
SEARCHING KEYWORD-LACKING FILES BASED ON LATENT
INTERFILE RELATIONSHIPS

Tetsutaro Watanabe1, Takashi Kobayashi2 and Haruo Yokota1
1Department of Computer Science, Graduate School of Information Science and Engineering

Tokyo Institute of Technology, Tokyo, Japan
2Department of Information Engineering, Graduate School of Information Science

Nagoya University, Nagoya, Japan

Keywords: Desktop search, File retrieval, Access log analysis, Latent inter-file relationship.

Abstract: Current information technologies require file systems to contain so many files that searching for desired files
is a major problem. To address this problem, desktop search tools using full-text search techniques have been
developed. However, those files lacking any given keywords, such as picture files and the source data of
experiments, cannot be found by tools based on full-text searches, even if they are related to the keywords.
It is even harder to find files located in different directories from the files that include the keywords. In
this paper, we propose a method for searching for files that lack keywords but do have an association with
them. The proposed method derives relationship information from file access logs in the file server, based on
the concept that those files opened by a user in a particular time period are related. We have implemented
the proposed method, and evaluated its effectiveness by experiment. The evaluation results indicate that the
proposed method is capable of searching keyword-lacking files and has superior precision and recall compared
with full-text and directory-search methods.

1 INTRODUCTION

Advances in information technologies have led to
many types of multimedia data, including figures, im-
ages, sounds, and videos, being stored as files in com-
puter systems alongside conventional textual mate-
rial. Moreover, the recent price drop for magnetic
disk drives (Hayes, 2002) has accelerated the explo-
sive increase in the number of files within typical file
systems (Agrawal et al., 2007).

Most current operating systems adopt hierarchical
directories to manage files. A very large number of
files make the structure of such a directory very exten-
sive and complex. Therefore, it is very hard to clas-
sify the many files into appropriate directories. Even
if all the files are classified appropriately, it is still dif-
ficult to find a desired file located at a deep node in
the directory tree. The results obtained by Dumais et
al. (Dumais et al., 2003) also lead to that conclusion as
they observe that users feel less the need to maintain a
complex hierarchy of their documents when they have
a powerful search tool allowing them to find their doc-
uments more easily.

In this context, several desktop search tools using

full-text search techniques have been developed, such
as Google Desktop, Windows Desktop Search, Spot-
light, Namazu (Namazu, 2009), Hyper Estraier (Es-
traier, 2007). Moreover several ranking techniques
for desktop search systems also have been pro-
posed (Cohen et al., 2008). However, their main tar-
get is restricted to text-based files such as Microsoft
Word documents, PDFs, and emails.

Other types of files, such as picture files, image
files, and source data files for experiments and field
work, cannot be found by these full-text search tools
because they lack search keywords. Even for text-
based files, they cannot be found if they do not include
directly related keywords. It becomes even harder if
these files are located in different directories from the
files that contain the keywords.

To address the demand for searching for these
keyword-lacking files, there has been much research
aiming to append metadata to files (Yee et al., 2003).
However, it is practically impossible to assign “per-
fect” metadata to a large number of files. On the other
hand, Google Image Search (Google, 2010) is capa-
ble of searching image files in web sites associated
with the keywords by using the reference information

236
Watanabe T., Kobayashi T. and Yokota H. (2010).
SEARCHING KEYWORD-LACKING FILES BASED ON LATENT INTERFILE RELATIONSHIPS.
In Proceedings of the 5th International Conference on Software and Data Technologies, pages 236-244
DOI: 10.5220/0002931002360244
Copyright c© SciTePress



in HTML files within the site. However, this method
does not directly apply to files in the file system be-
cause they rarely contain information relevant to the
sources of the included objects.

In this paper, to provide the function of searching
for keyword-lacking files that match with given key-
words, we focus on the latent relationship between
files that have been frequently accessed at about the
same time. For example, when a user of a com-
puter system edits the file for a research paper con-
taining conceptual figures and graphs of experiments,
the user frequently opens files for the figures and
data sources of the experiments at the same time.
Of course, other files that do not directly relate to
the paper, such as reports for lectures and emails to
friends, are also opened simultaneously. However, the
frequency of opening related files at the same time
should be higher than the frequency for non-related
files.

To achieve this function, we propose a method
for mining latent interfile relationships from the file
access logs in a file server(Watanabe et al., 2008)
. We have implemented a desktop search system
“FRIDAL” based on the proposed method using ac-
cess logs for Samba. FRIDAL is an acronym for
“File Retrieval by Interfile relationships Derived from
Access Logs”. To evaluate the method, we com-
pared the search results for FRIDAL with a full-
text search method, directory search methods, and
a related method used in Connections (Soules and
Ganger:, 2005). The evaluation results, using actual
file access logs for testers indicated that the proposed
method is capable of searching the keyword-lacking
files that cannot be found by other methods, and that
it has superior precision and recall compared with the
other approaches.

