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Abstract: The stream cipher SNOW 3G designed in 2006 by ETSI/SAGE is a base algorithm for the second set of 3GPP
confidentiality and integrity algorithms. This paper is the first attempt of cryptanalysis of this algorithm in the
public literature. We look at SNOW 3G in which two modular additions are replaced by xors, which is called
SNOW 3GP. We show that the feedback from the FSM to the LFSR is very important, since we can break
a version without such a feedback using a paikmwn 1Vs with practical complexities & time and 33
keystream). We then extend this technique into a differentiaden IV attack on SNOW 3G and show how
to break 16 out of 33 rounds with the feedback.

1 INTRODUCTION scription of SNOW 3G and SNOW 3Gin Section
2. The known IV attack on SNOW 3Gwithout the

The SNOW 3G stream cipher is the core of the 3GPP FSM to LFSR feedback is presented in Section 3 and
confidentiality and integrity algorithms UEA2 and the differential chosen IV attack on SNOW 3@®ith
UIA2, published in 2006 by the 3GPP Task Force the feedback is presented in Section 4. Finally, some
(ETSI1, 2006). Compared to its predecessor, SNOW conclusions are given in Section 5.
2.0 (Ekdahl and Johansson, 2002), SNOW 3G adopts
a finite state machine (FSM) of three 32-bit words
and 2 S-Boxes to increase the resistance againstalges DESCRIPTION OF SNOW 3G
braic attacks by Billet and Gilbert (Billet and Gilbert, AND SNOW 3G®
2005). Full evaluation of the design is not public, but
a survey of this evaluation is given in (ETSI2, 2006). ] ) ]
In (ETSI2, 2006), SNOW 3G (in which the two SNOW_SG is aword—orlented syng:hronous stream ci-
modular additions are replaced by xors) is defined and Pher with 128-bit key and 128-bit IV, each consid-
evaluated. It shows that SNOW 3G has remarkable €red as four 32-bit words vector. It consists of a lin-
resistance against linear distinguishing attacks (Ny- €ar feedback shift register (LFSR) of sixteen 32-bit
berg and Watn, 2006; Watanabe et al., 2004), while word_s and a finite state _machlne (FSM) with three
SNOW 3G’ offers much better resistance against al- 32-Pit words, shown in Figure 1. Here’ denotes
gebraic attacks.

In this paper, we presents the first attempt of L
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SNOW 3G". We show that the feedback from the
FSM to the LFSR during the key/IV setup phase is vi-

tal for the security of this cipher, since we can break a
version without such a feedback with tdoown 1V’s s

in 257 time, 22 data complexity and for an arbitary
number of the key/IV setup rounds! We then restore
the feedback and study SNOW 3@gainst differen-
tial chosen IV attacks. We show attacks on SNOW
3G?® with 14, 15 and 16 rounds of initialization with
complexity 227, 2922 and 2242 respectively.

This paper is organized as follows. We give a de-

Figure 1: Keystream generation of SNOW 3G.

the bit-wise xor and&’ denotes the addition modulo
232, The feedback word of the LFSR is recursively
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computed as

ss=0"tsples tea gt
wherea is the root of theGF (28)[x] polynomialx* +
B2 + B?4%2 + B*8x + 3% with B being the root of
the GF (2)[x] polynomialx® +-x” +x° + x>+ 1. The
FSM has two input words, ands,; from the LFSR
and is updated as

R=R'BRog?),
R = S’l(Rtl_l)7 RE= SZ(Rt2_1)7

with the output word=" = (s, BR)) @ R, whereS;
andS; are 32-bit to 32-bit S-boxes defined as com-
positions of 4 parallel applications of two 8-bit to 8-
bit small S-boxesss and Sy, with a linear diffusion
layer respectively. Her&g is the well known AES S-
box andSy is defined aso(x) = x&x° G xBa xS
X33 xM @ x*® @ x* @ x4 @ 0x25 forx € GF (28) de-
fined by x® +x® +x% +x3+ 1. If we decompose a
32-bit wordB into four bytesB = B?||B!||B?||B® with
B? being the most an®° the least significant bytes,
then fori = 1,2, the S-boxes are
S(B) = MG - (Sk(B°), S=(B"), Sr(B?), % (B%)",

where MC; is the AES mix-column forS; over
GF (28) defined byx® 4+ x* +x3 +x+ 1 andMC; is
the similar operation foB, over GF (28) defined by
X4 x84+ x5 3+ 1.

