the flux sup-
plied by the pathway and the final concentration.
The properties of fn mainly depends on the prop-
erties of the next modules, and generally fn is a
strictly increasing, positive and bounded function
in xn such that

fn(0) = 0; lim
xn!+¥

fn(xn) = Mn:

The dynamics of the enzyme concentrations during
the exponential growth phase are mostly the result of
two phenomena: (i) the de novo production (ii) the di-
lution effect caused by the increase of the cell volume.
For this, in the last equation of (1), we have consid-
ered that the control of the concentration of the first
enzyme is regulated by the concentration of the final
metabolite xn, where µ is the growth rate of the bac-
terium assumed to be in the exponential growth phase.
The term g(xn) corresponds to the instantaneous pro-
duction of the enzyme E1 modulated by a metabolite
(implicitly through a transcription factor). The con-
tinuous function g(:) is positive strictly decreasing in
the end product xn with g(0) = gmax, gmax > 0 and

lim
x!+¥

g(x) = 0:

After the detailed description of the dynamical
model of the linear reversible metabolic pathway, we
state below the main results of this paper about its
global attractivity.

Stability Results. Let us start by setting three hy-
potheses and then we introduce our first proposition.

� Hypothesis H1: The n�1�n�1 Tridiagonal ma-
trix,
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where 8i; j 2 f2; : : : ;ng

qi; j = sup
�¶(Ei�1 fi�1(:)�Ei fi(:))

¶x j

�
;

is Hurwitz.

� Hypothesis H2: The inequality En�1Mn�1 �
EnMn is verified.

� Hypothesis H3: The graph of the scalar function

T (u) = g� ky(u)

and that of its reciprocal function T�1(u) have a
unique intersection point on the open interval u 2
(0;gmax).

The scalar function ky(:) is the static input-output
characteristic associated to the monotone part of (1)
(resp. (2)), see Definition 2 in subsection 3.1.

Proposition 1. If H1, H2 and H3 are satisfied, then for
any x1 and En, the reversible end product structure (1)
has globally attractive equilibrium.

2.2 Irreversible Pathways

The main difference between the irreversible and the
reversible metabolic pathways is in the reaction rates
fi for the first and intermediate enzymes. Indeed, here
we assume that the reaction rates depend only on the
substrate concentration and have the following prop-
erties:

� For the first enzyme. We assume that the function
f1 is increasing in its first argument and decreas-
ing in its second argument and for any x1 > 0,

lim
xn!+¥

f1(x1;xn) = 0:

In addition, we have for any xn � 0; f1(0;xn) = 0
and there exists M1 > 0 such that for any x1 > 0
and xn � 0; f1(x1;xn) 2 [0;M1).

� For the intermediate enzymes: fi i2 f2; : : : ;n�1g
is strictly increasing in xi and fi(0) = 0. More-
over, there exists Mi > 0 such that

lim
xi!+¥

fi(xi) = Mi:

Then, the end product structure of the linear irre-
versible metabolic pathways is described by the fol-
lowing dynamical system8>>>><>>>>:

ẋ2 = E1 f1(x1;xn)�E2 f2(x2)
ẋ3 = E2 f2(x2)�E3 f3(x3)
...

...
...

...
ẋn = En�1 fn�1(xn�1)�En fn(xn)
Ė1 = g(xn)�µE1:

(2)

Stability Results. Now, we state the contribution of
this paper concerning the global attractivity of the ir-
reversible metabolic pathway (2).

� Hypothesis H4: for each i 2 f2; : : : ;ng the in-
equality is verified E1M1 � EiMi, where E1 is the
upper bound of all solutions E1(t).

Proposition 2. The irreversible end product structure
(2) has globally attractive equilibrium for any x1 and
En if hypotheses H3 and H4 are satisfied.

To prove Proposition 1 and Proposition 2, we will
use the monotone control system theory, in particu-
lar the negative feedback theorem. Thus, we present
briefly this theory in the next section and then we give
the proofs in section 4.

