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Abstract: This paper addresses the problem of learning a Dynamic Bayesian Network from timed data without prior 
knowledge to the system. One of the main problems of learning a Dynamic Bayesian Network is building 
and orienting the edges of the network avoiding loops. The problem is more difficult when data are timed. 
This paper proposes a new algorithm to learn the structure of a Dynamic Bayesian Network and to orient the 
edges from the timed data contained in a given timed data base. This algorithm is based on an adequate 
representation of a set of sequences of timed data and uses an information based measure of the relations 
between two edges. This algorithm is a part of the Timed Observation Mining for Learning (TOM4L) 
process that is based on the Theory of the Timed Observations. The paper illustrates the algorithm with a 
theoretical example before presenting the results on an application on the Apache system of the Arcelor-
Mittal Steel Group, a real world knowledge based system that diagnoses a galvanization bath.

1 INTRODUCTION 

The theory of Timed Observations is the 
mathematical framework that defines a Knowledge 
Engineering methodology called the Timed 
Observation Modeling for Diagnosis methodology 
(TOM4D) (Le Goc, 2008) (Figure 1) and a learning 
process called Timed Observation Mining for 
Learning (Le Goc, 2006). TOM4D and TOM4L are 
defined to discover temporal knowledge about a set 
of functions of the continuous time xi(t) considered 
as a dynamic system X(t)={xi(t)} called a process. 

According to TOM4D, a model of a process X(t) 
is a quadruple <PM(X(t)), SM(X(t)), BM(X(t)), 
FM(X(t))>. The Perception Model PM(X(t)) defines 
the goals of the process X(t). The Structural Model 
SM(X(t)) contains the knowledge about the 
components and their organization in structures. The 
Behavioral Model BM(X(t)) defines the states and 
the state transitions that governs the process 
evolution over time. Finally, the Functional Model 
FM(X(t)) of the process X(t) defines the 
mathematical functions linking the values of the 
process variables xi(t) of X(t). We propose to 
represent the Functional Model FM(X(t)) of a 
process as a Bayesian Network.  

The  problem  is   then  to  define  the   learning 
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Figure 1: Global Structure of the Project. 

principles of a Bayesian Network (BN) from a set of 
sequences of timed data, without prior knowledge to 
the process. Most of the proposed algorithm deals 
with un-timed data and faces some difficulties in 
orienting the edges of the resulting graph and 
building the conditional probability tables. These 
two problems are more difficult when data are 
timed. 

The theory of Timed Observations provides the 
tools to solve these two problems: the BJ-Measure 
of (Benayadi, 2008) and an adequate representation 
of a set of sequences of timed data that is called the 
Stochastic Representation (Le Goc, 2005). The BJ-
Measure is an informational measure designed to 
evaluates the quantity of information flowing in the 
Stochastic Representation of a set of sequences of 
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timed data. This representation facilitates also the 
building for the CPT tables.  

The next section presents a short description of 
the state of the art techniques concerning the 
learning of Dynamic Bayesian Networks (DBN). 
Section 3 introduces the basis of the Stochastic 
Representation of TOM4L and the BJ-Measure. 
Section 4 describes the learning principles we define 
from the properties of the BJ-Measure, the DBN 
learning algorithm that we proposes is proposed in 
section 5 and an application to a theoretical example 
is given in section 6 before showing a real life 
application of the algorithm in section 7. Our 
conclusions are presented in section 8. 

2 RELATED WORKS 

A BN is a couple <G, > where G denotes a Direct 
Acyclic Graph in which the nodes represent the 
variables and the edges represent the dependencies 
between the variables (Pearl, 1988), and  is the 
Conditional Probabilities Tables (CP Tables) 
defining the conditional probability between the 
values of a variable given the values of the upstream 
variables of G. BN learning algorithms aims at 
discovering the couple <G, > from a given data 
base. 

BN learning algorithms fall into two main 
categories: “search and scoring” and “dependency 
analysis” algorithms. The “search and scoring” 
learning algorithms can be used when the knowledge 
of the edge orientation between the variables of the 
system is given (Cooper, 1992), (Heckerman, 1997). 
To avoid this problem, dependency analysis 
algorithms uses conditional independence tests 
(Cheng, 1997), (Cheesseman, 1995), (Friedman 
1998), (Meyrs et al, 1999). But the number of test 
exponentially increases the computation time 
(Chickering, 1994). 

(1)

For example, Cheng’s algorithm (Cheng, 1997) for 
learning a BN from data falls in the dependency 
analysis category and is representative of most of the 
proposed algorithms. It is based on the d-separation 
concept of (Pearl, 1988) to infer the structure G of 
the Bayesian Network, and the mutual information 
to detect conditional independency relations. The 
idea is that the mutual information I(X, Y) (eq. 1) 
tells when two variables are (1) dependent and (2) 

how close their relationship is. The algorithm 
computes the mutual information I(X, Y) between all 
the pairs of variables (X, Y) producing a list L sorted 
in descending order: pairs of higher mutual 
information are supposed to be more related than 
those having low mutual information values. The 
List L is then pruned given an arbitrary value of the 
parameter ε: each pair (X, Y) so that I(X, Y)< is 
eliminated of L. In real world applications, list L 
should be as small as possible using the  parameter. 
This first step (Drafting)  creates a structure to start 
with but it might miss some edges or it might add 
some incorrect edges. 

