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Abstract: This paper proposes a new method for designing allpass filters having the specified degrees of flatness at the
specified frequency point(s) and equiripple phase responses in the approximation band(s). First, a system of
linear equations are derived from the flatness conditions. Then, the Remez exchange algorithm is used to
approximate the equiripple phase responses in the approximation band(s). By incorporating the linear equa-
tions from the flatness conditions into the equiripple approximation, the design problem is formulated as a
generalized eigenvalue problem. Therefore, we can solve the eigenvalue problem to obtain the filter coeffi-
cients, which have the equiripple phase response and satisfy the specified degrees of flathess simultaneously.
Furthermore, a class of lIR filters composed of allpass filters are introduced as one of its applications, and it is
shown that IIR filters with flat passband (or stopband) and equiripple stopband (or passband) can be designed
by using the proposed method. Finally, some examples are presented to demonstrate the effectiveness of the
proposed design method.

1 INTRODUCTION However, the approximation of allpass filters with
both the specified degrees of flathess and equiripple
Allpass filters possess constant magnitude response aphase responses in the approximation band(s) is still
all frequencies and are a basic scalar lossless buildingopen.
block (Mitra and Kaiser, 1993), (Regalia et al., 1988). In this paper, we propose a new method for de-
Interconnections of allpass filters have found numer- signing allpass filters which have both the specified
ous applications in many practical filtering problems degrees of flatness at the specified frequency point(s)
such as low-sensitivity filter structures, wavelet filter and equiripple phase responses in the approximation
banks, and so on (Mitra and Kaiser, 1993), (Shenoi, band(s). First, we derive a system of linear equations
1999), (Regalia et al., 1988), (Laakso et al., 1996), from the flatness conditions of the phase response at
(Lang, 1998), (Selesnick and Burrus, 1998), (Se- the specified frequency point(s). Then, we apply the
lesnick, 1999), (Zhang and Iwakura, 1999). In many Remez exchange algorithm to obtain the equiripple
applications, it is necessary to design an allpass fil- reponse in the approximation band(s). By incorpo-
ter both satisfying the specified degrees of flatness atrating the linear equations from the flatness condi-
the specified frequency point(s) and having equiripple tions into the equiripple approximation, we formulate
phase response in the approximation band(s). For ex-the design problem as a generalized eigenvalue prob-
ample, in the allpass-sum structure (Selesnick, 1999),lem (Zhang and Iwakura, 1996), (Zhang and lwakura,
the phase response of the allpass sub-filter is requiredl999). Therefore, we can obtain the filter coefficients
to be flat in the band(s) where the corresponding fil- by iteratively solving the eigenvalue problem. The
ter has the flat magnitude response, and is equirippleresulting allpass filters have the equiripple phase re-
in other band(s) to get the equiripple magnitude re- sponses and satisfy the specified degrees of flatness si-
sponse. Many methods have been proposed for themultaneously. Furthermore, as one of the applications
phase design of allpass filters: the maximally flat of allpass filters, we introduce a class of IIR filters
design (Thiran, 1971), least squares design (Laaksocomposed of allpass filters (Regalia et al., 1988), (Se-
et al.,, 1996), (Lang, 1998), and equiripple design lesnick, 1999), whose design problem can be reduced
(zhang and Iwakura, 1999), (Tseng, 2003). to the phase approximation of the allpass sub-filter.
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Thus, we can design the filters with flat passband (or band(s) while satisfying the specified degrees of flat-
stopband) and equiripple stopband (or passband) byness at the specified frequency point(s).

using the proposed method. Finally, some design ex-

amples are presented to demonstrate the effectiveness

of the proposed design method. 3 ALLPASSFILTER DESIGN

In this section, we describe the design method of all-
2 ALLPASSFILTERS pass filters with both the specified degrees of flatness

and equiripple phase responses in the approximation
It is well-known that the transfer function of an all- band(s). Firstly, we consider the flatness condition of
pass filterA(z) is defined by the phase response at the frequency pojntitis re-
quired that the derivatives &{w) in Eq.(2) are equal

N .
" to that ofBg(w) atw = wp, that is,
_ ,ND=
A(Z) =z N ’ (1) are(w) 976y ((.0)
= (.l):(.l)p (.l):(.l)p
whereN (€ Z) is filter degree, and, (¢ R) are real (5)

whereK (€ 2Z) is a parameter that controls the degree

of flatness. It is seen that to satisfy the specified de-
grees of flatness, the flatness conditions in Eq.(5) be-
come

coefficients andyp = 1.