3 MONOTONE CONTROL
SYSTEMS

Monotone control systems theory (Angeli and Son-
tag, 2003) is an extension of the autonomous mono-
tone system theory (Smith, 1995). Briefly, monotone
control system is a dynamical system on an ordered
metric space which has the property that ordered ini-
tial states and ordered inputs generate ordered state
trajectories and ordered outputs. In other words, a
controlled dynamical system (3),�

ẋ(t) = f(x(t);u(t))
y(t) = h(x) ; x(t0) = cst; (3)

where x(t) 2 X � Rn and u(t) 2 U � Rm, is
said monotone if the following implication holds:
8(x1(t0); x2(t0)) 2 X2 and 8(u1(t); u2(t)) 2 U2,

x1(t0)� x2(t0);u1(t)� u2(t))
x1(t;x1(t0);u1(t))� x2(t;x2(t0);u2(t)) 8t > t0

(4)
where x(t;x(t0);u(t)) represent the state trajectory
generated by (3) with x(t0) as initial state and u(t)
as input. The dimensions of the vectors x, u and y are
respectively n, m and p.

Here, we consider that � is the classical lower or
equal comparison operator �, applied component by
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component. Systems that are monotone with respect
to this order are called cooperative systems, as all
state variables have a positive influence on one other
and the inputs act positively on state variables.

Proposition 3. The dynamical system (3) is coopera-
tive if and only if the following properties hold:

¶ fi
¶x j

(x;u)� 0 8x 2 X;8u 2 U;8i 6= j
¶ fi
¶u j

(x;u)� 0 8x 2 X;8u 2 U;8i; j
¶hi
¶x j

(x)� 0 8x 2 X;8i; j

(5)

Proof. See (Angeli and Sontag, 2003; Angeli and
Sontag, 2004).

After this brief recall about monotone control sys-
tems, we now introduce in the next the negative feed-
back theorem which states stability conditions for
monotone control systems with negative feedback.

3.1 Stability Analysis with Monotone
Control System

Recently, the negative feedback theorem of the mono-
tone control system theory is used to analyze stability
of several biological systems. Indeed, this theorem
allows, under some conditions, to obtain the globally
attractive stable steady state of non-monotone dynam-
ical systems. Here we give some definitions and as-
sumptions needed to state the negative feedback the-
orem.

Definition 1 (Angeli and Sontag, 2003). We say that
the SISO dynamical system (3) (m = p = 1) admits an
input to state static characteristic kx(:) : U!X if, for
each constant input u 2U, there exists a unique glob-
ally asymptotically stable equilibrium noted kx(u).

Definition 2 (Angeli and Sontag, 2003). SISO sys-
tem with an input-state characteristic and with a con-
tinuous output map y = h(x) has an input to out-
put characteristic defined as the composite function
ky(u) = (h�kx)(u):

Note that, if the system (3) (with m = p = 1) is
cooperative and admits a static input-state character-
istic kx and static input-output characteristic ky, then
kx and ky must be increasing with respect to u, viz.

8 (u1;u2) 2 U2; u1 � u2 , kx(u1)� kx(u2);
ky(u1)� ky(u2):

Assumptions. Consider the non-monotone au-

tonomous system given by (6)

ẋ(t) = F(x); (6)

and let us state the following assumptions,

� H5: Any state trajectory generated by system (6)
is bounded.

� H6: System (6) is decomposable into an open loop
SISO monotone control system (7)�

ẋ(t) = f(x;u)
y(t) = h(x); (7)

closed by a monotone decreasing feedback law
fb : y�! u as depicted in Figure 2.

( ) ( , )
( )

t u
y h

=⎧
⎨ =⎩

x f x
x

 

( )bf y  

y  u  

  

Figure 2: System (6) in closed loop configuration.

� H7: Open loop system (7) admits a well-defined
static input-output characteristic ky(:).

Then, we can introduce the negative feedback theo-
rem.

Theorem 1. Let (8) be a discrete scalar dynamical
system associated to the continuous non-monotone
system (6)

u j+1 = ( fb � ky)(u j): (8)

If this iteration has a globally attractive fixed point u�

on an open interval Ux, then the autonomous system
(6), provided that the assumptions H5, H6 and H7 are
satisfied, has a globally attracting steady state x� =
kx(u�):
Proof. See (Angeli and Sontag, 2003).

Hereafter, we give proofs of our main results
stated in subsections 2.1 and 2.2.