 (2) 

The second step (Thickening) phase tries to separate 
each pair (X, Y) in L using the conditional mutual 
information I(X, Y | E) (eq. 2) where E is a set of 
nodes that forms a path between the current tested 
nodes X and Y from L. When I(X, Y | E)>, then the 
edges of the path E should be added between the 
current nodes X and Y. This phase continues until the 
end of list L is reached. The last step of the 
algorithm (Thinning) searchs, for each edge in the 
graph, if there are other paths besides this edge 
between these two nodes. In that case, the algorithm 
removes this edge temporarily and tries to separate 
these two nodes using equation (2). If the two nodes 
cannot be separated, then the temporarily removed 
edge will be returned. After building the DBN 
structure, the orientation of the edges and the CP 
Tables’ computation is to be done. The procedure 
used by (Cheng, 1997) is based on the idea of 
searching for the nodes forming a V-Structure 
X→Y←Z using the conditional mutual information, 
and then trying to deduce the other edges from the 
discovered one. This procedure have a very big 
limitation which is that if a network does not contain 
a V-Structure, no edge can be oriented. 

The two main limitations of the methods of the 
dependency analysis category are so the need of 
defining the  parameter and the exponential amount 
of Conditional Independence tests to orient the edges 
of the graph. 

3 TOM4L FRAMEWORK 

The Timed Observation Mining for Learning 
process (TOM4L) proposes a solution to escape 
from this problem (Le Goc, 2006). 
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The TOM4L framework defines a message timed at 
tk contained in a database as an occurrence 
Ci(tk)�Ci(k) of an observation class Ci={(xi, δi)} 
which is an arbitrary set of couples (xi, δi) where δi is 
one of the discrete values of a variable xi. An 
observation class is often a singleton because in that 
case, two classes Ci = {(xi, δi)} and Cj = {(xj, δj)} 
are only linked with the variables xi and xj when the 
constants δi and δj are independent (Le Goc, 2006). 

The TOM4L framework represents a sequence 
=(…, Ci(k), …) of m occurrences Ci(k) defining a 
set Cl={ Ci } of n timed observations under a 
specific representation, called the Stochastic 
Representation, that is made with a set of matrices. 
The TOM4L framework proposes also the BJ-
Measure (Benayadi, 2008) that evaluates the 
homogeneity of the crisscross of the occurrences of 
two observation classes Ci and Cj in a sequence. This 
measure considers two abstract binary variables X 
and Y linked through a discrete binary memoryless 
channel of a communication system (Shannon, 
1949), where X(tk) takes a value Cx in {Ci ,¬Ci} and 
Y(tk+1) a value Cy in {Cj ,¬Cj} when reading  
(Figure 2, where ¬Ca denotes any class but Ca). 
With this model, a sequence  of m occurrences 
Ci(k) is a sequence of m-1 instances r(Cx→Cy) of a 
relation r(X→Y)  

 
Figure 2: Discrete Binary Memoryless Channel. 

The BJ-measure is build on the Kullback-Leibler 
distance D(P(Y|X=Ci)||P(Y)) that evaluates the 
relation between the distribution of the conditional 
probability of Y knowing that X(tk)=Ci and the prior 
probability distribution of Y. One of the properties 
of this distance is that D(P(Y|X=Ci)||P(Y))=0 when 
P(Y| X=Ci)=P(Y) (i.e. P(Y) and P(X) are 
independent). The BJ-measure decomposes the 
Kullback-Leibler distance in two terms around the 
independence point. The BJL-measure BJL(Ci→Cj) 
of binary relation r(Ci→Cj) is the right part of the 
Kullback-Leibler distance D(P(Y|X=Ci)||P(Y)) so 
that: 
• P(Y=Cj|X=Ci)<P(Y=Cj) ⇒ BJL(Ci, Cj)=0 

• P(Y=Cj|X=Ci)≥P(Y=Cj) ⇒   
BJL(Ci→Cj)= D(P(Y|X=Ci)||P(Y)) 

The BJL(Ci→Cj) is non-zero when the observation 
Ci(k) provides some information about the 
observation Cj(k). Symmetrically, when 
BJL(Ci→Cj)<0, the observation Ci(k) provides some 
information about ¬Cj(k). The BJL-measure 
BJL(Ci→¬Cj) of a binary relation r(Ci→¬Cj) is then 
the left part of the Kullback-Leibler distance: 
• P(Y=Cj|X=Ci)<P(Y=Cj) ⇒  

BJL(Ci→¬Cj)=D(P(Y|X=Ci)||P(Y)) 
• P(Y=Cj|X=Ci)≥P(Y=Cj) ⇒ BJL(Ci→¬Cj)= 0 

Consequently: 
D(P(Y|X=Ci)||P(Y))=BJL(Ci→Cj)+BJL(Ci→¬Cj) (3) 

Similarly, the BJW-measure evaluates the 
information distribution between the predecessors 
(Ci(k) or ¬Ci(k)) of an observation Cj(k+1) at time 
tk+1: 
D(P(X|Y=Cj)||P(X))=BJW(Ci→Cj)+BJW(Ci→¬Cj)(4) 
Because (P(Cj|Ci)<P(Cj))⇔(P(Ci|Cj)<P(Ci)), the two 
measures are null at the same independence point 
and can be combined in a single measure called the 
BJM-measure which is the norm vector of 
BJL(Ci→Cj) and BJW(Ci→Cj): 

(5)

The BJ-Measure is not justifiable when the θi,j = ni/nj 
is greater of 4 or less than ¼ (Benayadi, 2008). This 
property is called the θ property. In most real world 
cases, when this condition is satisfied, the M(Ci→Cj) 
value is not zero but the eventual relation r(Ci→Cj) 
can not be justified with the BJ-measure. 

