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Abstract: This paper presents a new learning approach for autonomous robots. Our system will learn simultaneously the
perception – the set of states relevant to the task – and the action to execute on each state for the task-robot-
environment triad. The objective is to solve two problems that are found when learning new tasks with robots:
interpretability of the learning process and number of parameters; and the complex design of the state space.
The former was solved using a new reinforcement learning algorithm that tries to maximize the time before
failure in order to obtain a control policy suitable to the desired behavior. The state representation will be
created dynamically, starting with an empty state space and adding new states as the robot finds them, this
makes unnecessary the creation of a predefined state representation, which is a tedious task.

1 INTRODUCTION

Robots must be able to adapt its behaviour to changes
in the environment if we want them operating in real
scenarios, dynamic environments or human’s com-
mon workplaces. Because of this in this paper we de-
scribe a model free learning algorithm, able to adapt
the behaviour of the robot to new situations and that
not relies on any predefined knowledge. Our system
will learn simultaneously how to translate the percep-
tions of the robot into a finite state space and the ac-
tions to perform at each state to achieve a desired be-
haviour. We are not aware of any other publications
with the same objectives.
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Figure 1: General schema of our proposal with the two
modules for perception learning and action learning.

We propose the combination of reinforcement

learning (Sutton and Barto, 1998) to learn the actions
and a Fuzzy ART network (Carpenter et al., 1991) to
learn the states (Fig. 1). Our system will not only
learn the actions to execute on each state but also it
will learn to classify the situations the robot finds dur-
ing its operation. Our reinforcement learning based
algorithm will be simpler and easier to interpret than
other approaches, and the dynamic representation of
states will create the state space from an empty set of
states. This eliminates the burden of creating an ad-
hoc representation for each task. Thanks to this com-
bination of reinforcement learning and Fuzzy ART we
will achieve a technique able to learn on-line, adapt-
ing the behaviour of the robot to the changes that may
occur in the environment or in the robot itself.

2 ACTION LEARNING

Sutton and Barto developed reinforcement learning as
a machine learning paradigm that determines how an
agent ought to take actions in an environment so as
to maximise some notion of long-term reward (Sutton
and Barto, 1998).

Reinforcement learning is a very interesting strat-
egy, since all the robot needs for learning a behaviour
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is a reinforcement function which tells the robot how
good or bad it has performed, but nothing about the
set of actions it should have carried out. Through
a stochastically exploration of the environment, the
robot must find a control policy – the action to be ex-
ecuted on each state – which maximises the expected
total reinforcement it will receive:
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where rt is the reinforcement received at time t, and
g2 [0;1] is a discount factor which adjusts the relative
significance of long-term versus short-term rewards.

Q-learning (Watkins, 1989) is one of the most
popular reinforcement learning algorithms, although
it might be slow when rewards occur infrequently.
What is termed Eligibility Traces (Watkins, 1989) ex-
pedite the learning by adding more memory into the
system. One problem of this algorithms is their de-
pendence of the parameters used, that usually need to
be set after a trial an error process.

In this work we present a new learning algorithm
based on reinforcement. Our algorithm will provide a
prediction of how long the robot will be able to move
before it makes a mistake. This raises clear and read-
able systems where it is easy to detect, for example,
when the learning is not evolving properly: basically a
high discrepancy between the time before failure pre-
dicted and what is actually observed on the real robot.
Another advantage of our learning proposal is that it is
almost parameterless, so it minimises the adjustments
needed when the robot operates in a different environ-
ment or performs a different task. The only parameter
needed is a learning rate which is not only easy to set,
but it is often the same value, regardless of the task to
be learnt.

Since we wish to use the experience of each state
transition to improve the robot control policy in real
time, we shall apply Q-learning, but redefining the
utility function of states and actions. Q(s,a) will be
the expected time interval before a robot failure when
the robot starts moving in s, performs action a, and
follows the best possible control policy thereafter:

Q(s;a) = E[�e(�T b f (s0=s;a0=a)=50T )]; (2)

where T b f (s0;a0) represents the expected time
interval (in seconds) before the robot does some-
thing wrong, when it executes a in s, and then fol-
lows the best possible control policy. T is the con-
trol period of the robot (expressed in seconds). The
term �e�T b f=50T in Eq. 2 is a continuous func-
tion that takes values in the interval [�1;0], and
varies smoothly as the expected time before failure
increases.