4 PROOF OF THE MAIN
RESULTS

In this section, we prove that propositions 1 and 2
are consequences of Theorem 1. We start with the
irreversible metabolic pathways, for which the static
input-state characteristic of its monotone part is eas-
ier to establish. Then we will focus on the reversible
pathways.

4.1 Irreversible Structure

In this subsection we will show that the technical
Proposition 2 is a consequence of Theorem 1.
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Checking Assumption H5. First of all, let us prove
the boundedness of the controlled enzyme E1 which
is governed by the following differential equation

Ė1 = g(xn)�µE1: (9)

By definition we know that g(:) is bounded, viz.
8xn; g(xn) 2 (0;gmax]. Then, for any xn the solution
E1(t) of (9) is framed by

Ě1(t)� E1(t)� Ê1(t);

where Ě1(t) and Ê1(t) are respectively the solutions
of the following stable linear differential equations

˙̌E1 =�µĚ1 and ˙̂E1 = gmax�µÊ1:

Thus, there exists

E1 > 0 j 8t � 0; E1(t)� E1:

Now, consider the first differential equation of (2)

ẋ2 = E1 f1(x1;xn)�E2 f2(x2)
� E1M1�E2 f2(x2):

We know that f2(:) is positive increasing and
bounded. Then if

E1M1 � E2M2; (10)

there exists x?2 such that E2 f2(x?2) = E1M1, and we
obtain

8x2 > x?2; ẋ2 � 0;
namely the solution x2(t) decreases towards x?2 and
then the metabolite concentration x2 is bounded. In
addition, for any initial condition x2(t0) there exists
t? � t0 such that,

8t � t?; E2 f2(x2(t))� E2 f2(x?2) = E1M1:

To proof the boundedness of the remainder metabolite
concentrations, we use mathematical induction. As-
sume that xi is bounded, viz. the following inequality
is satisfied

E1M1 � EiMi; (11)
and there exists (t?;x?i ) such that for all t � t?

Ei fi(xi(t))� Ei fi(x?i ) = � � �= E2 f2(x?2) = E1M1:

Then, for t � t? the dynamics of the next metabolite
concentration xi+1 is bounded by

ẋi+1 = Ei fi(xi)�Ei+1 fi+1(xi+1)
� Ei fi(x?i )�Ei+1 fi+1(xi+1)
= E1M1�Ei+1 fi+1(xi+1):

Hence we show, with the same way used to prove the
boundedness of x2, that inequality (12) guarantees the
boundedness of the metabolite concentration xi+1.

E1M1 � Ei+1Mi+1: (12)

Therefore H4 guarantees the boundedness of the all
state trajectories generated by (2), namely H5.

Checking Assumption H6. System (2) is not
monotone. However, we can regard it as a coopera-
tive controlled system (13), which has a triangular Ja-
cobian matrix DF(x) with nonnegative off-diagonal
entries, closed by a negative feedback (14),

� Open loop (cooperative system)8>>>>>><>>>>>>:

ẋ2 = E1 f1(x1;g�1(u))�E2 f2(x2)
ẋ3 = E2 f2(x2)�E3 f3(x3)
...

...
...

...
ẋn = En�1 fn�1(xn�1)�En fn(xn)
Ė1 = u�µE1
y = xn

(13)

� Negative feedback

u = g(y) (14)

where g�1(:) is the reciprocal function of g(:) and u2
(0;gmax) since g(:) 2 (0;gmax]. This verifies H6.

Checking Assumption H7. The static input-state
characteristic kx(u) of (13) is computed at steady
states corresponding to constant inputs u. Thus, we
vanish all the time derivatives of (13) to obtain:

kT
x (u) =

�
f�1
2
� f1(x1;g�1(u))u

E2µ
�
; : : : ; f�1

n
� f1(x1;g�1(u))u

Enµ
�
; u

µ
�

(15)
and for the static input-output characteristic we have:

ky(u) = f�1
n
� f1(x1;g�1(u))u

Enµ

�
(16)

Since functions fi(:); i = 2; : : : ;n are bounded, the ex-
istence of (15) is conditioned by the following in-
equalities:

8i; 8u 2 (0;gmax);
f1(x1;g�1(u))u

Eiµ
�Mi

which are always true if assumption H4 is verified.
Moreover, as system (13) is cooperative, both static
characteristics ((15) and (16)) are increasing with re-
spect to u.