SNOW 3G is initialized with the keyK =
(ko, k1,ko,k3) and thelV = (IVp, IV1, 1V2,1V3) as fol-

lows. Letl be the all-one word, the LFSR is initial-
ized as follows.

S5 =k3 B 1V s1a=kp s1z=k;
S12=ko®1Vy s11=ks®dl s o=ko®1DIV,
S9=ki®1elVz ss=ko®l s7=k3

s = ko S5 =K; sa =Ko
S3=k3®1 S=kel s=k&l
o=k ol.

The FSM is initialized withR; = R, = Rz = 0. Then
run the cipher 32 times with the FSM outgtitxored

which the attacker has access to two keystreams cor-
responding to(K,1V,a) and (K,1V), wherelV, and
IVp are arbitrary known IVs. This attack works for
any number of key/IV setup rounds.

Let R , andR , be the individual values in the
FSM registelR; at clockt, then we have

AR} = Rtl,a@ Rtl,ba

Rt2,(—,1 = Sl(Rtl,_al)v Rt2,b = Sl(Rtl,_bl)v

AR, =Ry , &Ry, = Sﬂ-(thljal) ® Sﬂ-(thljbl) ~
Here we define a new notation

out

AS(ORT 25 RN es(RLY).
During the keystream generation, we have the follow-
ing equations for the differences at clack

A7 = NS 5@ AR, & AR, & A,
AR = AR T e AR Ta A
AR, :‘Ktsl(ARtl—l), AR :(KtSz(Ath_l)-

The differences in the LFSR part propagate linearly
and are completely predictable.

The main procedures of our attack are: assume
that at timet we haveAR, = 0. From the linear evo-
lution of the difference in the LFSR and the keystream
difference equations, we deduce potential differences
in the other FSM registers at different times. Know-
ing the input-output difference for the S-boxes, de-
duce the few possibilities for the actual values of the
FSM registers. Combine the knowledge of the FSM
state with that of the keystream to get linear equations
on the LFSR state. Collect enough equations to get
a solvable linear system which will recover the state
of the LFSR. By the invertibility of the cipher, run it
backwards to find the 128-bit secret K€y

AssumeAR, = 0. If this is not true, we just take
the next clock and so on. If we try this steff2imes,
then it will happen with a good probability. Denote

to the feedback of the LFSR and no keystream gen- ihe time that\R; = 0 byt = 1. ThenAR! = 0, AR =

erated. After this, the cipher is switched into the

keystream generation mode, but the first keystream
word is discarded. Hence, there are 33 initialization

rounds. The keystream word generated at cloik
Z =@ F'. If we replace the two modulo additions
in SNOW 3G by xors, we get SNOW 3G

3 KNOWN IV ATTACK ON SNOW
3G® WITHOUT FSM TO LFSR
FEEDBACK

In this section, we consider a knowl attack on
SNOW 3G® without the FSM to LFSR feedback, in
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0 andARS = 0. From the keystream equatiortat 1,
we knowAR3; similarly we knowAR% att = 2, from
which we can deriv&R}, as shown below. Hereafter,
we denote the known difference valuesky.

clock t | ARy ARy AR3 |
1 0 Ak; Ak
2 Ako 0
3 0

Att = 3, we have
ARE G ARS = AZ © ASis D AL B AS).

By the notations introduced before, we get

A S(8ky) @ A Si(Bke) = k. (1)



Here we have 2. 228/232 — 224 pairs satisfying1).
(In the two 8-bit S-boxes, there are at mosp@ssible
output differences for any fixed input difference.) To

enumerate the possible pairs, we proceed as follows.