The main property of the BJ-measure is the 
following: M(Ci→Cj) > 0 means that knowing the 
timed observation distribution of the Ci class brings 
information about the timed observation distribution 
of the Cj class. Consequently, when the BJ-measure 
of a relation r(Ci→Cj)≤0, is negative or null, the 
relations can not be used to build the structure of a 
dynamic Bayesian network. 

In other words, considering the positive values 
only, the BJ-measure M(Ci→Cj) satisfies the three 
following properties: 
1. Dissymmetry:  

M(Ci→Cj)≠M(Cj→Ci) (generally) 
2. Positivity: ∀ Ci, Cj, M(Ci→Cj) ≥ 0  
3. Independence:  

M(Ci→Cj)=0 ⇔ Ci and Cj are independant (i.e. 
P(Cj|Ci)=P(Cj)) 
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4. Triangular inequality:  
M(Ci→Cj) < M(Ci→Ck) + M(Ck→Cj) 

This latter property can be used to  reason  with  the 
BJ-measure to deduce the structure of a dynamic 
Bayesian network. 

4 LEARNING PRINCIPLES 

Let us consider a set R={…, r(Ci→Cj), …} of n 
binary relations. The operation that remove a binary 
relation r(Ci→Cj) from the set R is denoted 
Remove(r(Ci→Cj)): R ← R – { r(Ci→Cj) }. 

The positivity property leads to remove the 
r(Ci→Cj) relations having a negative value of the 
BJ-measure (“Positivity rule”): 
• Rule 1 : ∀r(Ci→Cj)∈R, M(Ci→Cj)≤0 ⇒  

Remove(r(Ci→Cj)) 
The dissymmetry property allows deducing the 
orientation of a hypothetical relation between two 
timed observation classes Ci and Cj: 
• Rule 2:   

∀r(Ci→Cj), r(Cj→Ci)∈R,  
M(Ci→Cj)>BJM(Cj→Ci) ⇒ Remove(r(Cj→Ci)) 

This rule means that when M(Ci→Cj)>M(Cj→Ci), 
the Ci class brings more information about the Cj 
class than the reverse. The relation r(Cj→Ci) can 
then be removed from the set R without any 
consequence. This rule is so called the “orientation 
rule”. 

Ci+1Ci

BJM(Ci→Ci+1)
Cj

BJM(Ci+1→Ci+2)

BJM(Cj→Ci)

Ci+2 Ci+n

BJM(Ci+n→Cj)
…Ci+1Ci

BJM(Ci→Ci+1)
Cj

BJM(Ci+1→Ci+2)

BJM(Cj→Ci)

Ci+2 Ci+n

BJM(Ci+n→Cj)
…

 
Figure 3: Loops. 

Now, let us consider a set R={r(Ci→Ci+1), 
r(Ci+1→Ci+2), ..., r(Ci+n→Cj), r(Cj→Ci)} of n+2 
binary relations defining a loop (Figure 2) where: 
• ∀r(Cx→Cy) ∈ R, M(Cx→Cy) > 0 
The problem of the set R is that computing the 
distribution of a class Cx requires knowing its 
distribution: loops must then be avoided. In other 
words, a relation r(Ci→Cj) must be removed from R 
to break the loop. To solve this problem, the idea is 
to used the monotonous property of the BJ-measure: 
finding two of class Ci and Cj so that the BJ-measure 
of the relation r(Ci→Cj) is the lowest of the loop 
(“Loop Rule”): 
• Rule 3: ∀r(Cx→Cy)∈R, ∃r(Ci→Cj)∈R, x≠i, y≠j, 

M(Cx→Cy)>BJM(Ci→Cj) ⇒ Remove(r(Ci→Cj)) 
When M(Cx→Cy)=M(Ci→Cj)), any of the relations 
can be removed. The extreme case of loop can be 

find in a set R containing a reflexive relation 
r(Ci→Ci) where M(Ci→Ci)>0. Rule 3 must then be 
adapted to this extreme (but frequent) case 
(“Reflexivity rule”): 
• Rule 4: ∀r(Ci→Ci) ∈ R, BJM(Ci→Ci) > 0 ⇒  

Remove( r(Ci→Ci) ) 
Finally, to build naïve Bayesian Networks, the 
algorithm must avoid the multiple paths leading to a 
same Ci class (Figure 3). To avoid this problem, as 
for loops, the idea is to use the monotonous property 
of the BJ-measure: finding two of class Ci and Cj so 
that the BJ-measure of the relation r(Ci→Cj) is the 
lowest of the paths. To use this idea, all the paths 
leading to a particular Ci class must be find in R. Let 
us suppose that R contains n paths R1⊆R, R2⊆R, …, 
Rn⊆R leading to the Ci class (i.e. each Ri is of the 
form Ri={r(Ci→Ck-n), r(Ck-n→Ck-n+1), ..., r(Ck→Cj), 
r(Ci→Cl-n), r(Cl-n→Cl-n+1), r(Cl→Cj)}. The algorithm 
must find the r(Ci→Cj) relation with the lowest BJ-
measure to remove it in R (“Transitivity rule”): 
• Rule 5: ∀r(Cx→Cy)∈R1∪R2∪…∪Rn,   

∃r(Ci→Cj) ∈ R1∪R2∪…∪Rn, x≠i, y≠j,  
M(Cx→Cy)>M(Ci→Cj)⇒Remove(r(Ci→Cj)) 

Ck-n

Ci Cj
Ck-n-1 Ck…

Cl-m Cl-m-1 Cl…

Ck-n

Ci Cj
Ck-n-1 Ck…

Cl-m Cl-m-1 Cl…  
Figure 4: Multiple Paths. 