It can be seen thak(z) in Eq.(1) has unit mag-
nitude response at all frequencies, and its phase re
sponseb(w) is given by

N aree(w) o -
an Sinnw 0w wzwio (r=01-.K=1). (®
P
- _ —1n=
8(w) = ~Now+2tan ™5 : (2) From Eqg.(4), we have
Z)ancosnoo
"~ tan2el®) _ N(©) (7)
Let B4(w) be the desired phase response. The dif- 2  Dw)’
ferenceBe(w) betweerB(w) andBy(w) is where
S ool Ho- ) N N, 8g(w)
;ane N(w) = 3 ansin{(n— = )w— }
8e(w) _ gi{8(w)—Ba(w)} _ N= = 2 2
e —e E : n= 8)
iane—i{m—%m—%@} D@ = 3 ancos(n- Mo @ (
> 3) & 22
and Therefore, it is proven that the condition in Eq.(6) is
equivalentto
N . N Bg(w
ansin{(n—z)w— a(®), 3N (w)
Be(w) = 2tan * = _ 3T =0 (r=0,1,---,K-1). (9)
u N, 683(w) w=0p

n;ancos{(n—i)m— 2 ! By substitutingN(w) in Eq.(8) into Eq.(9), we can

(4) derive a system of linear equations as follows,
Therefore, the design problem of allpass filters

is the phase approximation 6{w) to 84(w) in the . N B4 (w)

approximation band(s), that is, the minimization of ~ N 0'si{(n— =)o~ —>

the phase erroBe(w) in Eq.(4) in the specified cri- T a,=0, (10)
n= W=0Wp

terion, e.g., in the least squares, and/or Chebyshev
(minimax), and/or maximally flat sense. In the fol- forr=0,1,--- ,K—1. For example, if a linear phase
lowing, we discuss the design of allpass filters hav- is required, that isfy(w) = —tw, then Eq.(10) is re-
ing equiripple phase responses in the approximationduced to
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) sin{(n— 5 Jwplan=0  (evenr)

) cos{(n— (oddr)

(11)

Itis known that the phase resport{ev) is an odd
function with respect teo =0 andrt If wp =0 orm,
then the equations with evenare satisfied without
any conditions, and thus the number of the condi-
tions reduces about a half, thatlis= | 5 |, where|x|
means the largest integer not greater tkanWhen
wp # 0 andr, thenlL =K.

When the above-mentioned conditions are im-
posed at several frequency poinbg; (i =1,2,---,
M), the total number of the conditionslis= sM, L,
whereLi = |5 if wpi =0 orm andL; = K; if
wpi # 0 andtt Note thatK| is a parameter that con-
trols the degree of flatnessa;. Therefore, ifL =N,

S7)wptan =0

PHASE RESPONSE (1)

| | 1
0.2 0.3 0.4

1
0.1
NORMALIZED FREQUENCY
Figure 1: Phase responses of allpass filters.

0 0.5

pointwyp (# 0 andr), are given by

we can solve a system of linear equations as shown 0'sin{(j — %)w— %2@}
in Eq.(10) to obtain a set of filter coefficients, which P oo
has the maximally flat phase response and satisfies the . .
specified degrees of flatness at the specified frequencypj = (i=01,,L-1) ,
point(s) wpi. b g Bg (i

Next, \7ve consider the case bfk N. Besides sat- sin{(j — %)) — w}
isfying the flatness conditions in Eq.(5), we want to (i=LL+1---,N)
obtain an equiripple phase response in the approxi- (14)
mation band(s) by using the remaining degree of free- 0 (i=0,1,---,L—1)
dom. We apply the Remez exchange algorithm in the
approximation band(s). Let (i =0,1,---,N—L) Q=9 (~1)0Ycos{(j — Yoy, — M}
are the extremal frequencies in the approximation
band(s), we formulate(w) as (i=LL+1,-- 7N&5)

B (03
b ;ansm{n——m— > |
< Bg(w)
nzoancosﬁ >}
= (-1)',

whered (€ R) is an error. We incorporate Eq.(10) into

Eq.(12), and formulate the design problem as a gener-

alized eigenvalue problem. Then we rewrite Egs.(10)
and (12) in the matrix form as