The remainder of this paper is organized as fol-
lows. First, we review related work in Section 2.
Then we propose a method for mining the file access
logs in Section 3, and describe the implementation of
FRIDAL in Section 4. In Section 5, we compare the
search results for FRIDAL with the other methods to
evaluate FRIDAL. We conclude the paper and discuss
future work in Section 6.

2 RELATED WORK

There are interesting discussions related desktop
searching task. Barreau and Nardi (Barreau and
Nardi:, 1995) summarize and synthesize investigated
information organization practices among users of
several DOS, Windows, OS/2 and Macintosh. Fertig
et al. (Fertig et al., 1996) have refuted Barreau’s ar-

guments on the desktop and file & folder metaphor,
which is analogy to our paper-based world. They
mentioned several approaches included the virtual di-
rectories of the MIT Semantic File System (Gifford
et al., 1991), Lifestreams (Freeman and Gelernter,
1996), which uses a time-based metaphor and fast
logical searches to organize, monitor, find and sum-
marize information. Blanc-Brude and Scapin (Blanc-
Brude and Scapin, 2007) also has discussed which at-
tributes people actually recall about their own docu-
ments, and what are the characteristics of their recall.
The MIT Semantic File System (Gifford et al., 1991)
enables a file to have a number of attributes, instead of
placing it in a directory, to help share its information.
The method proposed in the article (Ishikawa et al.,
2006) uses the Resource Description Framework to
describe the attributes of files, and applies seman-
tic web technology to manage files by maintaining
their consistency. Chirita et al. (Chirita et al., 2005)
were also proposed semantic approaches for desktop
search. Our method and these other approaches have
the same goal; solving the problem of the hierarchi-
cal directory. However, our approach uses file access
logs instead of semantics.

There also exists some research which uses a time-
based metaphor. In time-machine computing (Reki-
moto, 1999), all files are put on the desktop and grad-
ually disappear over time. If a user inputs a date
to the system, the user can see the desktop at the
appointed date. The system also supports keyword
searches by using an “electronic post-it” note created
by the user. Dumais et al. have proposed “Stuff
I’ve Seen”(SIS) (Dumais et al., 2003) which supports
to finding and re-using previously seen information
on desktop. In SIS, information that a person has
seen is indexed and he can search by rich contex-
tual cues such as time, author, thumbnails and pre-
views. Their time-centric approach differs from our
keyword-centric approach.

OreDesk (Ohsawa et al., 2006) derives user-active
records from OS event logs and installed plug-ins.
Then it calculates user-focused degrees for web pages
and files (calledDatas) based on the active records,
and also calculates relationships betweenDatas. It
provides a search function for related files, given a
Data name, and also provides a viewer forDatas and
relationships. Whereas OreDesk changes the user’s
environment to derive the active records, our method
does not change it because we use the access logs
for the file server. Also, whereas OreDesk uses the
Data name for searching, our method uses keywords.
Furthermore, OreDesk takes account of the start time
of Data only, using it to calculate the relationships,
whereas our method takes account of total time, num-

SEARCHING KEYWORD-LACKING FILES BASED ON LATENT INTERFILE RELATIONSHIPS

237



ber, and separation of co-occurrences.
Chirita and Nejdl have discussed authority trans-

fer annotation (Nejd and Paiu, 2005) and proposed
a ranking method for desktop search using PageR-
ank (Page et al., 1999) on connections by exploit-
ing usage analysis information about sequences of ac-
cesses to local resources (Chirita and Nejdl, 2006).
They have also proposed a method for use file us-
age analysis as an input source for clustering desktop
documents (Chirita et al., 2006). A distance between
documents have been defined by using the number of
steps between consecutive accesses of files and a time
window in which they occur.

Connections (Soules and Ganger:, 2005) obtains
system calls to files, such as read() and write(), and
constructs a directed graph comprising the files (as its
nodes) and the relationships (as its edges). Following
a search request, it performs a context-based search,
and then searches for related files in the result of the
context-based search, by tracing the directed graph.
The aim of Connections is the same as that of our
method. However, whereas Connections aims to de-
rive the reference/referenced relationships via system
calls, our method derives information of file usage via
open-file/close-file information in access logs. It also
differs in calculating the relationships of files in the
search results. Since the logs of Samba are obtained
without any modifications for the target system, our
method is easier to be implemented than the method
based on system-calls’ logs. Moreover, overhead of
obtaining logs in a file server is very small compared
with the system calls.

