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Abstract: The paper describes a computational model of the KASKADA platform. It consists of two main elements: a 
computational cluster, and a task graph. The cluster is represented by a finite set of the nodes with the 
specific maximum loads. The graph contains nodes representing tasks to be executed, and the edges 
representing continuous data flow between the tasks. The tasks are executed concurrently and the data flows 
between them are directed and acyclic. For such a model, the problem of task-to-nodes assignment is 
analysed, and two optimisation goals are defined: low cluster fragmentation, and minimum processing 
latency. For both problems the heuristic algorithms are described. The simulation results of the described 
algorithms are provided, and their evaluation is performed. Finally, the future algorithm improvements are 
suggested. 

1 INTRODUCTION 

Context Analysis of the Camera Data Streams for 
Alert Defining Applications platform (Polish 
abbreviation: KASKADA, i.e. waterfall) is a 
platform supporting services used for multimedia 
stream processing. The simple services are directly 
related to the computational tasks implementing 
concrete processing algorithms, e.g. face 
recognition. A complex service is defined as a graph 
of simple services, which is transformed to a task 
graph (Krawczyk, 2010). 

The typical problem of task scheduling is defined 
as assignment of a set of task into the set of 
computational nodes in a particular order. The tasks 
are grouped in the graph as the nodes, where a 
directed edge between two tasks t1 and t2 indicates 
the task t1 to be finished before the task t2 is started. 
It is proved, the above problem is NP-hard for the 
general case, and there exists a polynomial solution 
for task scheduling on two computational nodes (El-
Rewini, 1994). 

The proposed architecture assumes tasks are 
executed continuously, consuming and producing 
data streams. Each of them requires concrete 
computational power to support provided 
functionality. We believe that due to the character of 
multimedia stream processing, the tasks require 
concurrent execution, and they cannot be queued 
and started in the sequence one by one. 

We introduce a specific definition of the task-to-
nodes assignment regarding the above constraints. 
The task graph is to be assigned to the computational 
nodes, which can be free or already partially used, 
by already working tasks. In case the task graph 
cannot be completely assigned, the platform will 
refuse the whole graph. And in case there is more 
than one possible complete assignment, the platform 
should optimise its selection using one of the 
following criteria: minimizing the fragmentation, or 
processing latency. 

The assignment described above is quite similar 
to the well known bin packing problem (BPP) 
(Garey, 1979), especially the version with the 
variable bin sizes (VBPP) (Haouari, 2009). Typical 
BPP minimizes a number of baskets (computational 
nodes in our case) used for packing a set of objects 

1 The work was realized as a part of MAYDAY EURO
2012 project, Operational Program Innovative Economy
2007-2013, Priority 2, Infrastructure area R&D”. 
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(tasks). The version with the basket variable sizes 
introduces additionally a finite set of basket types 
with different sizes. An exact algorithm for (V)BPP 
is NP-hard (Garey, 1979). 

We would like to emphasize the difference 
between the VBPP, and our problem: for VBPP we 
can use as many baskets of possible type (size) as 
we need, however for the considered assignment, 
found in the real environment, the number of each 
type is finite. Moreover, the optimisation goals are 
different, VBPP minimizes the number of used 
baskets and we consider fragmentation (the number 
of partially used nodes) or latency in the processing. 

In the next section we provide the formal 
description of the processing model and assignment 
problem. In the third section we consider the 
existence of a solution for the problem. The fourth 
and fifth sections contain the description of the 
proposed heuristic algorithms followed by the 
section with their evaluation and finally some 
conclusions are provided. 

2 THE ASSIGNMENT MODEL 

A task graph is defined as a pair G=(T, D), where 
T={t1, t2, … tN} is a set of tasks executed during the 
processing, and D={d1, d2, … dM} is a set of the 
directed edges representing data flow between the 
tasks. E.g. edge d1=(t1, t2) indicates the task t2 
receives the data from a stream generated by the task 
t1. Function Φ: T → N (where N is a set of natural 
numbers) denotes the task load: computational 
power required for the task to be executed, see 
figure 1. We assume the task graph is acyclic and 
directed (DAG), where the edge directions indicate 
data stream flows. 

