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Abstract: In this paper we present an optimal control approach for image motion estimation in an explorative and novel
way. The variational formulation incorporates physical prior knowledge by giving preference to motion fields
that satisfy appropriate equations of motion. Although the framework presented is flexible, we employ the
Burgers equation from fluid mechanics as physical prior knowledge in this study. Our control based formula-
tion evaluates entire spatio-temporal image sequences of moving objects. In order to explore the capability of
the algorithm to obtain desired image motion estimations, we perform numerical experiments on synthetic and
real image sequences. The comparison of our results with other well-known methods demonstrates the ability
of the optical control formulation to determine image motion from video and image sequences, and indicates
improved performance.

1 INTRODUCTION

In this work we are concerned with motion estima-
tion of objects in image sequences. The understand-
ing and reconstruction of dynamic motion in image
scenes is one of the key problems in computer vision
and robotics. We present an attempt to adopt control
methods from the field of applied mathematics in a
new form to image sequence processing and to pro-
vide preliminary evaluations of the capability of this
approach.

We describe motion as the displacement vector
field of pixels between consecutive frames of an im-
age sequence. In the literature this is known asopti-
cal flow (Jain et al., 1995). In computer vision local
and global approaches are used to compute the opti-
cal flow field of image sequences. Local approaches
are designed to compute the optical flow at a certain
pixel position by using only the image information in
the local neighbourhood of this specific pixel (Lucas
and Kanade, 1981). Variational optical flow meth-
ods represent global optimisation problems which can
be used to recover the flow field from an image se-
quence as a global minimiser of an appropriate energy
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functional. Usually, these energy functionals consist
of two terms: adata termthat imposes the result to
be consistent with the measurement (here the bright-
ness constancy assumption) and aregularisation term
which imposes additional constraints like global or
piecewise smoothness to the optical flow field.

One of the first variational methods for motion
analysis was introduced by (Horn and Schunck, 1981)
and incorporates ahomogeneousregularisation term,
where the optical flow is enforced to vary smoothly in
space. This leads to an undesired blurring across mo-
tion discontinuities. Therefore, regularisation terms
were introduced to regularise the flow in animage-
driven (Schnörr, 1991; Alvarez et al., 1999) orflow-
driven (Deriche et al., 1995) way, where the flow is
prevented from smoothing across object or motion
boundaries, respectively. A systematic classification
of these approaches can be found in (Weickert and
Schnörr, 2001a).

Most of the variational approaches incorporate a
purely spatial regularisation of the flow. However,
some efforts have been made to incorporatetempo-
ral smoothness (Nagel, 1990). The work of (We-
ickert and Schnörr, 2001b) investigates an extension
of spatial flow-driven regularisation terms to spatio-
temporal flow-driven regularisers. Time is considered
as a third dimension analogue to the two spatial di-
mensions. These approaches improve both the robust-
ness and the accuracy of the motion estimation but the
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flow computation involves the data of the full image
sequence at once.

Note that all these approaches do not incorporate
physical prior knowledge about the motion itself. In
contrast our approach incorporates a space-time regu-
larisation using physical prior knowledge in a control
framework that draws on the literature on the control
of distributed parameter systems in connection with
fluid dynamics (Gunzburger, 2002).

The ideas of two existing control approaches that
are related to motion computation of image sequences
are presented by (Ruhnau and Schnörr, 2007) and
(Borzi et al., 2002). Ruhnau and Schnörr presented
an optical flow estimation approach for particle im-
age velocimetry that is based on a control formula-
tion subject to physical constraints (Stokes equation).
Their aim is to estimate the velocities of particles in
image sequences of fluids rather than to estimate mo-
tion in every day image scenes.

The basic idea of (Borzi et al., 2002) is to esti-
mate both an optical flow fieldu and a rectified im-
age functionI satisfying the brightness constancy as-
sumption. Note that in their approachYk (and notI )
denotes the sampled images of the image sequence.
The most significant difference to our optical flow ap-
proach is that they do not only estimate the optical
flow u, but alsoIk which is an approximation of the
captured grey value distributionsYk, wherek speci-
fies the frame number within the image sequence. As
part of the first-order necessary optimality conditions
of the Lagrangian functional their optimal control for-
mulation does not require a differentiation of the im-
age data.

