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Abstract: Linearizing control is a popular approach to control bioprocesses, which has received considerable attention
is the past several years. This control approach is however quite sensitive to modeling uncertainties, thus
requiring some on-line parametric adaptation so as to ensure performance. In this study, this usual adaptive
strategy is compared in terms of implementation and performance to a robust strategy, where the controller
has a fixed parametrization which is determined using a LMI framework so as to ensure robust stability and
performance. Fed-batch cultures of yeast and bacteria are considered as application examples.

1 INTRODUCTION

The culture of host recombinant micro-organisms is
nowadays a very important way of producing bio-
pharmaceuticals. Fed-batch operation is popular in
industrial practice, since it is advantageous from an
operational and control point of view. The off-line
determination of the feeding profile is usually sub-
optimal as some security margin has to be provided
in order to avoid an excess of substrate leading to
the accumulation of inhibitory by-products (inhibition
of the cell respiratory capacity), namely ethanol for
yeast cultures and acetate for bacteria cultures.

To optimize the culture conditions and to avoid
high concentrations of inhibitory by-products, a
closed-loop solution is required, and a wide diversity
of approaches, e.g., (Pomerleau, 1990; Chen et al.,
1995; Rocha, 2003; Renard and Wouwer, 2008; De-
wasme et al., 2009a; Dewasme et al., 2009b) have
been considered.

In particular, linearizing control (Bastin and
Dochain, 1990) is a very popular approach, which has
been applied successfully in a number of case studies.
However, linearizing control requires the knowledge
of an accurate model, and on-line parametric adap-
tation is usually implemented so as to ensure perfor-
mance. Whereas parametric adaptation is a simple ap-
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Figure 1: Illustration of Sonnleitner’s bottleneck assump-
tion for cells limited respiratory capacity.

proach, it does not guarantee stability in the presence
of unmodeled dynamics.

In this study, another approach is also considered,
which is based on nonlinear robust control and the
used of Linear Matrix Inequalities (LMIs) to design
the free linear dynamics so as to ensure robust stabil-
ity and performance. A comparison of the adaptive
and robust control approaches is provided in terms
of implementation, and simulation tests shows the re-
spective advantages and limitations of both strategies.
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2 MECHANISTIC MODEL

In this study, we consider a generic model that would,
in principle, allow the representation of the culture of
different strains presenting an overflow metabolism
(yeasts, bacteria, animal cells, etc). This model de-
scribes therefore the cell catabolism through the fol-
lowing three main reactions:

Substrate oxidation :

kS1S+ kO1O
r1X
→ kX1 X + kC1C (1a)

Overflow reaction (typically fermentation) :

kS2S+ kO2O
r2X
→ kX2 X + kP2P+ kC2C (1b)

Metabolite product oxidation :

kP3P+ kO3O
r3X
→ kX3X + kC3C (1c)

where X, S, P, O and C are, respectively, the concen-
tration in the culture medium of biomass, substrate
(typically glucose or glycerol), product (i.e. ethanol
or methanol in yeast cultures, acetate in bacteria cul-
tures or lactate in animal cells cultures), dissolved
oxygen and carbon dioxide.kξi (i=1,2,3) are the yield
coefficients andr1, r2 andr3 are the nonlinear specific
growth rates given by:

r1 =
min(rS, rScrit )

kS1
(2)

r2 =
max(0, rS− rScrit )

kS2
(3)

r3 =
max

(

0,min
(

rP,
kos(rScrit −rS)

koa

))

kP3
(4)

where the kinetic terms associated with the substrate
consumptionrS, the critical substrate consumption
rScrit (generally dependent on the cells oxidative or
respiratory capacityrO) and the product oxidative rate
rP are given by:

rS= µS
S

S+KS
(5a)

rScrit =
rO

kos
=

µO

kos

O
O+KO

KiP
KiP+P

(5b)

rP = µP
P

P+KP
(5c)

These expressions take the classical form of
Monod laws whereµS, µO andµP are the maximal val-
ues of specific growth rates,KS, KO andKP are the sat-
uration constants of the corresponding element, and
KiP is the inhibition constant.kos andkoa represent
the coefficients characterizing respectively the yield
between the oxygen and substrate consumptions, and
the yield between the acetate and oxygen consump-
tions.