Now, to prove that for each constant input u 2
(0;gmax) there exists a unique globally asymptotically
stable equilibrium point kx(u) for (13), we consider
separately the dynamics of the enzymatic reactions
(ẋ2; : : : ; ẋn)

T and that of the genetic regulation Ė1.

� The growth rate µ of the bacteria is constantly pos-
itive. Then for each constant input u all the so-
lutions generated by the dynamics of the genetic
regulation converge asymptotically to u

µ .

� The Jacobian matrix DF(x) of the dynamics of
the enzymatic reactions is a lower triangular ma-
trix with nonnegative off-diagonal entries and real
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negative eigenvalues. Then �DF(x) is a M-
Matrix (Berman and Plemmons, 1994) and there
exists a diagonal matrix P= diag(p1; : : : ; pn) with
pi > 0 such that

9e > 0; 8x; PDF(x)+DF(x)T P <�eIn�1:
(17)

Consequently, we can state that the dynamics
of the enzymatic reactions have a well defined
quadratic Lyapunov function:

V (z) = zT Pz;

where z = x�x�, x�i = (kx(u))i; i = 2; : : : ;n and

V̇ (z) = zT P[f(x;u)� f(x�;u)]
= zT R 1

0 PDF(lz+x)zdl

= 1
2 zT R 1

0 (PDF(lz+x)+DF(lz+x)T P)dlz
� � 1

2 e k z k2

(18)
Hence, for each constant input u 2 (0;gmax), any so-

lution of the open loop system (13) converges asymp-
totically to the unique steady state given by (15). This
verifies assumption H7.

Now, to complete the proof that the Proposition
2 is consequence of Theorem 1, we will show that
assumption H3 implies the global attractivity of the
following scalar discrete dynamical system

u j+1 = g( f�1
n (

f1(x1;g�1(u j))u j

Enµ
)) (19)

To do so, (i) we prove existence and unicity of a fixed
point u� for (19); and (ii) we give convenient condi-
tion which guarantee its global attractivity.

Existence and Unicity. To prove this property, it
is sufficient to show that the curves of the functions
g�1(u) and ky(u) have a unique intersection point over
the interval (0;gmax). Since:

� ky(u) is is monotone increasing with respect to u
and for u= 0, ky(0)� 0 and limu!gmax ky(u)=+¥

� g�1(u) is monotone decreasing with respect to
u and limu!0 g�1(u) = +¥ and for u = gmax,
g�1(gmax) = 0,

then the two curves have a unique intersection point
u� (see Figure 3) which present the unique fixed point
of (19).

Global Attractivity. Denote by T 2 the composite
function

T 2(u) = (T �T )(u);

where T (u) = (g � ky)(u). The following proposition
gives the necessary and sufficient condition for the
global attractivity of the unique equilibrium of (19).

(.)yk  

1(.)g −
 

y

u

maxg  
*u

 

Figure 3: Graphical proof of the existence and unicity of the
fixed point u� for the discrete system (19).

Proposition 4. If u� is also the unique fixed point of
T 2(u) on (0;gmax), That is

8u 2 (0;gmax);T 2(u) = u, u = u�; (20)

then (19) converges to its unique fixed point.
Proof : see (Enciso and Sontag, 2006).
In practice, we can check condition (20) by graph-
ical test (H3). Indeed, if the graph of T (u) and
that of T�1(u) have a unique intersection point u�

over (0;gmax), then the composite function T 2(u) has
unique fixed point u�. This completes the proof.

4.2 Reversible Structure

Now, consider the reversible metabolic pathways (1)
and we prove that Proposition 1 is a consequence of
Theorem 1.