We will describe the calculations of Connections
because we will be comparing our method to the cal-
culations of Connections in Section 5. In (Soules and
Ganger:, 2005), various calculation methods are pro-
posed. We will explain the most efficient of these, as
reported by the authors. First, Connections makes an
edge whose weight is 1 from the read file to the writ-
ten file in a time window specified by the constant
TimeWindows. If the edge already exists, its weight
is incremented by 1. In the search phase, it first per-
forms a context-based search. Letwn0 be the point of
the files, as scored by the context-based search. If the
file is not to be included in the result, thenwn0 = 0.
Let Em be the set of edges going to the nodem, where
enm ∈Em is the weight of the edge fromn to m divided
by the sum of the weights of the edges leaving node
n. If enm <Weight Cutoff, then the edge is ignored.
The point of nodewn is calculated as follows when
the number of repeats isP.

wmi = ∑
enm∈Em

wn(i−1)
· [α · enm +(1−α)] (1)

wn =
P

∑
i=0

wni (2)

3 PROPOSED METHOD

In this paper, we propose a method capable of search-
ing keyword-lacking files using latent interfile rela-
tionships, which has both a preparing and a searching
phase.

Preparing Phase.Derive information about files us-
age from file access logs, and calculate latent in-
terfile relationships.

Searching Phase.Obtain keywords, perform a full-
text search using the keywords, calculate the point
of files related to the results of the full-text search
based on the latent interfile relationships, and
show the files ordered by point (Figure 1).

The proposed method assumes that the files are
stored in the file server, and are used on personal desk-
tops. In this paper, we assume that the files are not
copied, moved, or renamed.���� � ��� �� �������	
��
 
�����

�������� ��
����������� !�"
��
�#����$
��
�

����� %����


&'()*'() +()*+() &+(),��� -. ��/ &'()*'()+()
*+()&+()

Figure 1: Overview of the proposed method.

3.1 Preparing Phase

We focus on the relationship between files that are fre-
quently used at the same time. When a user edits a file
during a task, the user often opens related files to re-
fer to or to edit. In this case, the same files are used
frequently every time the task is performed. There-
fore, we suppose that files that are frequently used in
similar timing have a latent relationship.

In our research, to identify such files, we derive
information about file usage from file access logs.

3.1.1 Derive Approximate File Use Duration

First, we obtain the “open-file” and “close-file” for
all files for all users from the file access logs for a
file server. Next, we define the File Use Duration
“FUD” as the time between open-file and close-file.

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

238



If a close-file is not recorded, we remove the corre-
sponding open-file. For access logs in Samba, there
are two problems that mean that the actual duration of
file use differs from the FUD. We propose a method
for solving these problems to obtain an Approximate
File Use Duration “AFUD”, as shown in Fig2). Fi-
nally, we filter out any AFUD that has a time span
less thanTf .

000 123456783981:356783123456783981:356783;<=>
?783 @993:: 81A

;<=>
?783 B:3 CDE@F 714: G22E1H7I@F3 ?783B:3 CDE@F 714:JKLMM NOPQJKLMR NOPQJKLMS TUNVPJKLJM TUNVPJKLWM NOPQJKLXK TUNVP YZUP[\OP]ZV^_T^Z̀ P[ZaP]ZV^ G?BC?BC

Figure 2: Derive approximate file use duration.

We now describe the two access log problems and
how to solve them.

Problem A. A user sometimes leaves his or her seat
with files open.

Problem B. There are two types of applications. One
application locks a file when it opens file, whereas
the other copies it to memory and does not lock
it. The latter type causes a difference between the
FUD and the actual duration.

To solve these problems, we prepare the follow-
ing two pieces of information by analyzing the access
logs.

Active Time List. This list comprises information
about the existence of logs in all time windows
Tw. “Logs exist” means a user was active at that
time.

File Type List. This is a list of file types whose av-
erage FUD is less thanTl . An item in this list is
possibly used by an application that unlocks files.

For Problem A, we mask the FUD with the Active
Time List. Then, if the span of active time is greater
thanTs, we delete the corresponding FUD, as shown
in Figure 3, because we think the user forgot to close
the file and went home. For Problem B, for the file
types in the File Type List, we extend the FUD from
the first FUD to the last FUD for each item in the
Active Time List, as shown in Figure 4, because we
think the first FUD is “open” and the last FUD is “save
and close”.

