
KASKADA – MULTIMEDIA PROCESSING PLATFORM
ARCHITECTURE1

Henryk Krawczyk
Electronics, Telecommunications and Informatics Faculty, Gdansk University of Technology

Narutowicza 11/12, Gdansk, Poland

Jerzy Proficz
Academic Computer Center – TASK, Gdansk University of Technology, Narutowicza 11/12, Gdansk, Poland

Keywords: Multimedia systems, Multimedia processing, Cluster computing, Distributed architecture.

Abstract: The architecture of Context Analysis of the Camera Data Streams for Alert Defining Applications platform
(Polish abbreviation: KASKADA, i.e. waterfall), a part of MAYDAY EURO 2012 project, is provided. A
new multilayer processing model for multimedia streams is proposed. The model layers: services,
computational tasks and processes are described. The composition of complex services with simple service
scenario descriptions is presented. An example scenario and its realization in the environment is provided.
The object-oriented domain analysis, component and deployment diagrams with their relations to the model
are proposed.

1 INTRODUCTION

Context Analysis of the Camera Data Streams for
Alert Defining Applications platform (Polish
abbreviation: KASKADA, i.e. waterfall), a part of
MAYDAY EURO 2012 project, is designed for
implementation and evaluation of multimedia
streams analysis algorithms. Its main goal is to
support development of the multimedia based
applications, currently represented by three pilot
projects: detection of dangerous situations in public
places, illness recognition in endoscopy and
detection of plagiarism.

Because of the high computation expectation,
deployment of the platform is placed in the cluster
environment of the Academic Computer Center in
Gdansk (TASK, 2010). We use the supercomputer
'Galera' with theoretical computational power of 50
TFlops. The key requirements of the whole platform
include efficiency – especially regarding the number
of the processed streams, reliability – when usage of
a single algorithm on the stream is not enough,
security – the natural requirement for all systems

with sensitive data, and fault-tolerance – in case
some hardware/system part is damaged.

The usage of the centralized computation site has
also the following disadvantages: network
bandwidth – many multimedia streams, especially
video HD, require fast connection, assurance of
proper quality of service – especially latency in
client notifications, long delay when starting the
tasks due to use of the typical queue system, stream
recording – the mass storage capacity.

In the next section, we present the processing
model supporting the solution of the above
problems. The section three describes the platform
architecture based on the proposed model, including
UML (OMG, 2009) diagrams, and the last section
provides the conclusions.

2 THE PROCESSING MODEL

Figure 1 presents the processing model used during
the KASKADA platform design. It consists of four
layers, including two layers related to webservices:
simple and complex, computational tasks analyzing
streams and processes.

1 The work was realized as a part of MAYDAY EURO 2012
project, Operational Program Innovative Economy 2007-2013,
Priority 2 „Infrastructure area R&D”.

26
Krawczyk H. and Proficz J. (2010).
KASKADA – MULTIMEDIA PROCESSING PLATFORM ARCHITECTURE.
In Proceedings of the International Conference on Signal Processing and Multimedia Applications, pages 26-31
DOI: 10.5220/0002944800260031
Copyright c© SciTePress

Simple services

Computation tasks

Processes/threads

stream
distribution

task
distribution

Complex services

scenario
execution

Figure 1: Layered processing model of KASKADA
platform.

The top-level layer represents complex services.
They are responsible for the functionality directly
provided to the user applications (at client or
application server). Their execution is performed
according to a defined service scenario. Such a
scenario enables composition, cooperation and data
exchange between simple services.

cam 1 bg #2 detect #3decode #1

decode #4 bg #5 detect #6

count #7

cam 2

Figure 2: Graph representation of the example scenario.

The sample scenario below is a part of a video-
surveillance system supporting the monitoring of
entrances with automatic comparison of the amount
of people passing the gates, generating an alert when
any gate is overcrowded (see figure 2), version for 2
gates:
1. call service: task startup (#1) – decoding video

stream from the gate 1
2. call service: task startup (#2) – background

exclusion on the stream received from task #1

3. call service: task startup (#3) – people detection
on the stream received from task #2

4. call service: task startup (#4) – decoding video
stream from the gate 2

5. call service: task startup (#5) – background
exclusion on the stream received from task #4

6. call service: task startup (#6) – people detection
on the stream received from task #5