Checking Assumption H5: First, note that the en-
zyme E1 is bounded (see proof given in subsection
4.1). Now, to analyze the boundedness of all the
metabolite concentrations of (1), we proceed by step
and we show that if any metabolite concentration xi
is bounded then the metabolite concentration xi�1 is
also bounded. We start by x2, and we consider the
first differential equation of (1),

ẋ2 = E1 f1(x1;x2;xn)�E2 f2(x2;x3)
� E1 f1(x1;x2;0)�E2 f2(x2;x3):

We assume that x3 is bounded (8t > 0;x3(t) � x3),
then by definition there exists x?2 such that:

f1(x1;x?2;0) = 0 and f2(x?2;x3)� 0;

and thus at x?2 we obtain ẋ2 � 0. Hence the threshold
x?2 is repulsive, and so we have proved that the bound-
edness of x3 implies the boundedness of x2.

Now, for any metabolite concentration xi, i 2
f3; : : : ;n�1g we have xi�1 bounded with bound xi�1,
and we assume that xi+1 is bounded with bound xi+1.
Then the dynamics of xi is bounded by:

ẋi = Ei�1 fi�1(xi�1;xi)�Ei fi(xi;xi+1)
� Ei�1 fi�1(xi�1;xi)�Ei fi(xi;xi+1);
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and by definition we have

9x?i j fi�1(xi�1;x?i )� 0 and fi(x?i ;xi+1)� 0:

Hence for x?i we obtain ẋi � 0, and so the thresh-
old x?i is repulsive. Thus, we have proved that 8i 2
f2; : : : ;n� 1g the boundedness of xi+1 implies the
boundedness of xi. Lastly, consider the dynamics of
the concentration of the end product xn,

ẋn = En�1 fn�1(xn�1;xn)�En fn(xn)
� En�1Mn�1�En fn(xn):

Since fn(:) is positive increasing and bounded with
respect to xn, it is clear that if En�1Mn�1 � EnMn we
obtain

9xn j 8xn � xn) ẋn � 0

independently of the values of xn�1. Consequently, if
H2 is true, then all the state trajectories generated by
(1) are bounded and so assumption H5 is verified.

Checking assumption H6: As in the case of the
irreversible metabolic pathways, structure (1) is not
monotone. Nevertheless, we can decompose it into an
open loop cooperative controlled system (21), which
has tridiagonal Jacobian matrix DF(x) with nonneg-
ative off-diagonal entries, closed by a negative feed-
back (22).

� Open loop (cooperative system)8>>>>>><>>>>>>:

ẋ2 = E1 f1(x1;x2;g�1(u))�E2 f2(x2;x3)
ẋ3 = E2 f2(x2;x3)�E3 f3(x3;x4)
...

...
...

...
ẋn = En�1 fn�1(xn�1;xn)�En fn(xn)
Ė1 = u�µE1
y = xn

(21)

� Negative feedback

u = g(y) (22)

where g�1(:) and g(:) are the same as in the irre-
versible case and also u 2 (0;gmax). Hence, assump-
tion H6 is intrinsically satisfied.

Checking assumption H7: In the reversible con-
text, build the static input-state characteristic is not
explicit as in the irreversible case. However, to es-
tablish this characteristic we use the monotonicity
property of all reaction rates fi(:; :); i 2 f1; : : : ;ng.
First, we show that at steady state there exists a bi-
nary relation between each metabolite concentration
xi; i 2 f3; : : : ;ng and x2. Second, we show that the
metabolite concentration x2 is an increasing function
of the constant input u.

� Consider the dynamics corresponding to the last
pool Xn. Since: (i) the function fn(xn) is mono-
tone increasing in xn with fn(0) = 0, (ii) the func-
tion fn�1(xn�1;xn) is decreasing in xn and (iii) for
any xn�1 there exists x�n such that fn�1(xn�1;x�n) =
0,

8xn�1; 9xn j En�1 fn�1(xn�1;xn) = En fn(xn):

In other words, we can say that there exists a
monotone increasing function Hn(:) with respect
to xn�1 such that:

xn = Hn(xn�1): (23)

� According to the previous stage, we can write

fn(xn) = fn(Hn(xn�1)):

Thus, since Hn(:) is monotone increasing in xn�1,
fn(:) is also monotone increasing in xn�1. Now,
consider the dynamics of the pool Xn�1. By
definition fn�2(xn�2;xn�1) is decreasing in xn�1
and for any xn�2 there exists x�n�1 such that
fn�2(xn�2;x�n�1) = 0. Hence, we deduce: 8xn�2,