In contrast to that approach, we interpret the grey
values of a scene as a ”fictive fluid” - assuming that its
motion can be described by an appropriate physical
model, in this work realised with the Burgers equa-
tion of fluid mechanics. We adopt the well estab-
lished variational optical flow approach of (Horn and
Schunck, 1981) and add a distributed control exploit-
ing the Burgers equation resulting in a constrained
minimisation problem. The obtained objective func-
tional has to be minimised with respect to the optical
flow and control variables subject to the model equa-
tion over the entire flow domain in space and time.
Our approach estimates not only the optical flow data
from an image sequence, but it also estimates a force
driven by the Burgers equation. The force field in-
dicates the violation of the equation and can indicate
accelerated motions like starting or stopping events or
the change of the motion direction. Therefore one can
exploit this feature as an indicator of unexpected mo-
tion events, taking place in the image sequence.

The initially constrained optimisation problem is

reformulated - exploiting Lagrange multipliers - into
an unconstrained problem allowing to obtain the asso-
ciated first-order optimality system. This results in a
forward-backward system with appropriate initial and
boundary conditions. To solve the optimality system
we uncouple the forward and backward computation
as described in (Gunzburger, 2002) leading to an iter-
ative solution scheme.

2 APPROACH

Before we start to describe the approach in more
detail we first exemplify the notation and components
of our control formulation.

We define a grey value of a certain pixel within
an image sequence by a real valued one-time con-
tinuously differentiableC1 image function I(x, t),
wherex= (x1,x2)

⊤ denotes the location within some
rectangular image domainΩ and t ∈ [0,T] labels
the corresponding frame at timet. In particular, the
function I(x1,x2, t) denotes the intensity of a pixel at
position(x1,x2)

⊤ in the image frame at timet. The
optical flow field is denoted by a two-dimensional
vector fieldu = (u1(x, t),u2(x, t))⊤, which describes
the intensity changes between images.

We formulate our motion estimation problem
within a variational framework. We minimise an
energy functionalE, which consists of a data and a
regularisation term:

Data Term. We make use of the followingdata term∫

Ω

(∂t I +u ·∇I)2 dx, (1)

which comprises the optical flow constraint (Horn
and Schunck, 1981) and provides the link between
the given image data, the observed intensityI and the
desired velocity fieldu. Note that the optical flow
constraint equation represents the requirement that
the intensity of an object point stays constant along
its motion trajectory. Problem (1) is ill-posed as any
vector fieldu satisfyingu ·∇I =−∂t I , is a minimiser.
Therefore a regularisation term is added to introduce
additional constraints for the flow fieldu to obtain an
unique solution.

Regularisation Term. We incorporate the regularisa-
tion term from (Horn and Schunck, 1981)

∫

Ω

α(|∇u1|
2+ |∇u2|

2) dx, 0< α ∈ R, (2)

to enforce spatial smoothness of the optical flow
field, preferring neighbouring optical flow vectors to
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be similar. The regularisation parameterα adjusts
the relative importance of the smoothness term to
the data term. With an increasing value ofα the
vector field is forced to become smoother. We are
aware that regulariser like the L1-regulariser used for
example in (Wedel et al., 2009) allows for sharper
discontinuities in the flow field. Our decision to
use the L2-regulariser in the motion estimation was
mainly driven by the idea to keep the approach clear
and numerically simple. However, the replacement of
the quadratic homogeneous smoothness term could
improve the accurateness of the computed motion
boundaries.

Physical Prior. Considering a constant moving ob-
ject one can determine that structures are transported
by a velocity field and along with it the velocity field
is transported by itself. A physical model equation,
which describes this behaviour is theBurgers equa-
tion and allows to model the movement of rigid ob-
jects.

The inviscid Burgers equation

D
Dt

u= ∂tu+(u ·∇)u= 0 , u(x,0) = u0 (3)

has been studied and successfully applied for many
decades in aero- and fluid dynamics (Burgers, 1948;
Hirsch, 2000) as a simplified model for turbulence,
boundary layer behaviour, shock wave formation and
mass transport. It contains the convection term from
the fundamental equations of fluid mechanics, the
Navier-Stokes equations.