7. call service: task startup (#7) – counting and
comparison of events from tasks: 4 and 6,with
parameters indicating alert (event) if the
number of passing people on any gate is 20%
greater than average – it means that we need a
new procedure for system monitoring (i.e.
observation for the gates with more cameras, or
send the information to the security center for
manual handling)

The typical execution of a scenario by a complex
service consists of the following steps:
1. Creation and validation of a service graph. In

the preliminary phase of service execution, the
platform creates a graph of simple services used
by the particular steps of the scenario. It consists
of the vertices representing the services and
directed edges indicating data flow. We assume
the graph is acyclic – no feedback is allowed.
During this step the service descriptions are
retrieved from the repository and the types of
their input-output data types are validated, see
figure 3 (a). The repository are a part of the
platform, it is

2. Algorithms' selection and required resource
estimation. In this step, the service graph is
converted into a new data flow graph including
the computational tasks as vertices and directed
edges representing data streams, see figure 3
(b). This transformation is dependent on the
requested quality parameters, which can have
influence on the algorithm selection as well as
on the input data, e.g. camera resolution.

Figure 3: Phases of preparation to service scenario execution: (a) simple services, (b) task graph, (c) graph assignment to
the computation nodes, (d) running processes/thread.

KASKADA - MULTIMEDIA PROCESSING PLATFORM ARCHITECTURE

27

3. Task assignment to the cluster nodes. In this
step, the vertices of the data flow graph, i.e.
computational tasks (derived from the simple
services) are assigned to the concrete cluster
nodes, see figure 3 (c). We would like to
emphasize, this is not a typical scheduling
problem, see (El-Rewini, 1994): the tasks need
to be executed concurrently and none of them
can be delayed – this is a usual requirement for
on-line processing and is more similar to
variable sized bin packing problem (Haouari,
2009). The above node assignment can be
optimized according to the different criteria, e.g.
minimizing the number of partially used nodes
(defragmentation), minimizing network load or
the delay of the scenario processing.

4. Scenario startup. In this step, the computational
tasks of the respective simple services are
started up on the cluster nodes according to the
given assignment. The task identifiers are
generated and distributed. The proper data
streams are connected and the communication is
initialized. Each task consists of one or more
processes/threads, whose execution is managed
directly by the operating system of the related
node, see figure 3 (d).

5. Scenario monitoring. During the scenario
execution, the platform will monitor the running
tasks: processor load, memory usage,
multimedia, event and plain data streams' flow.
The above procedures are used for continuous
collecting and verification of quality related
meta-data related to the particular services.

6. Scenario shutdown. In this last step, the
platform is responsible for the correct
finalization of all computational tasks executed
with the scenario. During this time, all related
processes and threads are finished, the
associated resources are freed, the multimedia
streams are closed, and the proper information
messages are sent to the client.

The next layer of the proposed model is involved in
execution of the simple services, which are
responsible for selection of the proper algorithm
depending on the requested quality parameters
defined by user. Afterwards, the multimedia stream
distribution to the computational tasks is established.
For the sake of minimizing network load, the RTSP
(Schulzrinne, 1998) protocol with the optional
multicast (Savola, 2008) will be used.

The next layer contains the computational tasks,
which are the implementation of the concrete stream
analysis algorithms. They use the libraries provided
by the platform, being embedded into the framework

supporting the cooperation with other components of
the platform, such as storage or an event server. We
can perceive the framework as a template, which
already includes common elements used by the
algorithm implementation, e.g. an image frame
iterator for a video stream (Krawczyk, 2010), see
figure 4. This layer is responsible for task
distribution and requested resource acquisition:
nodes and processors. We use a typical launcher for
these purposes, however it needs to consider
additional qualities of service policies, e.g. delays to
start of the task.

algorithm
algorithm

program
program

framework
framework

computation
task

computation
task

implementation

linking

Figure 4: Development of a computation task.

The process/thread layer enables execution of the
computational tasks. They can use typical
mechanisms of concurrency and parallelism. The
platform supports POSIX (The Open Group, 1997)
threads and other similar mechanisms (i.e.
semaphores, mutex etc.) provided by the underlying
operating system.

3 THE SOFTWARE
ARCHITECTURE

The proposed processing model was implemented as
KASKADA platform, below we present the software
components. Figure 6 contains the domain model of
KASKADA obtained by the requirements' analysis.
From the user’s point of view the main goal of the
platform is to provide the webservices in SOA
(Krafzig, 2004) architecture. They will be
responsible for execution of the complex service
scenarios using simple services. The example
sequential diagram of the scenario execution is
presented in figure 5.