3.1.2 Calculate Latent Interfile Relationships

We assume that strongly related files are used at the
same time when executing the same task. We calcu-
late the latent interfile relationships by the AFUDs de-

bcde
fghijklimknopq rstu vwxy z{|} ~z{|}

Figure 3: Managing Problem A.���������� ���� �����
����

Figure 4: Managing Problem B.

scribed in the previous section. To achieve this, we in-
troduce four “relationship elements”, where the term
“CO” (meaning co-occurrence) is defined as the over-
lap of two AFUDs.

T : Total time of COs.

C : Number of COs.

D : Total time of the time span between COs.

P : Similarity of the timings of the open-file opera-
tions.

By using these four relationship elements and four
parameters,α, β, γ, andδ, we define the latent interfile
relationshipR as follows.

R = T α ·Cβ ·Dγ ·Pδ (3)����
�����������������������  � �¡¢£� ��  �£�

¤¥¦�
Figure 5: The values used in the calculation of relationship
elements.

SEARCHING KEYWORD-LACKING FILES BASED ON LATENT INTERFILE RELATIONSHIPS

239



We now describe how to calculate relationship ele-
ments, by reference to Figure 5. Let{z1,z2, · · · ,zn}
ben COs of two files, let{t1, t2, · · · , tn} be their times,
let {d12,d23, · · · ,d(n−1)n} be the time spans between
each CO, and let{p1, p2, · · · , pn} be the difference in
the start time of two AFUDs. Each relationship ele-
ment is calculated as follows.

T =
n

∑
i=1

ti D =

{

1 n = 0

∑n−1
i=1 di(i+1) otherwise

C = n P =

{

1 ∀i pi = 0
(

∑n
i=1 pi

)−1
otherwise

3.2 Searching Phase

In the searching phase, we first run the full-text search
using the input keywords. Then we score the file point
by using the TF–IDF (Term Frequency–Inverse Doc-
ument Frequency) and latent interfile relationships for
all files related to the files found in the full-text search.

§¨©ª«¨©«¬­ ®­ ¯­­°± ²³ ´µ ¶·¸¹¹º» ¼½ ¾¿¿À
ÁÂÃ Ä ÅÆÇÈÉÊËÌ

ÍÎÏÐÑÒÓÔÕÖ×ÕÒÑØÓÎÙÚÛÓÜ
ÝÞßàáÞ ¬­ ®­ ¯­­

âãäå¬æ ¬­ ¯­çæ èé¨è§«è§¨ è«êëëì íî ïððñòóÖÖ ôÎÓÙØ
õö÷ ø ùúûôÎÓÙØ Îü ÞÓÒÕýþ ²³ ÿ� ��

Figure 6: Calculation of the point of files.

The file point is calculated as a high value when
the file has a strong relationship with a high TF–IDF
file. Let U be the set of all files, and letR( fi, f j) be
the latent interfile relationship between filefi and file
f j .

For the case of a single input keyword, we run a
full-text search using the keywordk. Let F(k) be the
resulting set of files. Then, for each filef ∈ F(k), we
calculate the TF–IDFST ( f ,k) of f usingk. Note that
the TF–IDF is zero if a file is not in the full-text search
result. Next, we normalizeR( fi, f j) to R̂( fi, f j ,k) un-
der keywordk as follows.

R̂( fi, f j ,k) =
log[R( fi, f j)]

log[ max
f∈F(k)
f ′∈U

{R( f , f ′)}]
(4)

In this normalization, the highest possible rela-
tionship degree becomes 1. Then the added point
SR( fi, f j ,k) to file fi, based on the relationship with
f j , is calculated as follows.

SR( fi, f j ,k) = R̂( fi, f j,k) ·ST ( f j ,k) (5)

Finally, the pointS( fi,k) of file fi is calculated as
follows.

S( fi,k) = ST ( fi,k)+ ∑
f∈F(k)

SR( fi, f ,k) (6)

We can explain this by using a concrete exam-
ple. Refer to the left-hand side of Figure 6. Af-
ter searching using the keywordk, f1, f2, f4 are
found to include the keyword. The TF–IDFs for these
files areST ( f1,k) = 10, ST ( f2,k) = 20, ST ( f3,k) =
0, and ST ( f4,k) = 30. The normalized relation-
ships areR̂( f1, f2,k) = 0.5, R̂( f2, f3,k) = 0.75, and
R̂( f3, f4,k) = 1. We calculate the pointS( f3,k) of file
f3 as follows. Refer to the right-hand side of Figure 6.
The added pointSR( f3, f2,k), based on the relation-
ship with f2, is R̂( f3, f2,k) ·ST ( f2,k) = 20·0.75= 15.
The added pointSR( f3, f4,k), based on the relation-
ship with f4, is R̂( f3, f4,k) · ST ( f4,k) = 30· 1 = 30.
Therefore,S( f3,k) = 45, namely the sum of the TF–
IDF and both added point components.