This kinetic model is based on Sonnleitner’s bot-
tleneck assumption (Sonnleitner and Käppeli, 1986)
which was developed for a yeast strainSaccha-
romyces cerevisiae(Figure 1). During a culture, the
cells are likely to change their metabolism because of
their limited respiratory capacity. When the substrate
is in excess (concentrationS>Scrit ), the cells produce
a metabolite productP through fermentation, and the
culture is said in respiro-fermentative (RF) regime.
On the other hand, when the substrate becomes lim-
iting (concentrationS< Scrit ), the available substrate
(typically glucose), and possibly the metaboliteP (as
a substitute carbon source), if present in the culture
medium, are oxidized. The culture is then said in res-
pirative (R) regime.

Component-wise mass balances give the follow-
ing differential equations :

dX
dt

= (kX1r1+ kX2r2+ kX3r3)X−DX (6a)

dS
dt

=−(kS1r1+ kS2r2)X+DSin−DS (6b)

dP
dt

= (kP2r2− kP3r3)X−DP (6c)

dO
dt

=−(kO1r1+ kO2r2+ kO3r3)X−DO+ OTR

(6d)

dC
dt

= (kC1r1+ kC2r2+ kC3r3)X−DC− CTR (6e)

dV
dt

= Fin (6f)

whereSin is the substrate concentration in the feed,
Fin is the inlet feed rate,V is the culture medium vol-
ume andD is the dilution rate (D = Fin/V). OTRand
CTR represent respectively the oxygen transfer rate
from the gas phase to the liquid phase and the carbon
transfer rate from the liquid phase to the gas phase.
Classical models ofOTRandCTRare given by:

OTR= kLa(Osat−O) (7a)

CTR= kLa(P−Psat) (7b)

wherekLa is the volumetric transfer coefficient and,
Osat and Psat are respectively the dissolved oxygen
and carbon dioxide concentrations at saturation.

3 A SUBOPTIMAL STRATEGY

The maximum of productivity is obtained at the
edge between the respirative and respiro-fermentative
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regimes, where the quantity of by-product is constant
and equal to zero (VP= 0). Unfortunately, evaluating
accurately the volume is a difficult task as it depends
on the inlet and outlet flows includingFin but also the
added base quantity forpH control and several gas
flow rates. Moreover, maintaining the quantity of by-
product constant in a fed-batch process means that the
by-product concentration has to decrease while the
volume increases. So, even if the volume is correctly
measured,VPbecomes unmeasurable onceP reaches
the sensitivity level of the by-product probe. For those
practical limitations, a sub-optimal strategy is elabo-
rated through the control of the by-product concentra-
tion around a low valueP∗ depending on the sensitiv-
ity of commercially available probes (for instance, a
general order for ethanol probe is 0.1g/l ), and requir-
ing only an estimation of the volume by integration of
the feed rate.

The basic principle of the controller is thus to reg-
ulate the by-product at a constant low setpoint, lead-
ing to a self-optimizing control in the sense of (Sko-
gestad, 2004) and ensuring that the culture operates in
the respiro-fermentative regime, close to the biologi-
cal optimum, i.e., close to the edge with the respira-
tive regime.

4 LINEARIZING CONTROL
STRATEGY

The component-wise mass balances of reaction
scheme (1) lead to the following state-space represen-
tation

ẋ= Kr(x)X+Ax−ux+B(u) (8)

wherex= [ X S P O C V ]′ is the state vec-
tor, r(x) = [ r1 r2 r3 ]′ is the vector of reaction
rates, andu= D = Fin/V is the control input (the di-
lution rate). The matricesK and A, and the vector
functionB(·) are given by:

K =















kX1 kX2 kX3
−kS1 −kS2 0

0 kP2 −kP3
−kO1 −kO2 −kO3
kC1 kC2 kC3
0 0 0















, B(u) =















0
Sin u

0
kLa Osat
kLa Psat

0















,

(9)

A=





03×3 03×2 03×1
02×2 −kLa I2×2 02×2
01×3 01×2 0



 ,

A feedback linearizing controller is illustrated in
Figure 2. In a first step, this controller is derived as-
suming a perfect process knowledge. The basic idea
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Figure 2: Linearizing control scheme.

is to derive a nonlinear controller, which allows a lin-
earization of the process behavior ((Chen et al., 1995;
Pomerleau, 1990)).

As the theoretical value ofScrit is very small (be-
low 0.1 g/l ) and assuming a quasi-steady state ofS
(i.e. considering that there is no accumulation of glu-
cose when operating the bioreactor in the neighbor-
hood of the optimal operating conditions), the small
quantity of substrateVS is almost instantaneously
consumed by the cells (d(VS)

dt ≈ 0 andS≈ 0) and (6b)
becomes:

kS2r2X =−kS1r1X+Sinu (10)

wherer1 andr2 are nonlinear functions ofS,P andO
as given by (2-3).