Since Q(s;a) and T b f (s;a) are not known, we
can only refer to their current estimations Qt(s;a) and
T b ft(s;a):

T b ft(s;a) =�50�T �Ln(�Qt(s;a)); (3)

The definition of Q(s;a), T b f , and the best possi-
ble control policy, determine the relationship between
the Q-values corresponding to consecutive states:

T b ft(st ;at)=

�
T if rt < 0
T +maxafT b ft(st+1;a)g otherwise

(4)
rt is the reinforcement the robot receives when it

executes action at in state st . If we combine Eq. 3 and
Eq. 4, it is true to say:

Qt+1(s;a) =
�
�e�1=50 if rt < 0
Qt(st ;at)+d otherwise

(5)

where,

d = b(e
�1
50 �maxaQt(st+1;a)�Qt(st ;at)): (6)

b 2 [0;1] is a learning rate, and it is the only pa-
rameter whose value has to be set by the user.

3 PERCEPTION LEARNING

In reinforcement learning the state space definition is
a key factor to achieve good learning times. The state
space must be fine enough to distinguish the different
situations the robot might find, but at the same time it
must have a reduced size to avoid the curse of dimen-
sionality.

The design of the state space is a delicate task,
and it is dependent on the problem the robot has to
solve. We propose a dynamic creation of the state
space as the robot explores the environment (Fig. 1).
For this task we have chosen to use a Fuzzy ART ar-
tificial neural network (Carpenter et al., 1991). This
kind of networks are able to perform an unsupervised
online classification of the input patterns without any
previous knowledge.

Of the three parametres that are involved in the
Fuzzy ART algorithm a;b and r – usually called vig-
ilance parameter – the most important is r. a and b

are almost independent of the task to solve, but the
value of r will influence the number of states created.
If it is too high the Fuzzy ART will create too many
classes. If r is too low the state representation will be
too coarse and the system will suffer from perceptual
aliasing, resulting in an increase of the learning time
or impossibility to achieve convergence.

Due to space restrictions we can’t provide more
details of the Fuzzy ART here. Nevertheless further
information can be found in (Carpenter et al., 1991).
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4 EXPERIMENTAL RESULTS

The two systems showed in Fig. 1 complement each
other to find a solution to the learning problem. We
will perform several experiments:

a) Evaluate the performance of our learning algo-
rithm described in 2. To do this without the influ-
ence of the Fuzzy ART network we used a set of two-
layered SOM networks to translate the large number
of different situations that the ultrasound sensors may
detect, into a finite set of 220 neurones – states (Igle-
sias et al., 1998).

b) Evaluate the performance of the Fuzzy ART
network creating a state space from scratch, using
both normalised and not normalised inputs using
complement coding (CC) (Carpenter et al., 1991).

We applied our proposal to teach a mobile robot
two different tasks: a wall following task; and a door
traversal task. The inputs for the Fuzzy ART net-
work will be the inverted readings provided by a laser
rangefinder. We reduced the dimensionality to 8 sec-
tors of laser readings 22.5owide, using the lowest
measure as representative of each sector.

The parameters of the learning algorithms used
during the learning were: b = 0:288282;g = 0:9;l =
0:869965. The parameters of the Fuzzy ART were:
a = 0:00001;b = 0:0025.

4.1 Wall Following

As said before we will use a static state representation
to test the learning algorithms. In order to train the
SOM neural networks we used a set of sensor read-
ings collected when the robot was moved close to a
wall (Iglesias et al., 1998). For comparison purposes
we tested our learning approach against three classical
algorithms: Q-learning and two different implemen-
tation of eligibility traces: Watkins’ Q(l) (Watkins,
1989) and what is called Naive Q(l) (Sutton and
Barto, 1998). The results obtained after the execution
of 15 experiments for each algorithm can be seen in
Table 1. The classical learning algorithms performed
as expected. Our proposal based on learning the time
before failure performed as good as Naive Q(l). The
main advantage of our learning algorithm is to have a
more interpretable and simple algorithm, with almost
no cost on the learning time.