First rewrite (1) as

out

byOIADONCOADLOYOISOINSH COMFD OSONDOOW 11300G" |
this equation to the byte form, we get
out 0
A R(c ) a0 A
OAUtﬁa(Cl) 1 | a 1| A
=met | % [eme | A5 |
A SR(c?) s
out 3 a A
SR(BKD) A So(akd) msh A %(e)
out 1 out 1 msb
KR(AK3) A So(Lky) s
out = out & msb
B () Bsowd) || P2
U U
A SR(AK) A S(AK) °
Ak%
1 Ak
& MC;] Ak%
ARG

wherep™P® (i = 0,1,2,3) denotes a byte polynomial
which contains only the most significant bits of all the
four 0AL"SQ values. For a detailed explanation, please
see the Appendix. Thus we can fulfill the enumer-
ation byte by byte. For the first row, we need the
value ofoAmSQ(Ak(l’), which has 2 possibilities and
three more bits fopd's®. Then we check whether the

value computed at the right side of the equation is a

correctvalue foKtSR(Akg). This would cost 2 steps
and we will obtain 2 solutions for this equation. For

We have to insert all the 2 possible pairs of
(ARS,AR®) and verify the valuep Sg for the sin-

gle bytes. This results in a time complexity of
224 There arei;',%E = 220 entries satisfy this

equation.  This means we have?®2sequences
(AR3, AR3, ARS, AR}, ARY) left. For each of them, we
know the input-output difference & at clock 2 and
3. Thus, we can recovéR- 328+ 4. -1.)* = 1651
sorted pairs of values f@;. This means that we have
1651 — 8.255 possible values foAR}. Looking at

out
clock 5, we havé\R} & ARA® A S;(AR]) = Aks. We
can rewrite this equation into byte form and check
the 29 remaining sequences by the byte equations.
There are220‘8-22+228 ~ 21995 possible sequences left
and the complexity is abouf?- 8.255= 22305, This
identification of the individual values in the FSM for
both keystreams has to be repeated for the next 9
clocks. Each step will have a lower time complex-

the next three equations, since we already know theity than the one before and will reduce the possible

leading bits, we only have®ossibilities left in each
byte equation, which yields the same time complex-
ity and 2 solutions. To get the solution of the word

number of differences. The time complexity for all

10 steps together 57220 (27 )i 22 = 2241 and

X . 4 ; 227 \10 _ 5105
equation, we have to combine the corresponding byte the number of sequences left £2( 5z)™° = 2'9°.

solutions and get225. 25. 25 = 224 solutions, which
needs about 2 224 = 225 words of memory. Now,
the states of the FSM are as follows.

clock t | ARy ARy ARz |
next

1 0 Ak Okg pé

2 Aky (U 924 N

2 25 2 o reduction
clock t | ARy ARy ARz |

1 0 Ak Akg

2 Aky 0 (229

3 (220) (220) 0

4 (220) (220)

Each possible value dYRg results in a possible value
of AR}. Att =4, we have

AR @ AR = A @ Asts @ ASS © OS]

Replacing the differencAR} with the S-Box repre-

t
sentation, we receivARS® A SI(AR?) = Aks. Let
ARS = c%||ct||c?||c3, ARS = &°||at||a?||a®. Expanding

Then we insert the individual values of the FSM into
the keystream generation equations and the FSM up-
date equations to get a linear system of the LFSR
initial states. This would need a time complexity of
2105.210 — 2205 gteps. The overall time complexity

is

227 231

R DU AN BT A1
7 Rl =%

9
232. [210+ 224+ %(220. (
=

The memory requirement is?2 words and the
keystream is of length® words.