 
Φ(t1) = 1 
Φ(t2) = 1 
Φ(t3) = 2 
Φ(t4) = 0 

Figure 1: Example of tasks-to-nodes assignment. 

A computational cluster is represented as a set of 
nodes C={c1, c2, … cH}, with the same initial 

computational power: ɣ. Each node can have 
different available computational power denoted by 
a function Г: C → N. E.g. for a cluster with three 
nodes the computational power can be as follows: 

Г(c1)=1, Г(c2)=2, Г(c3)=2 and ɣ=3. We assume the 
inter-node connections are realized by a complete 

graph of network links – communication between 
any two nodes always requires the same resources 
and takes the same time. 

 

M(t1) = c2 
M(t2) = c2 
M(t3) = c3 
M(t4) = c2 

 

Figure 2: Example of tasks-to-nodes assignment. 

A tasks-to-nodes assignment is defined as a 
function M: T → C, assigning a node c to the task t, 
fulfilling the following:  

 
   cΓτ

c=τMτ


:

 (1), 

so the sum of computational load of all nodes 
assigned to a node is lower or equal to the actual 
computational power. The example of a task graph 
(from figure 1) assignment to a cluster with three 
nodes is provided in figure 2. 

For the assignment algorithms analysis we use 
the following assumptions: 
Z1. A task graph is a tree. 
Z2. A task graph is a tree and only the tasks being 
leaves perform computations: 

0)(
0)(: *

 
 T

 

where ϱ*(τ) is a degree of τ node for incoming 
edges. 
Z3. The computation load of all tasks is 0 or 1: 

}1,0{)( 
 T

 (2). 

3 THE ASSIGNMENT 
EXISTENCE 

The first problem considered for the above 
assignment definition, is an examination of if it is 
possible to make any assignment of a given task 
graph to a cluster, formally, it is equal to the 
following question: Does there exist any function 
complying with the condition (1), for a given task 
graph G=(T, D) and a node set C? For instance, the 
graph in figure 1 cannot be assigned and executed 
using the following cluster:  C={c1, c2, c3, c4}, where 
Г(ci)=1 for i=1…4. 
The above problem is NP-hard. 

t2
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Proof: Even if we assume all cluster nodes have the 
same actual computational power equal to initial 
power: 

 
)(c

Cc
 where Nk  (3), 

it is an equivalent to NP-hard optimisation bin 
packing problem (BPP). We treat the computational 
nodes as the bins, and the tasks as the packed 
objects. Let's assume we have the algorithm 
checking if h nodes can be used to pack T (objects), 
then iterating one-by-one natural numbers 
(maximally |T| times, or even log2|T| if we use 
binary search instead) we would resolve BPP: the 
result is the minimal number for which the algorithm 
returned a positive answer. � 

With the assumption Z3, any task can be 
assigned for any node c, if Г(c)>0. In such a 
simplified case, it is enough to compare the actual 
computational power of the cluster (sum of all nodes 
actual power) with the sum of task load, to check the 
existence of a solution: 





CcTt

ct )()( (4). 

4 OPTIMIZATION OF CLUSTER 
FRAGMENTATION 

The fragmentation indicates the number of nodes 
partially engaged in task processing. Figure 3 shows 
a scenario where a new complex task cannot be 
assigned to any node.s 

t

?
c2

c3

c1

c4

Г(c1)=5

Г(c1)=2

Г(c1)=4

Г(c1)=5

Φ(t) = 6

 

Figure 3: Example of the cluster fragmentation preventing 
from a new task assignment. 

To avoid the above problem, we propose the 
optimisation goal, where the number of the partially 

assigned computation nodes (Г(c)<ɣ) is minimized. 
Below we provide the formal definition of the 
optimisation according the assumed model. 

Let's define M as a set of all possible 
assignments  M: T → C fulfilling condition (1). 
Optimal solution for optimisation of cluster 
fragmentation is a function MM for which the 
number of partially used nodes is minimal: 

   
 

  




























 



0: >tcΓγcmin
cMt

.M (5). 

The existence of function M is NP-hard problem, so 
its optimisation has the same property. 

Algorithm 1: Algorithm based on SSP. 