Again, in case of equality (i.e. BJM(Cx→Cy) = 
BJM(Ci→Cj)), any relation can be removed. 

These five rules are necessary (but not sufficient) 
to design an algorithm that builds naïve Bayesian 
Networks from timed data, but its efficiency 
depends mainly of the number of relation in the 
initial set R. The TOM4L framework provides the 
mathematical tools to remove the relations that can 
not play a significant role in the building of a naïve 
Bayesian Network.  

Given the set R={…, r(Ci→Cj), …} of n binary 
relations that can be build from a sequence ω of 
timed observation Ci(k) defining a set C={Cx} of 
N(C) classes Cx. The size of the Stochastic 
Representation matrix of the TOM4L framework is 
then N(C)⋅N(C)=N(C)2. This provides two ways to 
eliminate a relation r(Ci→Cj) having no interest for 
building a naïve Bayesian Network: 
• Test 1: P(Cj|Ci)⋅P(Ci, Cj)≤1/N(C)3   

⇒ Remove(r(Ci→Cj)) 
This first test compares bij≡P(Cj|Ci)⋅P(Ci, Cj) with 
the “absolute” hazard according to the discrete 
binary memoryless chanel (Figure 2): because ω 
defines N(C) classes, when supposing that all the 
classes are independent and have the same Poisson 
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rate of occurrences, the probability of having an 
occurrence Ci(k) of a Ci class followed by an 
occurrence Cj(k+1) of the Cj class is simply 
P(Cj|Ci)=1/N(C) and the probability of reading a 
couple (Ci(k), Cj(k+1)) in ω is P(Ci, Cj)= 1 / N(C)2. 
So each bij value can be compared with the 
“absolute” hazard 1 / (N(C) N(C)2). 
• Test 2: P(Cj|Ci)⋅P(Ci, Cj)≤(1/(N(C)⋅P(Ci)⋅P(Cj)) 

 ⇒ Remove(r(Ci→Cj)) 
This second test defines the “relative” hazard when 
supposing that Ci and Cj classes are independent. In 
that case, the probability P((Cj(k), Ci(k+1)) in ω of 
having a couple (Ci(k), Cj(k+1)) in ω is P(Ci)⋅P(Cj) 
and having an occurrence Ci(k) of a Ci class, the 
hazard is to read any occurrence Cj(k+1) of the Cj 
class: P(Cj|Ci)=1/N(C). So each bij value can be 
compared with the “relative” hazard 
1/(N(C)⋅P(Ci)⋅P(Cj)). 

The θ property of the BJ-measure complete these 
two tests to eliminate the relation having no meaning 
according to the BJ-measure: 
• Test 3: θi,j>4 ∨ θi,j<1/4 ⇒ Remove(r(Ci→Cj)) 

Within the TOM4L framework, these tree tests 
are implemented in the F0/1=[fij] matrix: 
• (bij>1/N(C)3) ∧ (bij>(1/(N(C)⋅P(Ci)⋅P(Cj)) ∧ (1/4

≤θi,j≤ 4) ⇔ fij = 1 
So this lead to the rule number 6: 

• Rule 6: ∀r(Ci→Cj)∈R,   
fij = 0 ⇒ Remove( r(Ci→Cj) ) 

These six rules are used by the algorithm inspired 
from Cheng’s method to build a naïve Bayesian 
Network from timed data. 

5 THE BJM4BN ALGORITHM 

The proposed algorithm is called “BJM4BN” for 
“BJ-Measure for Bayesian Networks”. This 
algorithm takes as inputs a sequence ω of m timed 
observation Ci(k) defining a set Cl={Cx} of N(Cl) 
classes Cx and an output Cj class that is the class for 
which the DBN is computed. It produces a set 
G={…, r(Ci→Cj), …} of n binary relations that form 
the structure of a naïve Bayesian Network (G, ). 

The “BJM4BN” algorithm contains 5 stages. The 
first stage computes the Stochastic Representation of 
 to produce the initial M=[mij] matrix containing 
the BJ-measure values mij of the N(Cl)2 binary 
relations r(Ci→Cj)) defined by  (line 1). Next, the 
F0/1=[fij] matrix is computed using test 4 (line 3) 
so rule 6 is applied (line 4). Finally, the M matrix is 
normalized using rules 1 (line 5.1) and 4 (line 5.2). 

Stage 2 computes the list L from the normalized 
matrix M. Stage 3 builds recursively the initial G 

graph from the Cj class. This stage uses a recursive 
function called “Build(G, Cx)” where Cx is the class 
the graph of which is to build.  

Stage 4 finds and removes the loops in G with 
Rule 3. This stage finds all the loops Ri in G of the 
form Ri≡{r(Ci→Ci+1), r(Ci+1→Ci+2), ..., r(Ci+n→Cj), 
r(Cj→Ci)} and put them in a set R (line 12). Next, a 
new list L1 is build containing all the relation 
r(Cx→Cy) in R with its associated mxy BJ-measure 
value (line 13). All loops Ri in R are then removed 
using Rule 3 (line 14). At the end of this stage, G 
contains no more loops. Note that the L1 list being 
global (i.e. containing all the relations r(Cx→Cy) 
participating in a loop), it is guaranty that the set of 
removed relation r(Cx→Cy) is optimal: it is minimal 
and the removed relations are the smallest of the G 
graph. 