4 DIFFERENTIAL CHOSEN IV
ATTACKS ON REDUCED
ROUND SNOW 3G*#

Now we look at the full SNOW 3@ (with the feed-
back). We consider a differential chosen IV attack
scenario. Assume that we have two 128-bit 1Vs dif-
fering only in the most significant wortlg, which
gives the difference is; 5 of the LFSR. As mentioned

329

ROEOSOYON



SECRYPT 2010 - International Conference on Security and Cryptography

below in Section 4.2 and Section 4.3, we can restrict which is
the difference to a single byte By in order to reduce = B 0 1 0
the complexity of our attacks. Denote this difference AR, @AR(Z) - AZO@ASB@ASE & As.
by Ad. Then until round 10, this difference will not  Then we replace the differences at the left side with
affect the FSM. In round 11, the knovlid enters the  their S-Boxes description, denote the known part at

FSM wordR;. the right side withkg and get the equation
4.1 Reduced Initialization of 12 Rounds A S (Ad) @ A Si(Ad) = Ak,
. . 71 .
Since all the differences in the FSM are 0, there are Multiplying by MC; ~, we get the byte form equation
no differences fed back into the LFSR. Thus the dif- out 0 out 0
ferences in the LFSR are all known. Our knowledge ﬁtSR(Ad ) ﬁtSR(Ad ) AKS
of differences in the FSM is shown below. We try to ASR(BdY) | [ ASR(@dY) | _pea| A
compute the unknown values ("?"s) in this table. A R(Ad?) A (Ad?) . 2
round | clockt | ARy AR, ARg 'Ktsq(Ade’) OA”ISR(Ad3) ko
11 -1 Ad 0 0 : .
12 0 Ad 5 0 We can check these four byte equations in
1 " ” 4.2"=2° steps. The number of solutions will be
228_228

5~ = 2% pairs of (AR, ARY). We have 24

From the keystream equatioh® = AL, & AR? @
Y g s 1 sequence$AR; % = Ad, AR, 2 = AR;% = 0,AR; ' =

ARS & AS), where ARY = Ad, we getARS, which | , _
gives us immediatehAR! and alsoAR} from the ~ Ad:AR,%AR;™ = 0.AR}, ARp). Again, we switch
next keystream equation. Therefore, we have only ff_OF“ the differences of the FSM words to the in-
one known sequenc(eﬁRIl _ Ad’ARgl _ ARs_l _ dividual yalues of them by 7uzsmg the input and
0. AR‘} ~ Ad, ARS,AR% ~ 0,ARLARL).  Now we outPlut dlfferenc_e of S: ARl. = Ad —> S —>.
know the input and output difference &f: ARIl: AI} '24 Ege_t”;? cog;;;exny of this step s
Ad — S, — AR, Thus, we switch from the differ- 3i=02"(137) 137 =277 In the end, we have
ences of the FSM words to the individual values of 224. (%)10: 21445 difference sequences left. The
them, similar to the procedures explained in Section memory complexity is 28- 10- 3 = 22292 words. We

3. The time complexity is 10% — 254 steps. Af- then insert the individual values of the FSM into the
terwards we insert the indivié]ual values of the FSM keystream generation equations and the FSM update
into the keystream generation equations and the FSMequations to get a linear system of the LFSR ini-
update equations to get a linear system of the LFSRtial states. This would need a time complexity of
initial states with a complexity of 2. We use the 2% 510 _ 52445 Tha overall time complexity is
keystream equation of clock 12 to check the candi- 127

dates. The total time complexity i§44 210 — 101 g 2 2 220 2 2% 0 o2
steps, the memory complexity is small and the known 2 +'Zﬁ<2 (57 1274) tim 2 =2
keystream is only 12 words for each IV. =

N steps. The memory complexity i$%* words and the

4.2 Reduced Initialization of 13Rounds  keystream is of length 12 words for each IV.

If we restrict the known arbitrary differendel to
Here we extend the attack above by one more round.a word with three bytes equal to zero and only one non
In the 13 round case, since all the differences in the zero byte, we can reduce our attack complexity con-
FSM until now are either O or the knowkd, no un- siderably. We then have only one paiiR,*, AR)
known difference was fed back into the LFSR. Thus, of difference left, as in the attack on 12 rounds ex-
the differences in the LFSR values are known. We plained in Section 4.1. In this way, we will have the

compute "?”s in the following table as follows. same time complexity’®! and the memory require-
round | clockt | ARy AR, ARg ment is small. The keystream will be of 12 words for
11 5 Ad 0 0 each V.
12 -1 Ad ? 0 o
13 0 ? ? 4.3 Reduced Initialization of 14 Rounds