For cases involving multiple keywords, the point
is calculated as a sum of the point based on each key-
word. If K is a set of keywords, the pointS( fi,K) of
file fi is calculated as follows.

S( fi,K) = ∑
k∈K

S( fi,k) (7)

4 IMPLEMENTATION

We implemented the proposed method as an experi-
mental system called FRIDAL.

Figure 7 shows the architecture of FRIDAL.
FRIDAL comprises four components, namely the
Web UI, the RDBMS, the Full-text search engine, and
the Controller. The Controller implements two main
functions of our proposed method. First, it mines the
latent interfile relationships from the access logs of
Samba, which is widely used as a CIFS (Common In-
ternet File Services) file server. Second, it performs
the file point calculations by using latent interfile re-
lationships and a full-text search engine.

In an initial setup, administrators provide the ac-
cess log files of Samba, and FRIDAL starts the min-
ing process with the logs as described in Section 3
and stores relationships to the RDB. When a user re-
trieves files with FRIDAL, the user first supplies the
keywords via the Web UI. The Controller passes the
keywords to Hyper Estraier to obtain the results of a
full-text search. Next, the Controller searches related
files with latent interfile relationships from the RDB
and calculates the file points. Finally, the Controller
returns the list of files to the user via the Web UI. The
results comprise the point, the file path, and basis of

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

240



Table 1: Information about the testers.

recordeing period (days) Total log lines #Files #Relationships Client OS

Tester A 319 4873703 1100 17472 Windows XP
Tester B 319 4323090 713 5692 Windows XP
Tester C 323 7863206 793 5236 Windows Vista

���� ���	��
���
��
��������� ������������
����� ���������

��
 ���� ���������
 !�����
"#$%�
&�����#$�

'() *+,) -./01.22314567689:;<)<),=: +;>(?+@(
9)=<A?

'() *+,) BC,,D:)E: 9)=<A?9)=<A?<),=:)F* +,)(
9)=<A?G)(C,:'()<

H=,AC,=:)<),=: +;>(?+@( �����������I��J=K) *C,,D:)E: +>F)E
H=,AC,=:)@;+>:(L): =AA)(( ,;M( NOP QRSPTPUVWXRYZ [XUOP\VP[UVRYZ [XUOP]̂ _ àb
���� ������

9)=<A?
Figure 7: The architecture and behavior of FRIDAL.

the point, such as the TF–IDF or the added points.
We implemented FRIDAL as a web application

written in Java. We used Tomcat 5.5.9 as the web
application container, Oracle Database 10g as the
RDBMS and Hyper Estraier 1.4.13 (Estraier, 2007)
as the Full-text search engine. Since Hyper Estraier
uses an N-gram index, we can avoid Japanese lan-
guage morphological analysis problems, and obtain
a perfect recall ratio by the N-gram method.

FRIDAL derives the file usage information from
the access logs of Samba 2.2.3a, configured at debug
level 2. Because we adopted Samba as the file sys-
tem access logger, we can install FRIDAL with only
slight modifications to the existing environment. In
addition, we can use historic access log files even be-
fore installation, because we adopt the default format
for Samba.

5 EVALUATION

We evaluated FRIDAL in two different experiments.
In Experiment 1, we investigate FRIDAL’s ability to
find keyword-lacking files. In Experiment 2, we com-
pare FRIDAL to other search methods with respect to
precision and recall.

5.1 Experimental Environment

We use access logs recording the file access of three
testers, A, B, and C. Table 1 shows information about
the logs, number of files appearing in the logs, and the
client OS for each tester. The file extensions targeted
for analysis are bib, doc, docx, gif, htm, html, jpg,
mpg, mpeg, ppt, pptx, pdf, txt, tex, xls, and xlsx. The
constants described in Section 3.1.1 areTf = 1[m],
Tw = 30[m], Ts = 5[h],Tl = 10[s]. We specify the pa-
rameters(α,β,γ,δ) = (1,1,0.5,0.5), used in Equation
(3), by performing a preparatory experiment.

5.2 Experiment 1

5.2.1 Experimental Method

In this experiment, we have a tester find specific files
in another user’s home directory. We examine the
number of times a query is input and files are checked
when using either FRIDAL or Full-text search. Here,
“query” means keywords plus a file extension to nar-
row down the search. For search requests, we take
account of the fact that the testers are students and
use the six requests listed in Table 2.

Table 2: The search requests used in Experiment 1.