As a physical interpretation,u in (3) may be
regarded as a vector of conserved (fictive) quantities
or states, with corresponding density functionsu1,u2
as components. The material derivativeD

Dt yields
the acceleration of moving particles. The nonlinear
term (u · ∇)u is known as the inertia term of the
transport process described by (3). See Figure 1 for
an illustration of the transport. We found that our
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Figure 1: Illustration of the transportation of a vector field
with equation (3) at timest = 0,5,10. Gray values visualise
vector magnitudes. Fictive particles move along a shock
front in the lower right direction. In the absence of any
further external information, a region of rarefaction arises
due to mass conservation, acting like a short-time memory.

approach even with the constant velocity assumptions
of our physical prior predicts the non-uniform motion

pattern quite well as shown in our numerical results
(cf. Sec. 4.2).

2.1 Optimal Control Formulation

In the following sections we explain our optimal con-
trol approach. Foundations exploiting fluid dynami-
cal methods can be found in the book of Gunzburger
(Gunzburger, 2002).

We obtain our spatial-temporal control approach
as follows: Additionally to the smoothness term we
introduce a controlf , that is distributed in space and
time, which means that it acts over the entire optical
flow domainΩ× [0,T]. The magnitude of the control
is bounded due to penalisation within the objective
functional. The resulting optimisation problem is to
minimise

E(u, f ) =
1
2

∫

Ω×[0,T]

{

(∂t I +u ·∇I)2 (4)

+ α(|∇u1|
2+ |∇u2|

2)+β| f |2
}

dxdt,

subject to the equations of motion

{

∂tu+(u ·∇)u = f in (0,T)×Ω,
∂nu = 0 on(0,T)×Γ. (5)

We intend to find an optimal stateu = (u1,u2)
⊤

and an optimal controlf = ( f1, f2)⊤, such that the
functionalE(u, f ) is minimised andu and f satisfy
the Burgers equation (5).

The objective of this formulation is to determine
a body forcef (the control !) that leads to a velocity
field u which fits to the apparent motion in the image
sequence, and at the same time satisfies physical prior
knowledge in terms of the given equations of motion.

2.2 Optimality System

In order to obtain the velocity fieldu and the con-
trol f we recast the constrained optimisation problem
(4) - (5) into an unconstrained optimisation problem.
Introducing the Lagrange multiplier or adjoint vari-
ablew= (w1(x, t),w2(x, t))⊤ yields the following La-
grangian functional

L(u, f ,w) = E(u, f ) (6)

−

∫

Ω×[0,T]

w⊤(∂tu+(u ·∇)u− f ) dxdt.

To solve this functional we have to derive the first-
order necessary conditions. This results in the follow-
ing optimality system (7)-(9) from which the optimal
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stateu, adjointsw, and the optimal controlf can be
determined such thatL(u, f ,w) is rendered stationary.







∂tu+(u ·∇)u = f in Ω× [0,T],
∂nu = 0 onΓ× [0,T],

u|t=0 = u0 in Ω,
(7)















−∂tw− (u ·∇)w−w∇ ·u+(∇U)⊤w
= ∇I(∂t I +u ·∇I)−α∆u in Ω× [0,T],

w= 0 onΓ× [0,T],
w|t=T = 0 in Ω,

(8)







β f +w = 0 in Ω× [0,T],
f = 0 onΓ× [0,T],

f |t=T = 0 in Ω,
(9)

where(∇U)⊤ the transposed Jacobian matrix.
The state equation (7) is obtained by derivation of

the Lagrangian functional (6) in the direction of the
Lagrange multiplier, and turns out to be identical to
the Burgers equation (5) itself. The adjoint equation
(8) specifies the first-order necessary conditions
with respect to the state variablesu. The optimality
condition (9) is the necessary condition that the
gradient of the objective function – with respect to
the control f – vanishes at the optimum. It also
includes the initial and terminal conditions.

The optimality system (7)-(9) is a coupled system
which turns out to be - due to the large number of
unknowns - prohibitively expensive to solve directly,
but can be solved iteratively as described in the next
section.

2.3 Algorithm

We solve the optimality system (7)-(9) using an itera-
tive gradient descent method (with step length adop-
tion) which decouples the state and adjoint compu-
tation. It consists of the iterative solution of the state
and adjoint equation in such a way that the state equa-
tion is computed forward in time with appropriate ini-
tial conditionu0 and the adjoint equation is computed
backward in time with terminal conditionwt=T = 0.
The optimality condition is used to update the control
f with the adjoint variablew. The control f is then
used to compute the actual stateu. Additionally, the
step length is adjusted ensuring that the actual energy
of the objective functional (4) decreases. Note that we
choose the start value forf to be zero in the very first
iteration.