FromAZ andAR(l’, we have Nearly all the differences in the LFSR are known, the
AP =A@ AR o As T AR @ A, only unknown difference iR, 2, which was fed back
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into the LFSR, the remaining differences are either 0 4.4 Reduced Initialization of 15 Rounds

or the knownAd. We guess the individual vaIu%ig
for the first pair(K, V) with complexity of £2. From
the valueR; 3, we get withAR; > = Ad the valueR1,
for the second pai(K, V).

AR, 2 with Akg, the linear dependedR; * with Ak;

andARgl with Aky. This gives the following differ-
ences for the FSM.
round | clockt | ARy ARy, ARg

11 -3 Ad 0 0
12 -2 Ad Dkg O
13 -1 | Ak ? Ak
14 0 ? ?

From
AP = A AR & AR & A,
we insert the update equations R} andARS and
receive
out
AP = Ao NS (Ad)@dkoAs?

& A Si(Aky) @A),
which gives
A Su(8d)e A Sy(Bky)
= AMPoAS DLk AS T AS).
We denote the known right part ks, multiply the
equation wittMC; * and rewrite it in byte notation as

A (AdO) A SR(AkO) e
out 1

(ﬁtSQ(Ad ) o) (A ) — MCIl 2t§
A SR(Ad?) A SR(Akz) Akg
out

A Sr(Bd®) D SR(013)

Then we check this equation line by line for each
byte in 4.27 = 29 steps. The number of solutions

228,928

will be 55— = 224 pairs of (AR, *,ARD). Again,

we switch from the differences of the FSM words to
the individual values of them by using the input and

output difference o8;: AR;? — S — AR, 1. Since

we start with 24 sequences, we have completely the
same procedure as in the attack on 13 rounds of ini-
tialization and thus the same complexities. The over-
all time complexity is the same as that in 12 rounds of

initialization for each guess 6(1;3, which gives

9 27 931 2294
29 +20(224.(
i=

232. X 210 _ 260.2.

I .
177" 127) * 1270
The memory requirement is?2°* words and the
keystream is of length 12 words for each IV.
If we restrict the known differenci&d to only one

byte inVp, we can reduce our attack complexity to
2*27 with similar procedures as above. The corre-

sponding memory complexity is?2words and the
keystream is of 12 words for each IV.

Furthermore we obtain
Rya Rgg, R;3 Rsp. We denote the known difference

and 16 Rounds

Nearly all the differences in the LFSR are known,
only two unknown differenceAR, > andAR, 2 were

fed back into the LFSR, the remaining differences are
either 0 or the knowdd. We guess the individual
values ofR; 3 andRy 3 for the first pair(K, IVa) with
complexity of 2. From the valueR; 3 andAR; * =

Ad, we getthe values 6%, 5, R, 3, Ry 5, Ry 3, R . De-
note the known differencaR; 2 by Ak, AR} % by Akg
andAR; 2 by Ak,. From R;g andAR; 3 = Ad, we get
the values oR; 5, R, 5, Ry 5, Ry 5, Rsé Again, we de-
note the now known differenc&R,? by Aks, AR;*
by Akq and ARgl by Aks. This gives the following
differences for the FSM.

round | clockt | ARy ARy, ARs

11 —4 Ad 0 0
12 -3 Ad Ak O
13 —2 | Ak Akg Ak
14 1 | Ay ? Ak
15 0 ? ?

We have now the same starting point as that of the
attack on 14 initialization rounds. We proceed in the
way as explained there. Since we guessed one more
word in the beginning of the attack, the time complex-

ity becomes

232 260 2 292 2

The memory complexity remaing%* words and the
keystream is of length 12 words for each IV.