Search Desired files
request

Q1 The paper of tester A
Q2 The source of the image files in the paper of

tester A
Q3 The eight data files for the paper of tester A
Q4 The paper of tester C
Q5 The source of the image files in the paper of

tester C
Q6 The data file for the paper of tester C

5.2.2 Experimental Results

Table 3 gives the experimental results when using the
requests in Table 2. In Table 3, “#Queries” means
the number of times the query was made, “#Check
files” means the number of the files checked until the
tester either finds the file or gives up the search, and
“Can find” means that if the tester can find the file
then “T” is marked, otherwise “F” is marked. If there

SEARCHING KEYWORD-LACKING FILES BASED ON LATENT INTERFILE RELATIONSHIPS

241



Table 3: The cost to search (#Q: Number of Queries, #F:
Number of Checked Files, Ratio: Successful Ratio for find-
ing target files. )

FRIDAL Full-text search

#Q #F Ratio #Q #F Ratio
Q1 2 1 1 2 15 1

Q2 1 9 1 1 6 0

Q3 1 4 3/8 1 0 0/8

Q4 1 2 1 1 11 1

Q5 1 2 1 1 14 0

Q6 1 15 1 2 14 1

are multiple relevant files, the ratio of the number of
found files to all files is given.

5.2.3 Discussion

In Table 3, forQ2, Q3, andQ5, Full-text search can-
not find the files at all, whereas FRIDAL can. With
this result, we can confirm that FRIDAL can find
keyword-lacking files.

For Q1, Q4, Q6, whereas both methods can find
the file, the numbers of Queries and Checked files
of FRIDAL are less than those of Full-text search.
Therefore, it is apparent that FRIDAL can search
more efficiently than Full-text search in the case of
searching data related to a paper. Note that, inQ6
the tester found the data file by using Full-text search.
This was because the data file included the keyword
accidentally.

5.3 Experiment 2

5.3.1 Experimental Method

First, we prepared relevant sets by selecting files re-
lated to keywords from all files in the target file sys-
tem by testers. Table 4 shows the keywords actually
used. Next, we retrieved by those keywords with fol-
lowing four methods.

• FRIDAL

• Full-text search

• Directory search

• Connections calculation

Then we calculate the averaged 11-points precision
of the search results, and also calculate the precision
and recall of the top 20 of the results. If the averaged
11-points precision is high at one recall, the search
result is good because the result will include few mis-
matched files at that recall.

Directory search is a method that searches the di-
rectory that includes the full-text search result. We
suppose this method is the usual action by users when

files cannot be found by a full-text search. The re-
sults for directory search are ordered as: the 1st rank
of the full-text search, all files in the same directory
as the 1st rank of the full-text search, the 2nd rank of
the full-text search, all files in the same directory as
the 2nd rank of the full-text search (except for files
already counted), and lower ranks similarly.

Connections calculation is a method that uses
the calculation method of Connections (Soules and
Ganger:, 2005), introduced in Section 2. However
because we cannot obtain the actual file system calls,
we use the read/write attribute for file access in the
access logs instead of read()/write(). The constant
parameters in Equations (1) and (2) are set toTime
Window=30[s], P = 2, α = 0.25, andWeight Cut-
off=0.1[%], which are the optimal parameter values
reported in (Soules and Ganger:, 2005).

5.3.2 Experimental Results

ccdecdfcdgcdhcdicdjcdkcdlcdme c cde cdf cdg cdh cdi cdj cdk cdl cdm enopqrsrtu vwxyzz
{|}~��{�������� ������~�������� ����������������� �����������

Figure 8: The averaged 11-points precision/recall curve of
the results.

����������������������������� � ��� ��� ��� ��� ��� ��� ��� ��� ��� ����� ¡ ¢£ ¤¥¦§¨¨
©ª«¬­®¬¯°±²³´°µ ¶±·°²¸¹´ºº±²³¯´º¶

Figure 9: The averaged 11-point precision/recall curve of
the results without full-text search results.

Figure 8 is the averaged 11-points precision/recall
graph of the results for six keywords and Figure 9
is the 11-points precision/recall graph of the results
without the full-text search results. The precision at
recall = 0 is the precision at the point when the first
relevant file is found. Table 5 is the average of the
precision and recall of the top 20 of the search results.

5.3.3 Discussion

The precision of FRIDAL is higher than the other
methods at low recalls, as shown in Figure 8 and Fig-

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

242



Table 4: Evaluated query keywords and Relevant files for Experiment 2.

Keywords Relevant files #Relevant files

“Revocation for Encrypted Data Stored with

Replica”

The files related to the paper written by tester A 203

“DO–VLEI” The files related to the proposed method named “DO-VLEI” of tester B 206

“DO–VLEI” and “adss” The files related to the proposed method named “DO-VLEI” of tester B, to the

conference “ADSS”

106

“patent” The files related to the patent of tester C 48

“Letters” The files related to paper published in “DBSJ Letters” of tester C 54

“access log” and “file search” The files related to the research of tester C 75

Table 5: The averaged precision and recall of the top 20.