Similarly, stage 5 removes the multiple paths in 
the G graph with Rule 5, but the R set contains only 
paths Ri of the form Ri≡{r(Ci→Ck-n), r(Ck-n→Ck-n+1), 
..., r(Ck→Cj), r(Ci→Cl-n), r(Cl-n→Cl-n+1), ..., 
r(Cl→Cj)} (line 16). It is guaranty that the set of 
removed relation r(Cx→Cy) is optimal. 
 
// Stage 1 
1. Compute the M=[mij] matrix 
2. ∀i=0…N(Cl), ∀j=0…N(Cl), fij=0  
3. ∀i=0…N(Cl), ∀j=0…N(Cl),   

(bij>1/N(C)
3)∧(bij>(1/(N(C)⋅P(Ci)⋅P(Cj)

)∧(1/4≤θi,j≤ 4) ⇒ fij=1 
4. M=M⋅F0/1  
5. ∀i=0…N(Cl), ∀j=0…N(Cl),  

5.1. mij≤0 ⇒ mij=0 // rule 1 
5.2. i=j ⇒ mij=0 // rule 4 

// Stage 2 
6. L={φ} 
7. ∀i=0…N(Cl), ∀j=0…N(Cl), mii>0,⇒ 

L=L+{(r(Ci→Cj), mii)}  
// Stage 3 
8. Cx=Cj, G={φ}  
9. ∀r(Cy→Cx))∈L ⇒ G=G+{r(Cy→Cx)} 
10. Build(G, Cx){  

∀r(Cy→Cx))∈G, ∀r(Cz→Cy))∈L,   
G=G+{r(Cz→Cy)}  
Build(G, Cy)  
}// End Build Function 

// Stage 4 
11. R={φ} 
12. ∀Ri⊆G, Ri≡{r(C

i→Ci+1), r(Ci+1→Ci+2), 
..., r(Ci+n→Cj), r(Cj→Ci)} ⇒ 
R=R+{Ri}  

13. ∀Ri∈R, ∀r(Cx→Cy)∈Ri, r(C
x→Cy)∉L1 ⇒ 

L1=L1+{(r(C
x→Cy), mxy)}  
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14. While R≠{φ} repeat  
. ∃r(Cx→Cy)∈L1, mxy = Min(mij, L1)  
   ∀Ri∈R, ∃r(Cx→Cy)∈Ri ⇒  
    R=R-{Ri}  
    G=G–{r(Cx→Cy)}  
    L1=L1-{(r(C

x→Cy), mxy)}  
//Stage 5 
15. R={φ} 
16. ∀Ri⊆G,   

Ri≡{r(C
i→Ck-n), r(Ck-n→Ck-n+1), ..., 

r(Ck→Cj), r(Ci→Cl-n), r(Cl-n→Cl-n+1), 
..., r(Cl→Cj)} ⇒ R=R+{Ri}    

17. ∀Ri∈R,   
∀r(Cx→Cy)∈Ri, r(C

x→Cy)∉L1 ⇒ 
L1=L1+{(r(C

x→Cy), mxy)}  
18. While R≠{φ} repeat  

∃r(Cx→Cy)∈L1, mxy = Min(mij, L1)  
  ∀Ri∈R, ∃r(Cx→Cy)∈Ri ⇒   
   R=R-{Ri}  
   G=G–{r(Cx→Cy)}  
   L1=L1-{(r(C

x→Cy), mxy)}  

Stage 6 computes the conditional probabilities tables 
for G and finalizes the algorithm. The computing of 
the Conditional Probabilities Tables ( CP Tables) is 
based on the numbering table N=[nij] of the 
Stochastic Representation of the  sequence. The 
following property is a consequence of the model of 
the discrete memoryless communication channel 
(Figure 2): 
• P(Y=Co | X=Ci) + P(Y=¬Co | X=Ci) = 1. 

The computing of  uses this property (for 
simplicity, P(Cy|Cx) is rewritten P(y|x)). For a root 
node Cx: 
• P(x)=(Σjnxj) / ΣiΣjnij  

For a single relation r(Cx→Cy):  
P(y|x) = nxy / (Σjnyj) 
P(y|¬x) = ((Σiniy)-nxy) / (ΣiΣjnij–(Σjnxj))  

For a set R={r(Cx→jy), r(Cz→Cy)} of two relations 
converging to the same Cy class:  
• P(y|x,z) = (nxy+nzy) / (Σjnxj+Σjnzj)  
• P(y|¬x,z) = (Σiniy-nxy) / (ΣiΣjnij-Σjnxj)  
• P(y|x,¬z) = (Σiniy-nzy) / (ΣiΣjnij-Σjnzj)  
• P(y |¬x,¬z) = (Σiniy-nxy-nzy) / (ΣiΣjnij-Σjnxj-Σjnzj)  

6 A THEORETICAL EXAMPLE 

This section illustrates the usage of the proposed 
algorithm on the theoretical car example of (Le Goc, 
2007). This example is inspired from the (simple) 
car technical diagnosis knowledge base of 
(Schreiber, 2000) (Figure 5). 

Figure 5 shows a knowledge base of 9 rules that can 

be used to diagnose a (very simplified) car. These 
rules provide the reasons that might affect the car to 
stop functioning: a car might “stops” or “does 
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Figure 5: Car Diagnosis Knowledge Base. 

not start” if the fuse is blown or the battery is low or 
the fuel tank is empty. 

Using the TOM4D methodology, the underlying 
structural model of the system considered in this 
knowledge base is provided in Figure 6. This figure 
shows a set of connected components ci and defines 
a set of variables xi. The evolution of variable xi 
denoted with functions of time xi(t). 
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Figure 6: Structural Model of the Car Example. 