 

We emphasize the difference between the above 
optimisation and the one defined for bin packing 
problem: minimizing of the used node number. The 
following example illustrates this: let's assume the 
following task graph: T={t1, t2, t3}, where Φ(t1)=2, 
Φ(t2)=3, Φ(t3)=5 and the cluster nodes' set: C={c1, 
c2, c3, c4}, where Г(c1)=5, Г(c2)=5, Г(c3)=6, 

Г(c4)=10 and ɣ=10. The optimal solution for VBPP 
is as follow: {t1, t2, t3} → c4, however the 
fragmentation optimisation is: {t1, t2} → c1 and {t3} 
→ c2. 

Algorithm 2: Algorithm FF/FFD. 

 

In algorithm 1, we define the heuristic using a 
subset sum function, based on (Haouari, 2009). SSP 
is a function solving subset sum problem. This 
problem is also NP-complete class, so in this case, 
the approximation solution can be used (Capara, 
2004). 

The next proposed group of heuristic algorithms 
is based on an intuitive approach, whose common 
property is a loop iterating the task set to fit them 

1. create a list T* of elements from a set 
T 

2. for FFD: sort descending T* by function 
Φ(.) 

3. create a list C*: sorted ascending set 
C, by function Г(.) 

4. for i = 0 to N 
5. for j = 0 to H 

6. if Φ(T*i) ≤ Г(C*j) 
7. make an assignment: 

M(T*i) := C*i 
8. continue with the next task 

9. success condition: for each task 
condition in line 6 was true at least 
once 

1. TR := T 
2. create C*: sorted ascending set C, 

using Г(.) function 
3. for i = 0 to H 

4. c := C*i 
5. T':= SSP(TR, Г(c)) 
6. make an assignment: 

T'τ M(T*i):= C*i 

7. TR = TR\T' 
8. success condition: TR = Ø 

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

194



 

one by one to the computation nodes. First fit (FF) 
algorithm assigns subsequent tasks to the first node 
having enough computational power for its 
execution, in the first fit descending (FFD) version 
of this algorithm it iterates the tasks in descending 
order, sorted by Φ(.). 

Algorithm 3: Algorithm BF/BFD. 

 

The best fit (BF) algorithm, like FF, iterates the 
task set, however the nodes are not assigned one by 
one, but they are selected to make best fit: 
minimizing the actual power left in the assigned 
node. As well as for FFD there is also a version with 
the sorted task set. Algorithm 3 presents the detailed 
pseudo-code for BF/BFD. 

The best fit (BF) algorithm, like FF, iterates the 
task set, however the nodes are not assigned one by 
one, but they are selected to make best fit: 
minimizing the actual power left in the assigned 
node. As well as for FFD there is also a version with 
the sorted task set. Algorithm 3 presents the detailed 
pseudo-code for BF/BFD. 

5 OPTIMIZATION 
OF PROCESSING LATENCY 

Processing latency depends on cooperation among 
tasks which are executed. If a cooperated tasks are 
assigned to the same node the latency is low because 
instead of data marshalling, transfer and 
unmarshalling is used only copy operation, see 
figure 4. 

For further consideration, we take the following 
simplifying assumptions:  
Z4. All task graph nodes introduce the same 
processing latency: LT. 
Z5. The latency for the edge between two tasks 
executed on the same computational node is always 
the same and equals: LN. 
Z6. The latency for the edge between two tasks 
executed on different nodes is always the same and 

equals: LE. 
Z7. The latency for the edge between two tasks 
inside one node is always lower than between tasks 
executed on different nodes: LE>LN. 

c1

c1 c2

1. copy

1. marshal 2. transfer 3. unmarshal

(a)

(b)

 

Figure 4: Example of the mappings with (a) low and (b) 
high latency due to task assignment to the different 
computation nodes. 

Let's consider the task graph described in figure 
1, it contains three edges and any one of them can be 
placed between computational nodes. Figure 5 
presents example assignments: M1(.) and M2(.) - all 
edges are separated by the nodes, M4(.) - all edges 
are in the same node, and M3(.) where one edge is 
placed between the nodes. 