Both service types, i.e. simple and complex ones,
are going to be deployed on the same JEE
application server, we consider to use a Tomcat web
container for this purpose. They will utilize SOAP
(W3C, 2007a) technologies over HTTP(S) (W3C,
1999) protocol, in case of synchronous remote calls,
and a queue system, i.e. ActiveMQ (Apache
Software Foundation, 2010) for asynchronous

SIGMAP 2010 - International Conference on Signal Processing and Multimedia Applications

28

Figure 5: A sequence diagram of the complex service execution within the domain model (see figure 6).

communication within JMS (Oracle Corp., 2010c)
interface. The result return will be performed in
separated objects (and components): Event Handler
for messages and Dispatcher for multimedia streams.

Figure 6: Domain class diagram of the KASKADA
platform.

According to the assumed processing model, simple
services manage the distribution of the input and
output data streams (see figure 1) for their
computational tasks. The object of classes
Dispatcher and Scheduler support this functionality.
Moreover the responsibility of the Dispatcher object
is the stream recording in the storage and sending
them back to the client. The example sequential
diagram of the simple service is presented in figure
8.

Computational tasks – the executable code of the
multimedia stream analysis algorithms embedded in
the framework accomplish the appropriate
computations. They receive the multimedia streams
generated by camera, microphone, or other device

(e.g. medical equipment) and send an output data
stream including discovered event messages or
processed multimedia stream, which are delivered to
the proper components, respectively Event Handler
and Dispatcher, forwarding them through the service
layers to the client – a user or an external application
(see figure 7).

Figure 7: Component diagram of the KASKADA
platform.

During the algorithm implementation, the
programmer can use software components provided
by the computation cluster environment: POSIX
threads (The Open Group, 1997) and openMP
(OpenMP Architecture Review Board, 2010) library
for shared memory processing and object
serialization (supported by boost library (Boost.org,
2010)) for object data exchange between the
computational tasks.

Almost all the above domain classes can be
straightforwardly converted into the software
components of the proposed platform. The only
exception is the User Console component which
aggregates Scheduler class as well as manages the
other platform components including operations on
the multimedia and other data streams (especially in

KASKADA - MULTIMEDIA PROCESSING PLATFORM ARCHITECTURE

29

Figure 8: A sequence diagram of the simple service execution within the domain model (see figure 6).

off-line mode – using recorded data), security and
service configuration and deployment (a service
repository with the WSDL (W3C, 2007b) and UDDI
(OASIS, 2002) support).
User console functionality is provided through a web
interface and can be easily accessed with an Internet
browser. For its development, we use JEE (Oracle
Corp., 2010b) standard supported by an application
server, i.e. a Tomcat web-container, including
technologies: JSP (Oracle Corp., 2010d) and AJAX
(Oracle Corp., 2010a).

4 THE HARDWARE
ARCHITECTURE

To execute computation tasks all software
components should be deployed on computer
systems. Figure 9 presents the deployment diagram
including hardware nodes with the assigned software
components. The core of the platform is the cluster
executing computational tasks. It consists of 672
two-processor nodes connected by the fast
Infiniband (IBTA, 2010) network, each processor
has 8 cores, which gives in total 5376 cores.

The stream managing sever is responsible for
multimedia stream format and communication
protocol conversion enabling its usage by the
computational tasks and receiving by the clients. It is
especially important due to the large number of
streams and network load minimizing strategy: some
cameras or other devices, do not support mutlicast
(Savola, 2008) data transmission, so it needs to be

provided by the platform. The Dispatcher
component is responsible for this functionality, as
well as stream recording and archiving.

The process managing server is responsible for
direct cooperation with the client software. Here are
deployed services and the User console component.
It is prepared for serving a large number of
webservices, the simple ones – which are easily
mapped to the computational tasks, as well as the
complex ones – executing the scenarios.

The messaging server supports the Event handler
component. It enables receiving, analysis and former
processing of the data (but not multimedia) streams
containing discovered events. It cooperates with the
process managing server where the event related
services are deployed.