Average Average

precision recall

FRIDAL 0.72 0.16

Full-text search 0.62 0.12

Directory search 0.62 0.13

Connections calculation 0.48 0.10

ure 9, and the recall and precision are also better, as
seen from Table 5. These result show that FRIDAL
can retrieve more relevant files than the others in the
high orders of the results, and so we can find the de-
sired files efficiently by using FRIDAL.

We discuss these results in detail in the follow-
ing. In Figure 8, the precision of FRIDAL is slightly
lower than for Directory search and Connection cal-
culation at high recalls. Therefore, the results for
FRIDAL include fewer relevant files in the low or-
ders of the results. However, because the results of
Directory search and Connections calculation include
vast numbers of files, the user cannot check the files
in the lower orders of the results. Thus, the utility
of FRIDAL becomes apparent because the results for
FRIDAL include more relevant files in the higher or-
ders.

In Figure 8, the reason why the precision of Di-
rector search, at 0.4, is much higher than that of
FRIDAL is that the precision of Director search is
higher than FRIDAL on one keyword. We inves-
tigated this, and found that files in the relevant set
corresponding to the keyword are organized in just
one directory. For organized files, searching with
FRIDAL is less efficient than Directory search. Since
we can predict that there are such partially organized
files, we will improve FRIDAL to prepare for such
cases in future work.

There are two causes for the values of Connec-
tions being lower. First, whereas Connections cal-
culates the point of a file based on the number of
reading/writing actions for the file, it does not take
any account of the duration of file use. Second, it
makes a directed edge from the read file to the writ-
ten file, and calculates file point based on the graph.
The directed edges cannot express interfile relation-
ships adequately, because reading/writing files is not
related to the reference/referenced file but based on

the application that uses the file. However, in this ex-
periment, we use the read/write attributes of Samba
instead of the system calls that Connections actually
uses. Therefore, it is not an accurate comparison.

In Table 5, all recalls are of low value because
there are many relevant files which we cannot find re-
lationship between files include keywords. As shown
in Table 4, there are some correct sets that include
more than 200 files. However, the number of searched
files is 20. One of the reasons why we cannot find
relationship is that a LaTeX file of a paper were di-
vided into sub LaTeX files and each files had sev-
eral renamed-variant for version control. Since our
method can not deal with file copy and rename, we
cannot treat access to these file as file access to the
same file. To track file system changing, such as file
copy, rename, move, is an issue in the future.

Figure 9 shows how many keyword-lacking files,
which Full-text search cannot find, can be found by
three methods. In these results, the precision of
FRIDAL is also higher than the others. Therefore,
we conclude we will be able to find keyword-lacking
files efficiently by using FRIDAL.

6 CONCLUDING REMARKS

Traditional full-text searches cannot search keyword-
lacking files, even if the files are related to the key-
words. In this paper, we have proposed a method
for searching keyword-lacking files, and we have
described a system, FRIDAL, that implements our
method. FRIDAL requires no modification in target
systems, and has very small overhead to obtain the in-
formation of latent interfile relationships. In addition,
we have performed experiments to evaluate FRIDAL
via testers’ answers. As a result, FRIDAL was found
to be capable of searching for keyword-lacking files,
with FRIDAL searching more efficiently than a full-
text search. In addition, the 11-points precision and
the recall/precision of the top 20 of FRIDAL’s results
were higher than those of the other methods.

In future work, we are considering the following
four points. The first is to improve FRIDAL to be
able to deal with the copying, moving, and renam-

SEARCHING KEYWORD-LACKING FILES BASED ON LATENT INTERFILE RELATIONSHIPS

243



ing of files. Because there are files whose paths are
recorded in the access logs but that do not exist in
the file system, it is necessary to deal with the copy-
ing, moving, and renaming of files, by, for example,
obtaining system calls to files. The second point con-
cerns the various experiments. Because the experi-
mental target involved the access logs of students, we
only evaluated search requests such as those in Ta-
ble 2. We should perform experiments using a wider
variety of access logs. The third point is to improve
the calculation of the latent interfile relationships. Al-
though one relationship is a reference relationship, we
did not take account of the direction of the relation-
ship. Therefore, we should formulate the reference re-
lationship by deriving the direction of the relationship
from the access logs. The fourth point is to improve
the method of displaying the search results. Currently,
FRIDAL displays the files ordered by file point on a
line. However, there are cases where the user would
like a graphic structure comprising files and relation-
ships. Therefore, we should consider ways of display-
ing the search result for all search requests.