According to the above assumptions, latency of 
the event generated in task t3 after its propagation to 
task t4 is as follows:  
for M1: L(M1, t3, t4) = LE+LT+LE+LT = 2LE+2LT 
for M3: L(M3, t3, t4) = LE+LT+LN+LT = LE+LN+2LT 

for M4: L(M4, t3, t4) = LN+LT+LN+LT = 2LN+2LT 
According to the assumption Z7: 

L(M1, t3, t4) > L(M3, t3, t4) > L(M4, t3, t4). 
Below we define L(M, t1, t2) for task graph G: 

 
         E

r
N

r
T

r LDSD+LDS+LTmax
2t1,tG,RrD,rT









(6) 

where: 
         t'M=tMDt't,=DS : , 

R(G, ti, tj) – is a set of subgraphs of graph G, 
being the routes between the tasks: ti and tj. 

The above latency function is defined for two 
tasks between which its value is computed, we can 
also provide such a function L for the whole graph G 
and concrete assignment (mapping) M, it is a 
maximum latency for any pair of the tasks: 

   ji
jit

t,tM,LTt,max=GM,L   (7). 

Assignment optimisation for the processing 
latency means selection of such mapping MM, 
where the data propagation is minimal: 

   M,GLmin .M  (8). 

Finding optimal assignment M(.) is NP-hard, 
because even checking for its existence has such 
property. Because of this, we propose a heuristic  

1. create a list T* of elements from a set 
T 

2. for BFD: sort descending T* by function 
Φ(.) 

3. for i = 0 to N 
4. find cC where Φ(T*i)  Г(c) and 

Г(c) - Φ(T*i) is minimal 
5. make an assignment: M(T*i) := c 

6. success condition: for each task 
condition in line 4 was true at least 
once 
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Figure 5: Task-to-node assignment example. 

approach. Algorithm 4: HLT uses a set of tasks 
sorted by the topological order and the function 
directNeighbours() finding a set of 
neighbouring tasks – receiving data from the task 
provided as a function argument. 

In the algorithm the tasks are assigned to the 
computational nodes using the recursion function 
matchDepthFirst(), traversing the graph using a 
depth-first approach. 

Algorithm 4: Heuristic algorithm optimising processing 
latency: HLT. 

 

6 EVALUATION 
OF THE PROPOSED 
ALGORITHMS 

For the proposed algorithms we performed the 
simulation in  conditions close to the real execution 
in the target environment – KASKADA platform. 
After its analysis we made the following 
assumptions: 
1. the initial  computational power of a node: 

ɣ=80 (integer values), 
2. the task loads: Φ(ti)=1-80 (integer values, 

uniform distribution), 
3. the number of not assigned nodes (Г()=80): 20, 
4. the available computational power of the 

partially assigned nodes: Г()=1..79 (uniform 
distribution), 

5. the number of  partially assigned nodes: 8, 
6. used SSP algorithm – exact (for the above 

condition we could use a dynamic 
programming solution) 

7. latencies:  LE=16, LN=1, LT=32, 
8. each task (except the termination ones) has 0-2 

outgoing edges (communication with other 
tasks). 

The above assumptions are related to the 
conditions for the assignment module in KASKADA 
platform used in project MAYDAY EURO 2012. 
However they are general enough to be used for 
other applications with possible slight modifications. 

Table 1 and figure 6 present the simulation 
results for heuristics according to the above 
assumptions. They are grouped by the task set sizes: 
|T| and show the percent factor αA, defined as 
follow: 

 number of experiments when A gave 
A  the best solution for the fragmentation 

number of experiments for A 
 

1. create list T*: the set T sorted 
descending in topological order 

2. create list C*: the set C sorted 
descending by Г(.) function 

3. while T* ≠  do 
4. c := C*0 
5. fv := head(T*) 
6. if Φ(fv) > Г(c) then 

7. break 
8. V := {fv} 
9. matchDepthFirst(V, fv, Г(c)) 
10. foreach cv in V 

11. M(cv) := c 
12. sort descending list C* by Г(.) 

function 
13. success condition: T* =  
 
14. procedure matchDepthFirst(V, v, 

max) 
15. w := 0 
16. foreach rv in V 

17. w := w+Φ(rv) 
18. foreach nv in 

directNeighbours(v) 
19. if nvT*  Φ(nv)+w≤max then 

20. V := V{nv} 
21. T* := T*\{nv} 
22. match(V, nv, max) 

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

196



 

Table 1: Simulation results of the heuristic algorithms for 
the factor α. 
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Figure 6: Simulation results of the heuristic algorithms for 
the factor α. Axis X: task number, axis Y: factor α. 