PA = 3QA, (13)

whereA = [ag,a1,--- ,an]", and the elements of the
matricesP and Q, for example, when the flatness
condition in Eq.(5) is imposed at only one frequency

Once the design specification: the filter degkke
the desired phase resporggw), the degree of flat-
nessK;, the specified frequency point(s)i, and the
extremal frequencias; in the approximation band(s)
are given, the elemeng; andQ;; of the matriced
andQ can be computed by Egs.(14) and (15). There-
fore, it should be noted that Eq.(13) corresponds to
a generalized eigenvalue problem, i®is an eigen-
value, andA is a corresponding eigenvector. In or-
der to minimize the erra¥, we must find the absolute
minimum eigenvalue by solving the eigenvalue prob-
lem, so that the corresponding eigenvector gives a set
of filter coefficientsa,. To obtain an equiripple phase
response, we make use of an iteration procedure so
that the optimal filter coefficients is easily obtained.
The design algorithm is shown as follows.
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4 DESIGN ALGORITHM — T 11

0.1 e
Procedure. {Allpass Filter Design Algorithn. P K=7 )
Begin 005k — K=9 1
1) Read\, 64(w), K;, andwpi. x| v K=11 !

2) Select initial extremal frequencie€); (i =
0,1,---, N—L) equally spaced in approximation
band(s).

Repeat

3) Setwy =Q; (i=0,1,--- ,N—L).

4) ComputeP andQ by using Egs.(14) and (15), and
find the absolute minimum eigenvald¢o obtain
a set of filter coefficienta,.

5) Search the peak frequenc@s(i =0,1,--- ,N—

L) of B¢(w) in approximation band(s).

PHASE ERROR (1)
o

I
o
o
[

s s | L | L
0.2 0.3 0.4 0.5
NORMALIZED FREQUENCY

Until Figure 2: Phase errors of allpass filters.
Satisfy the following condition for a prescribed small ]
constant (for exampleg = 1078): whereA;(2),A2(z) are two causal stable allpass filters

of degred\;, Np, andJ (€ Z) is a nonnegative integer.

-l <e  (foralli) Eq.(16) can be rewritten to

End.
HE) = SMEE+ARL ()
5 IIRFILTERSCOMPOSED OF where
ALLPASSFILTERS _ A7)
A(Z) - Al(z>7 (18)

Many methods for designing IR filters have been pro- .

posed in (Mitra and Kaiser, 1993), (Regalia et al., whose degree ibl = Ny +N,. Note thatA(z) needs
1988), (zhang and Iwakura, 1996), (Lang, 1998), not_be causal stable. The magnitude responsé&(of
(Hegde and Shenoi, 1998), (Selesnick and Burrus, is'given by
1998), (Selesnick, 1999). These design methods have _ 8(w) + Jw
considered the maximally flat and/or equiripple mag- H(e®)] = [cos=———],
nitude responses. It is required in some applications

that the magnitude response of the filters is flat in where6(w) is the phase response Afz). It is clear
passband(s) and equiripple in stopband(s) (Darling- that the phase difference betwesfz) andz—) must
ton, 1978), (Vaidyanathan, 1985), (Selesnick and Bur- be 2hrtin the passband(s) ¢(z), and(2n+ 1)mtin
rus, 1996), (Hegde and Shenoi, 1998). In this section, the stopband(s), wherec Z. Therefore, the desired
we discuss the design of IIR filters with flat pass- phase response #{2) is

band(s) and equiripple stopband(s), which are com-

(19)

posed of two allpass filters. (W) = { Jeanm (In passharyi
Itis known in (Regalia et al., 1988), (Lang, 1998), —Jw+ (2n+ 1)1t (in stopbang ’
(Selesnick and Burrus, 1998) and (Selesnick, 1999) (20)