TOM4D methodology considers that the variables 
x4, x5, and x6 are associated to the sensor components 
c4, c5 and c6 and these components never failed. So 
this figure defines a set X={ x1, x2, x3, x7, x8, x9} of 6 
variables. The values of these variables are a set of 
constants: Δ={ Δx1={Blown, Not_Blown}, 
Δx2={Low, Not_Low}, Δx3={Empty, Not_Empty}, 
Δx7={On, Off}, Δx8={True, False}, Δx9={Start, 
Does_Not_Start} }. It is to note that (Le Goc, 2007) 
eliminates the constant “Stops”: in the TOM4D 
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framework, this corresponds to rewrite the constant 
“Stops” as “Does_Not_Start”. 

Figure 7 shows the functional model of the car 
according to the TOM4D methodology. 
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Figure 7: Functional Model of the Car Example. 

A functional model is an organized set of logical 
relations between the possible values the variables 
can take over time. The functions are denoted at the 
right of Figure 7 and are specified at the left 
(function f4 and f5 being similar to function f6, they 
are not specified in the figure).  

The role of the Bayesian Network <G,  >to 
learn is to make a link between the probabilities of 
the value of a set X of variables. The discovered 
Bayesian network must then be compatible with the 
functional model of Figure 7.  

Because the “BJM4BN” algorithm works on 
timed data, a sequence  must be built according to 
rules 2, 3, 6, 7 and 8 of the knowledge base of 
Figure 5. To this aim, let us suppose that the car is 
monitored, the abnormal behaviour of the car can be 
defined with a set Ω={ω1, ω2, ω3} of three models of 
sequences:  
• ω1 = {x1(t1)=Blown, x7(t1+Δt7)=Off,  

x9(t1+Δt7+Δt9)=Does_Not_Start} 
• ω2 = {x2(t2)=Low, x7(t2+Δt7)=Off,  

x9(t2+Δt7+Δt9)=Does_Not_Start} 
• ω3 = {x3(t3)=Empty, x8(t3+Δt8)=False,  

x9(t3+Δt8+Δt9)=Does_Not_Start} 
These sequences define a set Cl={Ci} of 6 
observation classes, each being a singleton: Cl={C1 
= {(x1, Blown)}, C2 = {(x2, Low)}, C3 = {(x3, 

Empty)} C7 = {(x7, Off)}, C8 = {(x8, false)}, C9 = 
{(x9, Does_Not_Start)}} 
Consequently,  each  constant  δi of Δ  being  linked 
with a unique variable xi of X, there is a bijection 
between a class Ci and a variable xi. The three 
sequences of the set Ω can be rewritten in terms of 
the class occurrences: 
• ω1 = {C1(t1), C7(t1+Δt7), C9(t1+Δt7+Δt9)} 
• ω2 = {C2(t2), C7(t2+Δt7), C9(t2+Δt7+Δt9)} 
• ω3 = {C3(t3), C8(t3+Δt8), C9(t3+Δt8+Δt9)} 
These sequences will be used to produce a 
theoretical sequence according to the method 
described in [Bouché, 2008]. To this aim, let us 
assign hand probabilities to the occurrence of each 
observation classes with the following principle: the 
observations of the C1 class (x1(t1)=Blown) are less 
probable to happen than the observations of the C2 
class (x2(t2)=Low), while the occurrences of the C3 
class (x3(t3)=Empty) are more frequent (with 
carefree driver for example). This lead for example 
to the probabilities of Table 1: 

Table 1: Prior Probabilities of the car example. 

P(C1) P(C2) P(C3) P(C7) P(C8) P(C9)

0.05 0.15 0.3 0.2 0.2 0.1

According to the method of [Bouché, 2008], these 
probabilities and the three models of sequence of Ω 
allow building a sequence ω of 100 occurrences 
(Figure 8) that satisfies the probabilities of Table 1.  

 
Figure 8: Theoretical  Sequence (beginning). 

Table 2: The numbering table N between variables. 
N x1 x2 x3 x7 x8 x9 TOTAL
x1 1 0 0 4 0 0 5
x2 1 1 2 9 1 0 14
x3 1 6 8 4 11 0 30
x7 1 2 8 2 2 5 20
x8 1 3 8 0 3 5 20
x9 0 2 4 1 3 0 10

Total 5 14 30 20 20 10 99  
The numbering matrix N computed from the 
sequence ω is given in Table 2. Next, the M matrix 
(Table 3), the B matrix (Table 4, where each cells is 
multiplied by 1000 to have readable values) and the 
θ matrix (Table 5) are computed to produce the F0/1 
matrix (Table 6) that implements the rule 6. 
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The M⋅F0/1 matrix is then computed and normalized 
(Table 7)   using   rule   1   (pink cells)   and   rule 4 

 

Table 3: The M Matrix for the Car Example. 

M x1 x2 x3 x7 x8 x9
x1 0.3112 -0.7698 -1.4340 0.3319 -1.0257 -0.5980
x2 0.0217 -0.0629 -0.0851 0.1386 -0.1434 -0.7709
x3 -0.0386 0.0156 -0.0016 -0.0214 0.0343 -1.2864
x7 0.0000 -0.0168 0.0081 -0.0639 -0.0639 0.1087
x8 0.0000 0.0005 0.0081 -0.9955 -0.0112 0.1087
x9 -0.5980 0.0177 0.0124 -0.0749 0.0231 -0.6683  

(the yellow cells defines the orientation of a relation 
r(xi→xj)). This achieves the first stage of the 
BJT4BN algorithm. 

Table 4: The B(*1000) matrix for the car Example. 