In our pseudo code description of Algorithm 1,
variables denotes the step-size that is adapted by the
algorithm andε the threshold which is used to decide
if the relative difference of the energy is small enough

to be seen as converged.
In the initial step of the algorithm the flow fields

u for all consecutive image frames and the terminal
condition of the adjoint variable for the last frame
(wt=T ) are set to zero. The first step of the iteration
loop solves the adjoint equation (8) forw backwards
in time using the terminal condition onw and the flow
field u. Then, the optimality condition (9) is used to
update the control field for all frames, allowing the
state equation (8) to be solved foru forward in time
using the new control field. The iteration loop contin-
ues until the decline inE is negligible.

Algorithm 1: Gradient algorithm with automatic step-
length selection.

1: setu= 0, ε = 10−8, ands := s0 (initial step)
2: repeat
3: solve the adjoint equation (8) forw
4: updatef : fm = fm−1− s(β fm−1+w)
5: solve the state equation (7) foru
6: if E(u, fm)≥ E(u, fm−1) then
7: s := 0.5s
8: GOTO 4
9: else

10: s := 1.5s
11: end if
12: until |E(u, fm)−E(u, fm−1)|/|E(u, fm)|< ε

3 NUMERICAL SOLUTION

In this part, we summarised the numerical discreti-
sation methods employed in solving the optimality
system (7)-(9). For more details, we refer to (Colella
and Puckett, 1998).

Discretisation of the State Equation. Within the
numerical implementation of the nonlinear state
system equation (7) we have to cope with over-
and undershoots, with shock formations, with the
compliance of conditions (entropy-, monotony-,
CFL-condition, etc.) and different discretisation
schemes. We use the second-order conservative
Godunov scheme for our implementation. The fluxes
are numerically computed by solving the equations at
pixel edges. The correct behaviour at discontinuities
is obtained by using solutions of the appropriate
Riemann problem.

Discretisation of the Adjoint Equation. The
numerical implementation of the time-dependent
adjoint system (8) in the domainΩ is done by using
a second-order predictor-corrector finite difference
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scheme. The basic idea behind this is that all
methods with an accuracy larger than the order one
will produce spurious oscillations in the vicinity of
large gradients, while being second-order accurate
in regions where the solution is smooth. To prevent
such oscillations the slopes of Fromm’s method are
replaced by the slopes of the Van Leers scheme.
The Van Leer schemedetectsdiscontinuities and
modifies its behaviour in such locations accordingly.
The implication of this is that this method retains the
high-order accuracy of Fromm’s scheme in smooth
regions, but near discontinuities the discretised
evolution equation drops to first-order accuracy.

4 EXPERIMENTS

In this section we first illustrate the control perfor-
mance of our optical flow approach on a real-world
2D image sequence. Secondly, we evaluate the
following motions which violate the incorporated
motion assumption: rotation, translation in combi-
nation with scaling. Finally, we present the results
for noisy image data showing the influence of the
temporal regularisation in the control approach and
provide a comparison with error measures obtained
by the approach from (Horn and Schunck, 1981) and
the dynamic optical flow approach from (Stahl et al.,
2006).

4.1 Control - Force

We illustrate the control behaviour of our approach
for a real-world 2D image sequence with an unex-
pected motion. The image sequence consists of 10
image frames and shows a moving hand which starts
to move and then stops again. Figure 2 depicts the
starting (left column) and stopping (right column)
event of the sequence. The first row shows the veloc-
ity estimatesu, and the second row shows the force
fields. The force fieldf nicely indicates the devia-
tion of the expected motion from the observed mo-
tion. This is evident in the second row of Figure 4,
where the force field acts in the direction of the mov-
ing hand as the hand accelerates into motion (left pic-
ture), while it turns in the opposite direction as the
hand stops (right picture).

4.2 Non-uniform Motion

In this section we provide an evaluation of our ap-
proach on the basis of two well known synthetic im-

Figure 2: ”Waving hand” sequence: Unexpected events.
Top: A waving hand stops. The estimated optical flow field
u for a starting (left) and stopping (right) event is depictedin
blue. Bottom: The corresponding control fieldf is shown
in red. The force acts when the hand starts to move (left)
and reacts into the opposite direction of the flow field (right)
when it stops and forces the flow field into the observed
state of no motion (parameters:α = 0.01,β = 0.0001).

age sequences for which the ground truth motion data
is available. To allow for a quantitative comparison
we provide the results we obtain for the Horn and
Schunck as well. The image sequences we use show
global motion patterns such as rotation, translation
and divergence.