9xn�1 j En�2 fn�2(xn�2;xn�1) = En fn(Hn(xn�1)):

Therefore, there exists a monotone increasing
function Hn�1(:) with respect to xn�2 such that:

xn�1 = Hn�1(xn�2) and xn = Hn(Hn�1(xn�2)): (24)

� Then we repeat this reasoning to obtain at steady
state the following relations between x2 and all the
metabolic concentrations xi; i 2 f3; : : : ;ng:

x3 = H3(x2)
x4 = H4(H3(x2))
...
xn = Hn(Hn�1(: : :H3(x2) ))

(25)

where all Hi are increasing functions.

� Lastly, the enzyme’s dynamics vanished while
E1 = u

µ . Thus, it is possible to build at the
steady state a monotone relationship between
the concentration of the pool X2 and the in-
put u. Indeed, as we have shown previ-
ously, (i) the monotone decreasing property of
the function u

µ f1(x1;x2;g�1(u)) in x2, (ii) the
monotone increasing property of the function
fn(Hn(Hn�1(: : :H3(x2) )) in x2, and (iii) the exis-
tence of x�2 such that f1(x1;x�2;g

�1(u)) = 0 allow
to state: 8u; 9x2 such that,

u
µ

f1(x1;x2;g�1(u)) = fn(Hn(Hn�1(: : :H3(x2) ))

Then, at the steady state there exists a monotone
increasing function H2(:) with respect to u such
that:

x2 = H2(u): (26)
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Hence, the static input-state characteristic of the sys-
tem (21) is given by:

kT
x (u) =

�
H2(u);H3(H2(u)); : : : ;Hn(Hn�1(: : :H2(u) )); u

µ
�

(27)
and its input-output characteristic is obtained by the

composition law between (27) and the output equa-
tion of (21),

ky(u) = Hn(Hn�1(: : :H2(u) )): (28)
Now, we must prove that for each constant input

u the vector [x�T ; u
µ ] = kT

x (u) is the globally asymp-
totically stable equilibrium point for the open loop
system (21). To do so, we use the same analysis
as in the irreversible case. First, we separate the
two dynamics (enzymatic reaction, genetic regula-
tion) and we deduce that for each constant input u
all the solutions generated by the dynamics of the ge-
netic regulation (Ė1) converge to u

µ . Second, hypoth-
esis H1 claims the existence of Tridiagonal Hurwitz
matrix Q with nonnegative off-diagonal entries such
that for all x the Jacobian matrix DF(x) of the dynam-
ics of the enzymatic reactions (ẋ2; : : : ; ẋn) is bounded
by, DF(x) � Q: Then there exists a diagonal matrix
N = diag(n1; : : : ;nn) with ni > 0 and a real number
e > 0 such that 8x

NDF(x)+DFT (x)N � NQ+QT N
� �eIn�1

(29)

because �Q is a M-Matrix (Berman and Plemmons,
1994). Thus, the dynamics of the enzymatic reactions
admits as Lyapunov function the quadratic form

V (z) = zT Nz;
where z= x�x�. See previous demonstration of (18).
Therefore, under assumption H1, relation (27) gives
the globally asymptotically stable steady state of the
open loop system (21) for each constant input u. This
verifies assumption H7.

Finally, as we have shown in the context of ir-
reversible metabolic pathways (here kx(:), ky(:) and
g�1(:) have the same properties with respect to u as
in the irreversible context), we can check the global
convergence of the following scalar discrete time dy-
namical system

u j+1 = g(Hn(Hn�1(: : :H2(u j) )); (30)
to its unique fixed point u� 2 (0;gmax) by the same
graphical test stated in assumption (H3). This com-
pletes the proof that Proposition 1 is a consequence
of Theorem 1.

5 CONCLUSIONS

We have used in this paper the negative feedback the-
orem of monotone control SISO systems theory, to

give technical propositions which prove global attrac-
tivity of linear metabolic pathways. For future works,
we will consider the stability analysis for dynamical
systems through monotone control MIMO systems.
That will allow us to tackle the stability issue for com-
plex bacterial metabolic networks.
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