B*1000 x1 x2 x3 x7 x8 x9
x1 20.20 0.00 0.00 323.23 0.00 0.00
x2 7.22 7.22 28.86 584.42 7.22 0.00
x3 3.37 121.21 215.49 53.87 407.41 0.00
x7 5.05 20.20 323.23 20.20 20.20 126.26
x8 5.05 45.45 323.23 0.00 45.45 126.26
x9 0.00 40.40 161.62 10.10 90.91 0.00  

Table 5: The Matrix for the car Example. 

T x1 x2 x3 x7 x8 x9
x1 1 0.35714 0.16667 0.25 0.25 0.5
x2 2.8 1 0.46667 0.7 0.7 1.4
x3 6 2.14286 1 1.5 1.5 3
x7 4 1.42857 0.66667 1 1 2
x8 4 1.42857 0.66667 1 1 2
x9 2 0.71429 0.33333 0.5 0.5 1  

Table 6: The F0/1 Matrix for the car Example. 

F0/1 x1 x2 x3 x7 x8 x9
x1 1 0 0 1 0 0
x2 0 0 0 1 0 0
x3 0 1 0 0 1 0
x7 0 0 1 0 0 1
x8 0 0 1 0 0 1
x9 0 1 1 0 1 0  

Table 7: Normalized M Matrix for the Car Example. 

Norm M x1 x2 x3 x7 x8 x9
x1 0.0000 0.0000 0.0000 0.3319 0.0000 0.0000
x2 0.0000 0.0000 0.0000 0.1386 0.0000 0.0000
x3 0.0000 0.0156 0.0000 0.0000 0.0343 0.0000
x7 0.0000 0.0000 0.0081 0.0000 0.0000 0.1087
x8 0.0000 0.0000 0.0081 0.0000 0.0000 0.1087
x9 0.0000 0.0177 0.0124 0.0000 0.0231 0.0000  

The second stage of the algorithm computes the L 
list that contains only the yellow cells of the 
normalized M matrix. The Table 8 provides the L list 
when sorted with decreasing values of the BJ-
measure mij = M(xi→xj) of the corresponding 
relation r(xi→xj). The third stage transforms the 

normalized M matrix in the initial G graph with a 
depth first algorithm (Figure 9). 
Stage 4 is dedicated to find and remove the 
eventualloops in the initial G graph. 

Table 8: The L list of the Car Example. 

i j mij
x1 x7 0.3319
x2 x7 0.1386
x7 x9 0.1087
x8 x9 0.1087
x3 x8 0.0343
x9 x2 0.0177
x3 x2 0.0156
x9 x3 0.0124
x7 x3 0.0081

L = {r(i, j), mij}

 
The initial G graph of the car example contains a lot 
of loops: all the relations participates at least one 
loop except the r(x1→x7) relation. The loops are 
suppressed with the iterative removing of the 
r(xi→xj) relations with the minimal BJ-measure mij. 
To this aim, the algorithm duplicates the L list 
without the r(x1→x7) relation to constitute the L1 list. 
It is then easy to see that the firstly removed relation 
is r(x7→x3), and that the algorithm will successively 
remove the r(x9→x3) and the r(x3→x2) relations 
(Figure 10).  

x9

x7

x8

x1

x3

x2

 
Figure 9: Initial G Graph for the Car Example. 

The resultant G graph having no multiple paths, the 
stage 5 modifies nothing. The final stage of the 
algorithm is dedicated to the computing of the CP 
Tables from the N matrix (Table 2) with the 
equations provided in section 5. For the two root 
nodes x1, x2 and x3: 
• P(x1) = 5 / 99 ≈ 0.050  
• P(x2) = 14 / 99 ≈ 0.141 
• P(x3) = 30 / 99 ≈ 0.303 

For the single relation r(x3→x8):  
• P(x8|x3) = 11 / 30 ≈ 0.366  
• P(x8|¬x3) = (20-11) / (99-30) ≈ 0.130  
For the converging node x7 corresponding to the set 
R7={r(x1→x7), r(x2→x7}:  
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• P(x7|x1,x2) = (4+9) / (5+14) ≈ 0.684  
• P(x7|¬x1,x2) = (20-4) / (99-5) ≈ 0.170  
• P(x7|x1,¬x2) = (20-9) / (99-14) ≈ 0.129  
• P(x7|¬x1,¬x2) = (20-4-9) / (99-5-14) ≈ 0.087  
For the converging node x9 corresponding to the set 
R9={r(x7→x9), r(x8→x9}:  
• P(x9|x7,x8) = (5+5) / (20+20) ≈ 0.250  
• P(x9|¬x7,x8) = (10-5) / (99-20) ≈ 0.063  
• P(x7|x1,¬x2) = (10-5) / (99-20) ≈ 0.063  
• P(x7|¬x1,¬x2) = (10-5-5) / (99-20-20) =0 
This leads to the final naïve Bayesian Network for 
the car example (Figure 10), which is compatible 
with the functional model of Figure 7. 
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Figure 10: Bayesian Network for the Car Example. 

Naturally, this result comes from the way the  
sequence has been made: the Figure 11 shows the 
signature tree of the C9 class as provided by the 
“BJT4S” algorithm of the TOM4L tools. This tree 
allows recognizing the 10 observations of the C9 
class in the  sequence (i.e. the cover rate is equal to 
100%): 5 observations of the C9 class are recognized 
by the {r(C2, C7, [0, 6s]), r(C1, C7, [0, 4s]), r(C7, C9, 
[0, 6s])} signature, the other 5 observations being 
recognized by the {r(C3, C8, [0, 6s]), r(C8, C9, [0, 
12s])} signature. 