Replacingr2X by (10) in the mass balance equa-
tion for P (6c), we obtain:

Ṗ=−
kP2kS1

kS2
r1X− kP3r3X−u

(

P−
kP2

kS2
Sin

)

(11)

A first-order linear reference model is imposed:

d(P∗−P)
dt

=−λ(P∗−P) , λ > 0 (12)

and a constant setpoint is considered so that:

dP
dt

= λ(P∗−P) , λ > 0 (13)

Equating (13) and (11), the following control law
is obtained:

Fin =V
λ(P∗−P)+ ( kP2kS1

kS2
r1+ kP3r3)X

kP2
kS2

Sin −P
(14)

wherekP2kS1
kS2

r1 andkP3r3, the kinetic expressions, con-
tain several uncertain parameters.

4.1 A Classical Adaptive Strategy

In (Chen et al., 1995), the parameter uncertainties
are handled using an on-line estimation of the kinetic
term kP2kS1

kS2
r1 + kP3r3 in the linearizing control law

(14). In this study, the biomass concentrationX is
supposed to be measured using a probe (for instance
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a optical density probe or a conductance probe, which
are nowadays widely available), whereas in (Chen
et al., 1995), an asymptotic observer is used to es-
timate this component concentration. The following
adaptive scheme is therefore a simplified version of
the original algorithm.

Fin =V
λ(P∗−P)+ θ̂X

kP2
kS2

Sin −P
(15)

A direct adaptive scheme as described in (Bastin
and Dochain, 1990) is used. Consider the following
Lyapunov function candidate:

V(t) =
1
2

(

P̃2+
θ̃2

γ

)

(16)

whereP̃=P∗−P, θ̃= θ− θ̂ andγ is a strictly positive
scalar. The specific growth ratesr1 and r3 (and, of
course, the pseudo-stoichiometric coefficientk4) are
assumed to be constant so thatθ variations are negli-
gible (dθ

dt = 0).
Using the Lyapunov stability theory, the time

derivative of the Lyapunov candidate function should
be negative for the closed-loop system to be stable:

dV
dt

=
dP̃
dt

P̃+ θ̃
dθ̃
dt

1
γ

(17)

Considering (13) and a possible parameter mis-
match (̂θ 6= θ):

dP̃
dt

=−λP̃− θ̃X (18)

so that (17) becomes:

dV
dt

=−λP̃2− P̃θ̃X− θ̃
dθ̂
dt

1
γ

(19)

Choosing the followingθ adaptive law cancels the
second and the third terms:

dθ̂
dt

= γXP̃ (20)

4.2 A Robust Strategy

Structural and parametric uncertainties can be lumped
into a global parametric error:

δ = θ̄−θ (21)

whereδ is a nonlinear function of(S,P,O) represent-
ing possible inexact cancellations of nonlinear terms
due to model uncertainties and̄θ represents the hypo-
thetical exact unknown value. Rewriting the kinetic
term in (15) using the new expression taken from (21),
we obtain:

u= Fin =V
λ(P∗−P)+ θ̄X− δX

kP2
kS2

Sin −P
(22)

which corresponds to the perturbed reference system:

Ṗ= λ(P∗−P)− δX (23)

Borrowing the ideas of theQuasi-LPVapproach
(Leith and Leithead, 2000), we bound the time-
varying parameterδ which is supposed to belong to
a known set∆ := {δ : δ ≤ δ ≤ δ} with δ andδ respec-
tively representing the minimal and maximal admis-
sible uncertainties.

The parameterλ is designed to ensure some ro-
bustness and tracking performance to the overall
closed-loop system, which is modeled as follows:

M :

{

Ṗ = −λz− δX
z = P∗−P

(24)

wherez= P∗−P is the performance output.
Let w= [ P∗ X ]′ ⊂ L2,[0,T] be the disturbance

input to the systemM , a(λ,δ) =
[

λ −δ
]

and
c=

[

1 0
]

. The closed-loop system (24) can be
rewritten:

M :

{

Ṗ = −λP+a(λ,δ)w
z = − P + c w , δ ∈ ∆ (25)

Consider the finite horizon (for instance, between
the instant 0 and the timeT) L2-gain of systemM
(M. Green and D.J.N. Limebeer, 1994), representing
the worst-case of the ratio of‖z‖2,[0,T] (i.e., the finite
horizon 2-norm of the tracking error) and‖w‖2,[0,T]
(i.e., the finite horizon 2-norm of the disturbance in-
put), which is defined as:

‖Mwz‖∞,[0,T] = sup
δ∈∆,0 6=w⊂L2,[0,T]

‖z‖2,[0,T]

‖w‖2,[0,T]
(26)

Thus, the parameterλ is designed based on theH∞
control theory (M. Green and D.J.N. Limebeer, 1994;
Skogestad and Postlethwaite, 2001). Letα > 0 be an
upper limiting of‖Mwz‖∞,[0,T]. Thus, the problem is
to find α such that:

min
λ,δ∈∆

α : ‖Mwz‖∞,[0,T] ≤ α (27)

while ensuring the robust stability of system (25).
This optimization problem can be written in terms

of linear matrix inequalities (LMIs) and solved us-
ing readily available toolboxes, e.g., SeDuMi (Sturm
et al., 2006) can be applied to solve the prob-
lem. These constraints can be easily obtained via a
quadratic Lyapunov function (S.Boyd, L.El-Ghaoui,
E.Feron and V.Balakrishnan, 1994)

V(P) = P′QP= QP2 (28)

whereQ is a strictly positive symmetric matrix (i.e.,
Q= Q′ ≻ 0) and ”′ ” corresponds to the transposition
matrix operation.
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The minimization in (27) is then equivalent to:

min α : V(P)≻ 0 , V̇(P)+
1
α

z′z−αw′w≺ 0 (29)

where, using (25) and (28), the time derivative of
V(P) is given by:

V̇(P) = Ṗ′QP+P′QṖ

= (−λP+aw)′QP+P′Q(−λP+aw)

= −λP′QP+(aw)′QP−λP′QP+P′Qaw

= −2λP′QP+a′w′QP+P′Qaw (30)

Using (30) in (29), the following expression is ob-
tained:
[

P
w

]′[
−2m Qa
a′Q −αInw

][

P
w

]

−
1
α

zz′ ≺ 0 (31)

wherem= λQ andInw is the unity matrix of dimen-
sionnw×nw andnw is the dimension ofw.

Now, consider the following lemma (Schur Com-
plement):

Lemma 1. The following matrix inequalities are
equivalent

(i) T > 0,R−ST−1S′ ≻ 0

(ii) R> 0,T −S′R−1S≻ 0

(iii )

[

R S
S′ T

]

≻ 0

Hence, using the expression ofz,a andc in (25)
and Lemma 1, the optimization problem in (27) can
be written as follows:

min
Q,m

α : α > 0 , Q= Q′ > 0 and







−2m m −δQ −1
m −α 0 1

−δQ 0 −α 0
−1 1 0 −α






≺ 0 (32)

If there exists a feasible solution to the above op-
timization problem for allδ evaluated at the vertices
of ∆, then (27) is satisfied andλ = mQ−1.

Remark 1. Quadratic Lyapunov functions may be
conservative for assessing the stability of parameter-
dependent systems (G. Chesi and Vicino, 2004).
However, a parameter-independent Lyapunov func-
tion is considered in this study for two main reasons:

1. λ is parametrized with the Lyapunov matrixQ
so as to obtain a convex design condition. A
parameter-independent matrixQ therefore results
in a parameter-independent control law;

2. the variation ofδ is a priori unknown.

Remark 2. This method is likely to be conservative,
as the parameterδ has to bound the nonlinearities
of the inexactly cancelled terms. Less conservative
results can be obtained by considering the approach
of (D.F. Coutinho, M. Fu, A. Trofino and P. Danès,
2008) to deal with the nonlinearities at the cost of a
larger computational effort.

5 NUMERICAL RESULTS

In this section, for comparing the adaptive and ro-
bust linearizing control strategies, several numeri-
cal simulations considering small-scale bacteria and
yeast cultures (respectively in 5 and 20[l ] bioreac-
tors) are performed. The first simulation set is dedi-
cated to yeast cultures with initial and operating con-
ditions:X0 = 0.4g/l , S0 = 0.5g/l , E0 = 0.8g/l , O0 =
Osat = 0.035g/l , C0 = Csat = 1.286g/l , V0 = 6.8l ,
Sin = 350g/l . The second simulation set is dedicated
to bacteria cultures with initial and operating condi-
tions: X0 = 0.4g/l , S0 = 0.05g/l , A0 = 0.8g/l , O0 =
Osat = 0.035g/l , C0 = Csat = 1.286g/l , V0 = 3.5l ,
Sin = 250g/l

The values of all model parameters are listed in
Tables 1, 2, 3 and 4. Note that, for yeast cultures,
coefficientskos and koa are simply replaced bykO1
andk03 while kO2 = 0, in accordance with the model
of (Sonnleitner and Käppeli, 1986). For the bacte-
ria model, parameters values are taken from (Rocha,
2003) and slightly modified to adapt the yield coeffi-
cient normalization to the proposed reaction scheme
(1) and kinetic model (with a slight difference in the
formulation ofr3).