In particular we evaluate our approach on the
grey value versions of the following two image se-
quences: the ”rotating sphere” sequence (McCane
et al., 2001) and the ”Yosemite” sequence (available
at ftp://ftp.csd.uwo.ca/pub/vision).

The ”rotating sphere” sequence contains a curling
vector field and is shown in Figure 3. This sequence
consists of 45 frames, where a sphere rotates in front
of a stationary background.

Figure 3: The synthetic ”rotating sphere” sequence. The
sphere rotates in front of a stationary background.Left:
Gray value version of frame 6 that is used in our computa-
tions.Right: Vector plot of the ground truth data.
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The computed vector fields obtained by the Horn and
Schunck approach and our approach (4)-(5) for the
”rotating sphere” sequence is shown in Figure 4.

Figure 4: The synthetic ”rotating sphere” sequence. Com-
putational Results for the Horn and Schunck approach and
the control based approach.Left: Result Horn and Schunck
(RMSE = 0.395). Right: Result control based approach
(RMSE = 0.192).

The motion estimation results for the ”Yosemite” se-
quence are shown in section 4.3.

The results show that even for sequences which
violate the constant velocity assumption of the model
equation we obtain good results. However, due to
the flexibility of our variational approach it should be
possible to model such motion patterns by incorpora-
tion of a suitable model equation.

4.3 Temporal Regularisation

To investigate the impact of the temporal regularisa-
tion to the robustness of our approach under noise, we
choose the ”Yosemite” sequence with different Gaus-
sian noise levelsσ= 0, 10, 20 and 40 (cf. Fig. 5). The

Figure 5: Top Left: Yosemite sequence.Top Right: We
added Gaussian noise with standard deviationσ = 40.

sequence exhibits divergent and translational motion
combined with illumination changes. To investigate
the performance of our approach we compare the root
mean square error (RMSE)

RMSE(uo,ue) =
1
|Ω|

∫

Ω

√

(uo−ue)2dx

and the average angular error (AAE)

AAE(uo,ue) =
1
|Ω|

∫

Ω

arccos

(

uo ·ue

|uo||ue|

)

dx,

where | · | denotes the Euclidean norm,uo =
(uo1,uo2,1)

⊤ the original optical flow vectors, and
ue = (ue1,ue2,1)

⊤ the estimated optical flow vectors
(compare (Barron et al., 1994)). Note that the time
dimension is set to 1 corresponding to the distance of
one frame.

This measure is currently used as a kind of stan-
dard to provide accuracy measures for optical flow re-
sults.

We compare the errors of the optical flow compu-
tation obtained for three different approaches with op-
timised parameters. In particular these are the homo-
geneous spatial regularised approach from (Horn and
Schunck, 1981), the spatio-temporal dynamic image
motion approach from (Stahl et al., 2006), and our
control based image motion approach (4) - (5). The
control approach results in a improved vector field,
which is based on the forward-backward computa-
tion, which incorporates additional knowledge of the
future frames leading to an improved temporal regu-
larisation. The result for a single frame in the highly
noisy Yosemite sequence is shown in Figure 6. The

Figure 6: Temporal regularisation. We added Gaussian
noise with standard derivationσ = 40 to the ”Yosemite”
sequence. The shown high quality optical flow field is ob-
tained by the control based optical flow approach (4) - (5)
(parameters:α = 0.05 andβ = 0.000003).

results for the computed errors (RMSE and AAE)
for all three approaches with increasing noise level
are shown in Table 1. The purely spatial regularised
approach from Horn and Schunck and the absence
of physical prior knowledge leads to the higher er-
ror values with increasing noise levels. In contrast to
the spatio-temporal dynamic image motion approach
(Stahl et al., 2006) a higher noise level requires the
selection of a smallerβ regularisation parameters for
the control part of the objective functional. The con-
sistently lower error indicates an improved global mo-
tion prediction in our control approach (4)-(5) exert-
ing a better temporal regularisation. Our explanation
for this observation is that the control approach incor-
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Table 1: Performance of our control approach (C) in com-
parison with the Horn and Schunck approach (HS) and the
dynamic image motion approach (Dy) in presence of noise:
We added random Gaussian noise with zero mean and stan-
dard deviationσ = 0, 10, 20, and 40 to the Yosemite image
sequence.