Similarly table 2 and figure 7 present the simulation 
results for the algorithms, which are grouped by the 
task set sizes: |T|, but showing the percent latency 
factor βA, defined as follow: 

 number of experiments when A gave 
A  the best solution for the latency 

number of experiments for A 

Table 2: Simulation results of the heuristic algorithms for 
the factor β. 

 

The number of executed experiments for each 
algorithm is 100,000, for each experiment there were 
randomly generated task graphs G and cluster states 
C: computational node set. In the table with results, 
there is an additional column SSP/BFD containing 
the results for the combined heuristics SSP and 
BFD, where the better solution for factor α is 
chosen. 

Comparing the evaluation results for both types 
of optimisation, we can see that the BFD (except 

BFD/SSP together) is the best for the fragmentation 
optimisation, and works quite well for latency. The 
HLT algorithm, as you could expect, is the best for 
latency optimisation, but performs extremely poorly 
for the fragmentation. 
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Figure 7: Simulation results of the heuristic algorithms for 
the factor β. Axis X: task number, axis Y: factor β. 

7 CONCLUSIONS 

We present a heuristic solution for the task-to-node 
assignment problem defined in the context of 
KASKADA platform. We consider six algorithms 
and evaluate them by a simulator of the platform. 
Based on the results we selected BFD heuristic as 
the best solution. 

In the future works we can combine the above 
criteria and create a hybrid algorithms. It seems that 
HLT algorithm can be modified (e.g. by changing 
sorting order of the nodes) to obtain compromise 
between fragmentation and latency. 

Alternative approach is to use several algorithms 
according to the current svalues of fragmentation 
and latency characteristics. If one of the values is not 
acceptable we use algorithm improving that value. 
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|T| FF FFD BF BFD SSP BFDSS LAT

2 97.49% 98.43% 98.28% 100.00% 98.43% 100.00% 5.11%

4 85.33% 90.74% 89.51% 99.03% 91.00% 99.41% 1.00%

6 65.93% 78.04% 75.03% 96.17% 79.60% 98.08% 0.29%

8 45.13% 63.64% 58.11% 91.85% 68.12% 96.80% 0.13%

10 27.57% 49.77% 42.53% 86.78% 58.89% 95.88% 0.05%

12 15.97% 38.85% 30.85% 82.52% 53.03% 96.03% 0.03%

14 9.10% 30.75% 22.83% 79.41% 49.24% 96.23% 0.01%

16 5.14% 25.06% 16.87% 76.79% 47.69% 96.64% 0.00%

18 3.01% 21.18% 13.02% 74.72% 46.94% 97.04% 0.00%

20 1.71% 18.53% 9.77% 73.03% 46.72% 97.33% 0.00%

|T| FF FFD BF BFD SSP BFDSS LAT

2 52.62% 52.62% 56.05% 59.40% 52.62% 54.20% 100.00%

4 56.42% 56.45% 59.68% 62.55% 56.46% 58.32% 97.66%

6 53.31% 53.34% 56.85% 59.54% 53.35% 55.77% 95.64%

8 51.38% 50.77% 54.93% 56.57% 50.74% 53.56% 93.79%

10 49.69% 48.41% 53.16% 53.36% 48.38% 51.07% 91.91%

12 48.18% 46.27% 51.53% 50.86% 46.14% 48.88% 90.24%

14 47.25% 45.05% 50.54% 48.78% 44.78% 47.18% 88.93%

16 45.74% 43.48% 48.81% 46.82% 43.07% 45.38% 88.07%

18 44.40% 42.24% 47.57% 45.16% 41.88% 43.99% 87.47%

20 43.33% 41.13% 46.63% 43.72% 40.95% 42.79% 87.00%
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