 
Figure 11: Signature tree of the C9 class. 

Despite of the simplicity of the knowledge base of 
the car example (Figure 5), this shows a posteriori 
the difficulty to compute the car example Bayesian 
network from the observations of the  sequence. 
The Bayesian Network of Figure 11 allows the 

building of the functional model for the car example 
of Figure 12: this functional model is identical to the 
functional model Figure 7, but it adds probabilities 
to the functions f7, f8 and f9. These probabilities 
provide some confidence about the existence of the 
corresponding functions. This example show the 
way the TOM4D methodology and the TOM4L 
process complete together. 
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Figure 12: Functional Model for the Car Example. 

This example shows the simplicity and the 
efficiency of the BJM4BN algorithm. The 
complexity of the algorithm is proportional with the 
number of timed data in the given set of sequences 
 and the number of class N(C) in . This is to be 
compared with the exponential complexity of the  
methods of the dependency analysis category. 

The next section shows the use of the 
“Transitivity rule” and the ease of use of the 
proposed algorithm in an industrial environment. 

7 REAL WORLD APPLICATION 

The Apache system is a clone of Sachem, the 
knowledge based systems that The Arcelor Group, 
one of the most important steal companies in the 
world, has developed to monitor and diagnose its 
production tools (Le Goc, 2004). Apache aims at 
controlling a zinc bath, a hot bath containing a liquid 
mixture of aluminum and zinc continuously fed with 
aluminum and zinc ingots in which a hot steel strip 
is immerged. Apache monitors and diagnoses around 
11 variables and is able to detect around 24 types of 
alarms. The analyzed sequence ω contains 687 
events of 13 classes for 11 discrete variables. The 
counting matrix N contains then 156 cells nij 
(Bouché, 2005), (Le Goc, 2005).  

The node of interest being 1006, the initial G graph 
resulting from stage 3 of the “BJM4BN” algorithm 
is given in Figure 13. This graph having no loops, 
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the stage 4 modify noting and stage 5 builds the final 
G graph of Figure 14. 
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Figure 13: Initial G graph. 
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P(1014 | ¬1002) = 0.024

P(1026 | 1014) = 0.400
P(1026 | ¬1014) = 0.010

P(1024 | 1026) = 0.059
P(1024 | ¬1026) = 0.025

P(1001 | 1031, 1002)      = 0.088
P(1020 | 1031, ¬1002)    = 0.053
P(1020 | ¬ 1031, 1002)   = 0.053
P(1020 | ¬1031, ¬1002)   = 0.048

P(1020 | 1024) = 0.120
P(1020 | ¬1024) = 0.033

P(1006 | 1001) = 0.385
P(1006 | ¬1001) = 0.037

1006

1001

1020

1031

10261004 10141002 1024

P(1031) = 0,176 
P(1004) = 0,026 

P(1014 | 1002) = 0.385
P(1014 | ¬1002) = 0.024

P(1026 | 1014) = 0.400
P(1026 | ¬1014) = 0.010

P(1024 | 1026) = 0.059
P(1024 | ¬1026) = 0.025

P(1001 | 1031, 1002)      = 0.088
P(1020 | 1031, ¬1002)    = 0.053
P(1020 | ¬ 1031, 1002)   = 0.053
P(1020 | ¬1031, ¬1002)   = 0.048

P(1020 | 1024) = 0.120
P(1020 | ¬1024) = 0.033

P(1006 | 1001) = 0.385
P(1006 | ¬1001) = 0.037

1006

1001

1020

1031

10261004 10141002 1024

1006

1001

1020

1031

10261004 10141002 1024

 
Figure 14: Final G graph. 

Figure 15 shows a handmade sketch of the 
functional model of the galvanization bath problem 
produced by the experts of the Arcelor Group in 
2003. The dotted lines in the graph indicate the 
expert’s relations that are not included in the final G 
graph of Figure 14: the G graph is all contained in 
the expert’s graph. But the expert’s graph does not 
contain the 1024 class: corresponding to an operator 
query for a chemical analysis, this class has been 
removed by experts. 
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Figure 15: Handmade graph of experts. 

Finally, the Figure 16 shows the graph made with 
the signatures of the 1006 class that can be found in 
(Bouché, 2005) and (Le Goc, 2005). The signatures 
are produced with specific Timed Data Mining 
techniques. This graph is identical to the initial G 
graph of Figure 13. 
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Figure 17: Handmade graph from 1006 signatures. 

The main problem is the disappearance of the 
r(1020, 1006) relation in the final G graph. The first 

analysis seem to lead to the conclusion that the 1024 
class is responsible of the r(1020, 1006) removing. 

8 CONCLUSIONS 

This paper proposes a new algorithm called the 
“BJT4BN” algorithm to learn a Bayesian Network 
from timed data. 

The originality of the algorithm comes from the 
fact that it is designed in the framework of the 
Timed Observation Theory. This theory represents a 
set of sequences of timed data in a structure, the 
Stochastic Representation that allows the definition 
of a new information measure called the BJ-
Measure. This paper defines the principles of a 
learning algorithm that are based on the BJ-Measure. 

The BJT4BN algorithm is efficient both in terms 
of pertinence and simplicity. These properties come 
from the BJ-measure that provides an operational 
way to orient the edges of a Bayesian Network 
without the exponential CI Tests of the methods of 
the dependency analysis category. 

Our current works are concerned with the 
combination of the Timed Data Mining techniques 
of the TOM4L framework with the “BJT4BN” 
algorithm to define a global validation of the 
TOM4L learning process. 
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