The state variables are assumed available (i.e.,
measured) online for feedback. The adaptive and ro-
bust linearizing feedback controllers proposed in sec-
tion 4 aim at tracking the byproduct set-point (E∗ and
A∗ = 1 g/l ) which is chosen sufficiently low so as to
stay in the neighborhood of the optimal trajectory but
also sufficiently high to avoid probe sensitivity limi-
tations. In this setup, a noisy byproduct measurement
is considered.

To design the parameterλ in (23) via the optimiza-
tion problem (27), the parametersKS, KP, KO, KiP
andµS, µO are assumed to be respectively varying of
±100% and±15% from their nominal values. Simu-
lating the operating conditions of the control strategy
in (22), we may infer thatδ =−δ = 0.5/3600s−1 for
yeast cultures andδ = −δ = 0.1/3600s−1 for bac-
teria cultures. In light of (25) and (27), these con-
straints yield for yeasts and bacteria, respectively to
λ = 0.0056 andλ = 0.0046.

Concerning the adaptive control law,λ = 1 and
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Table 1: Yield coefficients values of Sonnleitner and
Käppeli for S. cerevisiaemodel (Sonnleitner and Käppeli,
1986)

Yield coefficients Values Units
kX1 0,49 g o f X/g o f S
kX2 0,05 g o f X/g o f S
kX3 0,72 g o f X/g o f E
kS1 1
kS2 1
kP2 0,48 g o f E/g o f S
kP3 1
kO1 0,3968 g o f O2/g o f S
kO2 0 g o f O2/g o f S
kO3 1,104 g o f O2/g o f E
kC1 0,5897 g o f CO2/g o f S
kC2 0,4621 g o f CO2/g o f S
kC3 0,6249 g o f CO2/g o f E

Table 2: Kinetic coefficients values of Sonnleitner and
Käppeli for the S. cerevisiaemodel (Sonnleitner and
Käppeli, 1986)

Kinetic coefficients Values Units

µO 0,256 g o f O2/g o f X /h
µS 3,5 g o f S/g o f X /h
KO 0,0001 g o f O2/l
KS 0,1 g o f S/l
KE 0,1 g o f E/l
KiE 10 g o f E/l

γ = 0.05 for yeast cultures whileλ = 2 andγ = 0.25
for bacteria cultures. Note also that the sampling pe-
riod is chosen equal to 0.1 h.

Before discussing the results of the proposed
methods, it is interesting to observe the performance
of a plain linearizing controller, i.e. without adapta-
tion or robustification, applied to the yeast process in
the presence of modeling errors. For instance, con-
sider the situation where the user selects a relatively
high gainλ= 1, andθ̂ is fixed tokP2/2. Figure 3 illus-
trates the consequences of such choices. Even if the
controller behaves correctly during the first hours, the
divergence of the ethanol signal during the last hours
will impact the quality of the culture.

Figure 4 shows now the closed-loop response of
biomassX, ethanolE concentrations, and the inlet
feed rateFin, for five different values of the kinetic
parameters (which were randomly chosen) in yeast
cultures under a robust control strategy. In all sim-
ulation runs, a white noise is added to the ethanol
concentration measurement with a standard deviation
of ±0.1 [g/l ] and the culture is considered as always
evolving in the optimal operating conditions in which
r1 =

rO
kO1

andr3 = 0 so that the hypothetical parameter

Table 3: Yield coefficients values of Rocha’sE.coli model
(Rocha, 2003)

Yield coefficients Values Units
kX1 1
kX2 1
kX3 1
kS1 0,316 g o f S/g o f X
kS2 0,04 g o f S/g o f X
kP2 0,157 g o f A/g o f X
kP3 0,432 g o f A/g o f X
kO1 0,339 g o f O2/g o f X
kO2 0,471 g o f O2/g o f X
kO3 0,955 g o f O2/g o f X
kC1 0,405 g o f CO2/g o f X
kC2 0,754 g o f CO2/g o f X
kC3 1,03 g o f CO2/g o f X
kos 2,02 g o f O2/g o f X
koa 1,996 g o f O2/g o f X