that a parallel interconnection of two allpass filters then the design problem f(z) becomes the phase
(allpass-sum) has many advantages, such as low-approximation ofA(z). The conventional design
sensitivity structures, low-complexity structures with methods, for example, the maximally flat design (Thi-
low roundoff noise behavior, and so on. The classical ran, 1971), equiripple design (Zhang and Iwakura,
digital (Butterworth, Chebyshev, and elliptic) filters 1999), (Tseng, 2003) and so on, can be used in the
can be realized as an allpass-sum structure. In addi-design. However, these methods cannot design all-
tion, the allpass-sum structure can realize a more gen-pass filters with flat and equiripple phase response in
eral class of transfer functions. Here, we consider this passband(s) and stopband(s), respectively. By using
class of IIR filters whose transfer function is given by the design method proposed in the preceding section,
1 we can obtain easily the flat passband(s) and equirip-
H(2) = E[Z_JAl(Z) +A2(2)], (16)  ple stopband(s) dfi(2).
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MAGNITUDE RESPONSE (dB)
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Figure 3: Magnitude responses of IIR lowpass filters.

For example, if we warnit (z) to be a lowpass fil-
ter, the desired phase response is given by
—Jw (O<w< )

21
“JwEm (<< ’ (1)

By (w) = {

wherewy and w, are the cutoff frequencies of the

RESPONSES

PHASE RESPONSE (1)

1 1 1
0.2 0.3 0.4

L |
0 0.1

NORMALIZED FREQUENCY
Figure 4: Phase responses of IR lowpass filters.

0.5

filter coefficientsa, by using the design algorithm de-
scribed in the section IV. The resulting phase response
and phase error are shown in the solid line in Fig.1 and
Fig.2, respectively. It is clear in Fig.2 that the phase
response is flat ab= 0 and equiripple if0.51, 17. In
Fig.1 and Fig.2, the phase responses of two allpass fil-
ters withK = 7 andK = 11 are shown also. Itis seen

passhand and stopband, respectively. Note that inthat the degree of flatne#s can be arbitrarily spec-

this case, the filter degred and N, must satisfy
No—Ni=JF1. If we setN; =0 andN =N, =
JF 1, then the filter will have an approximately linear

ified. It is found that these allpass filters are causal
stable since all poles are within the unit circle (Zhang
and lwakura, 1999).

phase response also (Laakso et al., 1996), (Zhangand Next, we use the obtained allpass filters to con-

Iwakura, 1999).

struct IIR lowpass filtersH (z) = 3[z 7+ A(z)]. The

We use the proposed method to design the allpassmagnitude and phase responses of the IIR filters are

filter A(z), whose phase resporev) satisfies Eq.(5)
atwp = 0. Note thaK should be an odd number, be-
caused(w) is an odd function with respect o = 0.
Thus, the resulting lowpass filtet(z) has a flat mag-
nitude response abp = 0, and the degree of flatness
is 2K.

6 DESIGN EXAMPLES

shown in Fig.3 and Fig.4, respectively. It is seen in
Fig.3 and Fig.4 that these lowpass filters have the flat
passband and equiripple stopband responses, while
the phase responses are approximately linear.

7 CONCLUSIONS

In this paper, we have proposed a new method for de-
signing allpass filters which have both the specified

In this section, we present some examples to degrees of flatness and equiripple phase responses
demonstrate the effectiveness of the proposed desigrin the approximation band(s). Firstly, a system of

method.

First, we consider the design of allpass filter of de-
greeN = 8 with the desired phase resportzéw) =
—7win [0,0.31 andBy(w) = —7w— T1tin [0.51T T1.
The degree of flatness is required to Ke= 9 at
wp =0, thenL = 4. Since the remaining degree of
freedom isN — L = 4, we have selected initial ex-
tremal frequencies.Bri=wp < w1 < -+ <y < T
equally spaced ifi0.5m, 1, and obtained the optimal

linear equations have been derived from the flatness
conditions of the phase responses, then the Remez
exchange algorithm is used to get the equiripple re-
sponses in the approximation band(s). The design
problem has been formulated as a generalized eigen-
value problem by incorporating the flatness condi-
tions into the equiripple approximation, thus, a set of
filter coefficients can be easily obtained by solving the
eigenvalue problem. Furthermore, as one application
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of allpass filters, a class of lIR filters composed of two Zhang, X. and Iwakura, H. (June 1996). Design of iir digital
allpass filters has been discussed also. Finally, some filters based on eigenvalue problem. IEEE Trans.
examples have been presented to demonstrate the ef-  Signal Processingvol.44, No.6, pp.1325-1333.
fectiveness of the proposed design method.
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