The next step in the experimentation was to com-
bine the Fuzzy ART with the learning algorithm.
Considering the previous results, we chose to test the
combination of the Naive Q(l) algorithm and Fuzzy
ART. In Fig. 2(a) we can see the variations in the
average learning time and std. deviation with differ-
ent values of the vigilance parameter – r . From this

Table 1: Results of the learning of a wall following task
with a predefined SOM network (Iglesias et al., 1998).

Algorithm Learning time Std. deviation
Q-learning 00:29:37 00:13:59

Watkins’s Q(l) 00:21:35 00:12:32
Naive Q(l) 00:17:21 00:08:21

Our proposal 00:16:39 00:08:14
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Figure 2: Results of the wall following task with Naive Q(l)
and Fuzzy ART network without (a) and with (b) comple-
ment coding.

results we can extract that the valid range – learning
times lower than 1 hour – for the vigilance is approx-
imately [0.900, 0.950] and that the best values are
around 0.9125. Fig. 2(b) shows the results of the ex-
periments if the inputs of the Fuzzy ART are codified
in complement coding. We can see that the use of
complement coding does not reduce significantly the
learning time achieved by the optimal vigilance value,
but it does improve the learning times if the vigilance
parameter is not the optimal.

The best value for the vigilance parameter found
in this experiments – 0.9125 – can serve as a good
starting point for the use of the Fuzzy ART in other
tasks. This value will be used to learn other tasks.
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Figure 3: Experimental scenario for the door traversal task.
The initial positions of the robot were within the shaded
area.

Table 2: Results of the learning of a door traversal task with
Naive Q(l) and Fuzzy ART.

Average Average Average
Vigilance Beams CC learning time deviation states

SOM 8 01:36:53 00:57:55 221

0.9125
8

No NA NA 63.22
Yes 01:37:12 01:00:55 94.87

181
No 01:57:48 01:05:31 134.33
Yes 00:39:56 00:23:20 82.87

4.2 Door Traversal

The door traversal task (Nehmzow et al., 2006) was
learnt in the experimental scenario shown in Fig. 3.
First we tested the system using the same SOM neural
network that was used to learn the wall following task.
The robot achieves a good control policy after a learn-
ing time of 01:36:53 with high variability – 00:57:55.
Using our system the results are equivalent if comple-
ment coded is used, without complement coding the
system is unable to learn in reasonable time (Table 2).

With the first experiments we found out that if
we use the same input as in the wall following task
the door was not visible from several positions. To
have a better perception of the door we decided to
use all 181 laser readings. This improves the times
significantly, the average learning time is reduced to
00:39:56 and the std. deviation lowers to 00:23:20.
As can be seen in Table 2, the dynamic representation
scales very well with the increase in the dimensional-
ity. Complement coding is the appropriate choice for
the Fuzzy ART inputs.

5 CONCLUSIONS

Through reinforcement learning the robot is able to
learn on its own – through trial an error interactions
with the environment – using only the feedback pro-
vided by a very simple reinforcement function. The
learning algorithm developed in this paper represents

a simpler and more interpretable solution to the learn-
ing problem. The algorithm requires less parame-
ters and its meaning is more straightforward – the ex-
pected time before the robot commits an error.

But one of the main problems of applying rein-
forcement learning in robotics is the state space def-
inition. In this paper we showed how we can use
a Fuzzy ART neural network to dynamically create
the state space while the reinforcement learning algo-
rithm learns the actions to execute on each state.

The use of a dynamic representation of states does
not suppose an increase in the learning time, in fact it
reduces the learning time in comparison to the use of
a predefined and static state representation if a good
vigilance value is chosen. We also proved that this
dynamic state representation scales well with size of
inputs. But the main advantage of this approach is
that there is no need to create an ad-hoc state repre-
sentation for the task. Creating a predefined state rep-
resentation requires gathering a training and test data
set, training the network and validating the network.
This must be repeated until we obtain a good network
for our purpose.

Our proposal was used to solve two different and
common tasks in mobile robotics: wall following and
door traversal. The experimental results confirm that
our proposal is valid.
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