ACKNOWLEDGEMENTS

Part of this research was supported by CREST
of JST (Japan Science and Technology Agency),
a Grant-in-Aid for Scientific Research on Priority
Areas from MEXT of the Japanese Government
(#19024028,#21013017), and the 21st Century COE
Program Framework for Systematization and Appli-
cation of Large-Scale Knowledge Resources.

REFERENCES

Agrawal, N., Bolosky, W. J., Douceur, J. R., and Lorch,
J. R. (2007). A five-year study of file-system meta-
data.ACM Transactions on Storage, 3(3).

Barreau, D. and Nardi:, B. A. (1995). Finding and re-
minding – file organization from the desktop,.ACM
SIGCHI Bulletin, 27(3):39–43.

Blanc-Brude, T. and Scapin, D. L. (2007). What do people
recall about their documents?: Implications for desk-
top search tools. InProc. Intl’ Conf. on Intelligent
User Interfaces(IUI2007), pages 102–111.

Chirita, P. A., Gaugaz, J., Costache, S., and Nejdl, W.
(2006). Desktop context detection using implicit feed-
back. InProc. SIGIR 2006 Workshop on Personal In-
formation Management, pages 24–27.

Chirita, P. A., Gavriloaie, R., Ghita, S., Nejdl, W., and Paiu,
R. (2005). Activity based metadata for semantic desk-
top search. InProc. Second European Semantic Web
Conference(ESWC 2005), pages 439–454.

Chirita, P. A. and Nejdl, W. (2006). Analyzing user be-
havior to rank desktop items. InProc. Intl’ Symp. on
String Processing and Information Retrieval(SPIRE),
pages 86–97.

Cohen, S., Domshlak, C., and Zwerdling:, N. (2008). On
ranking techniques for desktop search.ACM Transac-
tions on Information Systems, 26.

Dumais, S., Cutrell, E., Cadiz, J. J., Jancke, G., Sarin, R.,
and Robbins, D. C. (2003). Stuff i’ve seen: A system
for personal information retrieval and re-use. InProc.
SIGIR2003, pages 72–79.

Estraier, H. (2007). Hyper estraier: a full-
text search system for communities.
http://hyperestraier.sourceforge.net/.

Fertig, S., Freeman, E., and Gelernter, D. (1996). ”finding
and reminding” reconsidered,.ACM SIGCHI Bulletin,
28(1):66–69.

Freeman, E. and Gelernter, D. (1996). Lifestreams: A stor-
age model for personal data.ACM SIGMOD Bulletin,
25:80–86.

Gifford, D. K., Jouvelot, P., Sheldon, M. A., and James
W. O’Toole, J. (1991). Semantic file systems. InProc.
ACM Symposium on Operating Systems Principles,,
pages 16–25.

Google (2010). Google image search,. http://images.
google.com/.

Hayes, B. (2002). Terabyte territory.American Scientist,
90(3):212–216.

Ishikawa, K., Morishima, A., and Tajima:, K. (2006). De-
velopment of a semantic file system for managing
large document spaces(in japanese). Technical report
DE2006-115, IEICE.

Namazu (2009). Namazu: a full-text search engine.
http://www.namazu.org/index.html.en.

Nejd, W. and Paiu, R. (2005). Desktop search – how con-
textual information influences search results and rank-
ings. InProc. ACM SIGIR 2005 Workshop on Infor-
mation Retrieval in Context (IRiX), pages 29–32.

Ohsawa, R., Takashio, K., and Tokuda, H. (2006). Oredesk:
A tool for retrieving data history based on user opera-
tions. InProc. Eighth IEEE International Symposium
on Multimedia (ISM’06), pages 762–765.

Page, L., Brin, S., Motwani, R., and Winograd, T. (1999).
The pagerank citation ranking: Bringing order to the
web. TR 1999-66, Stanford InfoLab.

Rekimoto, J. (1999). Timemachine computing: A time-
centric approach for the information environment. In
Proc. ACM UIST’99.

Soules, C. A. and Ganger:, G. R. (2005). Connections: Us-
ing context to enhance file search,. InProc. ACM Sym-
posium on Operating Systems Principles, pages 119–
132.

Watanabe, T., Kobayashi, T., and Yokota:, H. (2008). A
method for searching keyword-lacking files based on
interfile relationships. InProc. 16th Intl’ Conf. on
Cooperative Information Systems (CoopIS’08), pages
14–15.

Yee, K.-P., Swearingen, K., Li, K., and Hearst:, M. (2003).
Faceted metadata for image search and browsing,. In
Proc. CHI’03, pages 401–408.

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

244