The data server is used for recorded data storage.
We plan to use high performance hard drives with
500TB capacity and the Lustre file system (Oracle
Corp., 2010e), the server is going to be connected to
the cluster and other servers by the Infiniband
(IBTA, 2010) network, for its low delay and high
bandwidth.
During the initial phase of the project, three pilot
applications are to be developed. The first one is
supposed to provide automatic detection, recognition
and alerting, for dangerous events and objects in the
audio-video streams received from the security
monitoring cameras. The next application is
responsible for detection of abnormal characteristics
during endoscopy. The third application enables
detection of copyright violation of the electronic
productions, compositions and documents.

SIGMAP 2010 - International Conference on Signal Processing and Multimedia Applications

30

Figure 9: Deployment diagram of KASKADA platform.

5 CONCLUSIONS

The proposed architecture is supposed to process the
great amount of data generated by the multimedia
stream sources. The performed requirements
analysis indicated the software components to be
implemented for the proper functionality and
quality. The proof-of-concept prototype is already
developed providing an exemplary web-service and
the web application for managing and monitoring its
behavior.

The current development of the platform is
focused on the software components and framework
libraries. The future work is going to cover further
component development, deployment, and tests. The
quality analysis is still to be performed, especially
for such factors as: effectiveness, performance,
reliability, security and safety. The additional work
needs to be done for supporting algorithm
implementation and assessment.

REFERENCES

Apache Software Foundation, 2010. ActiveMQ Homepage,
Available: http://activemq.apache.org/

Boost.org, 2010. boost C++ Homepage, Available:
http://www.boost.org/

El-Rewini H., Lewis T. G., Ali H. H., 1994. Task
Scheduling in Parallel and Distributed Systems,
Prentice-Hall Series In Innovative Technology

Haouari M., Serairi M., 2009. Heuristics for the variable
 sized bin-packing problem, Computers & Operational
 Research 36, 2877-2884
IBTA, 2010. InifniBand Trade Association Homepage,

Available: http://www.infinibandta.org/
Krafzig D., Banke K., Slama D., 2004. Enterprise SOA:
 Service-Oriented Architecture Best Practices, Prentice

Hall PTR
Krawczyk H., Banczyk K., Proficz J., 2010. Parallel

processing of multimedia stream, XV Conference

Computer Applications in Electrical Engineering,
Poznan, Poland, 267-268

OASIS, 2002. UDDI Version 2 Specifications, Available:
http://www.oasis-open.org/committees/uddi-spec/doc/
tcspecs.htm#uddiv2

OMG, 2009. Unified Modeling Language (UML), v. 2.2,
Available: http://www.omg.org/technology/documents/
formal/uml.htm

OpenMP Architecture Review Board, 2010. OpenMP
Homepage, Available: http://openmp.org/

Oracle Corp., 2010a. Ajax Technology Center, Available:
http://developers.sun.com/scripting/ajax/

Oracle Corp., 2010b. Java Enterprise Edition (JEE,
J2EE), Available: http://java.sun.com/javaee/

Oracle Corp, 2010c. Java Message Service (JMS),
Available: http://java.sun.com/products/jms/index.jsp

Oracle Corp, 2010d. Java Server Pages, Available:
http://java.sun.com/products/jsp/

Oracle Corp., 2010e, Lustre Homepage, Available:
http://wiki.lustre.org/

Savola P., 2008. Overview of the Internet Multicast
Routing Architecture, RFC 5110, Available:
http://www.faqs.org/rfcs/rfc5110.html

Schulzrinne H., Rao A., Lanphier R., 1998. Real Time
Streaming Protocol (RTSP), RFC 2326, Available:
http://www.ietf.org/rfc/rfc2326.txt

TASK, 2010. Academic Computation Center – TASK
Homepage, Gdansk University of Technology,
Available: http://www.task.gda.pl/

The Open Group, 1997. The Single UNIX ® Specification,
Version 2, Threads, Available: http://opengroup.org
/onlinepubs/007908775/xsh/threads.html

W3C, 1999. Hypertext Transfer Protocol – HTTP/1.1
Specification, RFC 2612, Available: http://
www.w3.org/Protocols/rfc2616/rfc2616.html

W3C, 2007a. Simple Object Access Protocol
Specification, Available: http://www.w3.org/TR/soap/

W3C, 2007b. Web Services Description Language (WSDL),
Available: http://www.w3.org/TR/wsdl20-primer/

KASKADA - MULTIMEDIA PROCESSING PLATFORM ARCHITECTURE

31