σ app. α β RMSE AAE
0 HS 0.005 - 0.177 3.04◦

Dy 0.006 0.00002 0.178 3.09◦

C 0.007 0.0005 0.169 2.88◦

10 HS 0.008 - 0.283 5.74◦

Dy 0.01 0.0003 0.275 5.68◦

C 0.009 0.0001 0.243 4.92◦

20 HS 0.02 - 0.429 8.61◦

Dy 0.025 0.001 0.395 7.54◦

C 0.02 0.00001 0.350 6.67◦

40 HS 0.05 - 0.640 13.27◦

Dy 0.05 0.005 0.523 9.89◦

C 0.05 0.000003 0.497 9.16◦

porates also future knowledge of the image sequence
instead of using only past information with a predic-
tion as in (Stahl et al., 2006).

5 CONCLUSIONS

We have presented an optimal control approach to
image motion estimation including physical prior
knowledge in a novel and exploratory way. It leads to
an unconstrained optimisation problem, where the op-
timality system - from which the optimal state and the
optimal control are determined - can be solved using
an iterative gradient descent method. The forward-
backward structure of the model allows for arobust
estimation of the coherent flows by includingprior
knowledgethat enforce spatio-temporal smoothness
of the minimising vector field.

In the case that the image measurements indicate
changes of the current velocity distribution, fictive
control forces modify the system state accordingly.
The presence of such forces may serve as an indicator
notifying a higher-level processing stage about unex-
pected motion events in video sequences.

The comparison of our results with the approach
from (Horn and Schunck, 1981) and the approach
from (Stahl et al., 2006) demonstrates the ability of
the control formulation to determine image motion
from video sequences, and shows improved perfor-
mance, especially for highly noisy image data. Our
further work will include the modification of the
Burgers equation to achieve better motion boundaries
in the rarefaction area and the reformulation of the
approach to a receding horizon formulation.
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(1999). A PDE model for computing the optical flow.
In Proceedings of CEDYA XVI, pages 1349–1356.

Barron, J. L., Fleet, D. J., and Beauchemin, S. S. (1994).
Performance of optical flow techniques.Int. J. of
Computer Vision, 12(1):43–77.

Borzi, A., Ito, K., and Kunisch, K. (2002). Optimal control
formulation for determining optical flow.SIAM J. Sci.
Comput., 24(3):818–847.

Burgers, J. M. (1948). A mathematical model illustrating
the theory of turbulence.Adv. Appl. Mech., 1:171–
199.

Colella, P. and Puckett, E. G. (1998).Modern Nu-
merical Methods for Fluid Flow. Lecture Notes,
Dep. of Mech. Eng., Uni. of California, Berke-
ley, CA. http://www.rzg.mpg.de/ bds/numerics/cfd-
lectures.html.

Deriche, R., Kornprobst, P., and Aubert, G. (1995). Optical-
flow estimation while preserving its discontinuities: A
variational approach. InACCV, pages 71–80.

Gunzburger, M. (2002). Perspectives in Flow Control
and Optimization. Society for Industrial and Applied
Mathematics.

Hirsch, C. (2000).Numerical Computation of Internal and
External Flows (Vol.I+II). John Wiley & Sons.

Horn, B. and Schunck, B. (1981). Determining optical flow.
Artificial Intelligence, 17:185–203.

Jain, R., Kasturi, R., and Schunck, B. G. (1995).Machine
Vision. McGraw-Hill, Inc.

Lucas, B. D. and Kanade, T. (1981). An iterative image reg-
istration technique with an application to stereo vision
(darpa). InProc. of the 1981 DARPA Image Under-
standing Workshop, pages 121–130.

McCane, B., Novins, K., Crannitch, D., and Galvin, B.
(2001). On benchmarking optical flow.Comput. Vis.
Image Underst., 84(1):126–143.

Nagel, H. H. (1990). Extending the ‘oriented smoothness
constraint’ into the temporal domain and the estima-
tion of derivatives of optical flow. InProc. of the first
european conf. on computer vision, pages 139–148.
Springer.
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