Table 4: Kinetic coefficients values of Rocha’sE.coli
model (Rocha, 2003)

Kinetic coefficients Values Units
µO 0,7218 g o f O2/g o f X /h
µS 1,832 g o f S/g o f X /h
KO 0,0001 g o f O2/l
KS 0,1428 g o f S/l
KA 0,5236 g o f A/l
KiA 6,952 g o f A/l
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Figure 3: Yeast cultures – ethanol concentration and feed
rate when the controller is designed using a plain linearizing
control approach (no adaptation and no robustification) in
the presence of modeling errors.

θ̄ in (22) is taken as

θ̄ =
˜kP2kS1

kS2
r1+ ˜kP3r3 ≈

kP2kS1
kS2

rO

kO1
(33)

Figure 4 shows that during the start-up phase,Fin
saturates to 0, leading to an ethanol overshoot (see
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Figure 4: Yeast cultures – biomass and ethanol concentra-
tions, and feed rate – robust control strategy – results of 5
runs with random parameter variations and a noise standard
deviation of±0.1 [g/l ].

Figure 4). The different curves are more or less indis-
tinguishable (the same noise signal is applied during
the 5 runs) except in the last hours where the conse-
quences of model errors appear. Nevertheless, these
results are very satisfactory as model errors have a
negligible influence.

Figures 5 and 6 show the results of a simulation
performed with the same initial and operating con-
ditions with the adaptive strategy, in the ideal case
where there is no measurement noise, whereas Fig-
ures 7 and 8 correspond to a noise standard devia-
tion of ±0.05 [g/l ] added to the ethanol concentra-
tion measurements. Due to sensitivity problems of
the adaptive law, higher noise levels usually lead to
computational failures. When the parameter adapta-
tion performs well, the productivity of the adaptive
and robust strategies is more or less the same, i.e., a
biomass concentration of approximately 80g/l is ob-
tained within 24 hours.
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Figure 5: Yeast cultures –θ adaptation and biomass concen-
tration – adaptive control strategy – no measurement noise.

Figure 9 shows the closed-loop response of
biomassX, acetateA concentrations, and inlet feed
rate Fin, for five different values of the kinetic pa-
rameters which are randomly chosen, in the bacteria
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Figure 6: Yeast cultures – ethanol concentration and feed
flow rate – adaptive control strategy – no measurement
noise.
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Figure 7: Yeast cultures –θ adaptation and biomass concen-
tration – adaptive control strategy – noise standard deviation
of ±0.05 [g/l ].

0 5 10 15 20 25
0

0.5

1

1.5

2

E
 [

g
/l
]

E*

E

0 5 10 15 20 25
0

1

2

3

4
x 10

−4

F
in

 [
l/
s
]

Time [h]

Figure 8: Yeast cultures – ethanol concentration and feed
flow rate – adaptive control strategy – noise standard devia-
tion of ±0.05 [g/l ].

cultures under a robust control strategy. Figures 10
and 11 show similar simulation runs with the adap-
tive strategy. The same comments concerning the
noise sensitivity apply.

Note that the productivity is lower in the bacteria
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Figure 9: Bacteria cultures – biomass and acetate concen-
trations, and feed rate – robust control strategy – results of 5
runs with random parameter variations and a noise standard
deviation of±0.1 [g/l ].
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Figure 10: Bacteria cultures –θ adaptation and biomass
concentration – adaptive control strategy – noise standard
deviation of±0.05 [g/l ].
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Figure 11: Bacteria cultures – acetate concentration and
feed flow rate – adaptive control strategy – noise standard
deviation of±0.05 [g/l ].

cultures (for biological and operating reasons, bacte-
ria strains lead to reaction rates and, therefore, growth
rates that are smaller than yeast reaction rates). How-
ever, from a control point of view, results are satisfac-
tory in both cases.

6 CONCLUSIONS

Linearizing control is a powerful approach to the con-
trol of fed-batch bioprocesses. In most applications
reported in the literature, on-line parameter adapta-
tion is proposed in order to ensure the control per-
formance despite modeling uncertainties. On-line pa-
rameter adaptation is however sensitive to measure-
ment noise, and requires some kind of tuning. On
the other hand, robust control provides an easy design
procedure, based on well established computational
procedures using the LMI formalism. Large paramet-
ric and structural uncertainties, as well as measure-
ment noise levels can be dealt with.
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