In the 16 rounds case, we guess one more word
and then proceed as that of the attack on 15 rounds.
The time complexity is

232 2922 21242
and the memory complexity remain&®2* words and
the keystream is of length 12 words for each IV.
The summary of our results is given in Table 1.

5 CONCLUSIONS

In this paper, we have showkmown IV and chosen

IV resynchronization attacks on SNOW 3GWe can
attack arbitrary many key/IV setup rounds of SNOW
3G? if there is no feedback from FSM to LFSR. With
such feedback, we show key recovery attacks up to
16 rounds of initialization by using a few keystream
words. Our results indicate that about half of the ini-
tialization rounds of SNOW 3& might succumb to
chosen IV resynchronization attacks. The remaining
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Table 1: The summary of our results on SNOW®3G

attack data time  memory
SNOW 3G° 233 Q571 225
without feedback

SNOW 3G°

with feedback

12 rounds 24 P2 small
13 rounds with 1 24 Y1 small
byte differenceAd

14 rounds with 1 24 87 29
byte differenceAd

15 rounds 24 P2 22991
16 rounds 24 42 2001

security margin however is quite significant and thus
these attacks pose no threat to the security of SNOW
3G itself.
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In

APPENDIX

We want to simplify the equation

out out
A S(Dk1) @ A Si(Akp) = Aky.
The main difficulty is thatS; and S use the same

332

GF (28). At first we rewrite this equation in the byte
notation as

ut 0 out 0

A So(Lk7) A SR(Ak3)

B Splakd) A S(8K)

MC; - out > & MCy - out 2
oﬂm (AKT) ﬁt (Ak3)

A So(BK3) A SR(AK)

Ak%’

_| g

- Ak%

DK

Then multiplying this equation with the inverse ma-
trix MC; %, we get

out out 0

ﬁtSQ(Ak?) ﬁt (8k3)

Mc; - | Mc,.- ﬁtSQ(Ak%) & ﬁt (AkD)
ﬁtSQ(Akf) ﬁt (AK3)

A So(LK3) A SR(AKD)

Ak%

_ Ak

=Mmc ! Aké

a

If we expand the matrix multiplications and have a
look at the byte vectors, it shows that the first entry of

the first vector contains the by%SQ(Akg) and a byte
polynomial containing only the most significant bits

of all four ‘KtSQ values. We denote this polynomial
with p'. The other three rows have similar struc-
tures, but with different polynomialg™ (i = 1,2, 3).
Therefore we can rewrite the equation to

(BK3 A So(AKY) pmsb

out out 0

Sx() (o)

out = out D msb

S(0 ) e

out out 3 pgns
A Sr(8G A Sol0i)

Ak%)

1 Ak;

& Mc; L Akg

s

We denote bymy the most significant bit of the
valueA So(AK?) and withmy the most significant bit
of the valueh So(AkL) as well asy for A So(AK)
Mix-Column matrix but over two different fields andmg for OAL“SQ(Aki’). Then the polynomialpmsP
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i=0,...,3are

PI =(my & mg)X’ + (Mo @ my)x® + (mz & me)x°
+ (Mg @ mp)x* + (Mo @ mp)x + (Mg & mp)X
+ (Mo ® My & My & M)

PI™ =(mo @ mp)X’ + (Mg & mp)x® + (mo @ me)x°
+ (Mm@ mg)x* + (My & mg) X% + (Mp & Mg)x
+ (Mo ® My @ M & M)

PI =(my & me)X’ + (Mp @ mg)x® + (Mo & my)x°
+ (Mo @ Mg)X* + (Mo & Mp) X2 + (M & Mg)X
+ (Mo ® My @ My & M)

PI® = (Mm@ mp)X’ + (Mo Me)Xe + (my & Mp)x®
+ (Mo @ my)x* + (my & Mg)x? + (Mo & My )X
+ (Mo ® My & Mp & Mg)
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