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Abstract: The stream cipher SNOW 3G designed in 2006 by ETSI/SAGE is a base algorithm for the second set of 3GPP
confidentiality and integrity algorithms. This paper is the first attempt of cryptanalysis of this algorithm in the
public literature. We look at SNOW 3G in which two modular additions are replaced by xors, which is called
SNOW 3G⊕. We show that the feedback from the FSM to the LFSR is very important, since we can break
a version without such a feedback using a pair ofknown IVs with practical complexities (257 time and 233

keystream). We then extend this technique into a differentialchosen IV attack on SNOW 3G⊕ and show how
to break 16 out of 33 rounds with the feedback.

1 INTRODUCTION

The SNOW 3G stream cipher is the core of the 3GPP
confidentiality and integrity algorithms UEA2 and
UIA2, published in 2006 by the 3GPP Task Force
(ETSI1, 2006). Compared to its predecessor, SNOW
2.0 (Ekdahl and Johansson, 2002), SNOW 3G adopts
a finite state machine (FSM) of three 32-bit words
and 2 S-Boxes to increase the resistance against alge-
braic attacks by Billet and Gilbert (Billet and Gilbert,
2005). Full evaluation of the design is not public, but
a survey of this evaluation is given in (ETSI2, 2006).
In (ETSI2, 2006), SNOW 3G⊕ (in which the two
modular additions are replaced by xors) is defined and
evaluated. It shows that SNOW 3G has remarkable
resistance against linear distinguishing attacks (Ny-
berg and Wall ´en, 2006; Watanabe et al., 2004), while
SNOW 3G⊕ offers much better resistance against al-
gebraic attacks.

In this paper, we presents the first attempt of
cryptanalysis of the resynchronization mechanism of
SNOW 3G⊕. We show that the feedback from the
FSM to the LFSR during the key/IV setup phase is vi-
tal for the security of this cipher, since we can break a
version without such a feedback with twoknown IV’s
in 257 time, 233 data complexity and for an arbitary
number of the key/IV setup rounds! We then restore
the feedback and study SNOW 3G⊕ against differen-
tial chosen IV attacks. We show attacks on SNOW
3G⊕ with 14, 15 and 16 rounds of initialization with
complexity 242.7, 292.2 and 2124.2 respectively.

This paper is organized as follows. We give a de-

scription of SNOW 3G and SNOW 3G⊕ in Section
2. The known IV attack on SNOW 3G⊕ without the
FSM to LFSR feedback is presented in Section 3 and
the differential chosen IV attack on SNOW 3G⊕ with
the feedback is presented in Section 4. Finally, some
conclusions are given in Section 5.

2 DESCRIPTION OF SNOW 3G
AND SNOW 3G⊕

SNOW 3G is a word-oriented synchronous stream ci-
pher with 128-bit key and 128-bit IV, each consid-
ered as four 32-bit words vector. It consists of a lin-
ear feedback shift register (LFSR) of sixteen 32-bit
words and a finite state machine (FSM) with three
32-bit words, shown in Figure 1. Here ’⊕’ denotes
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4s 3s
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Figure 1: Keystream generation of SNOW 3G.

the bit-wise xor and ’⊞’ denotes the addition modulo
232. The feedback word of the LFSR is recursively
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computed as

st
15 = α−1 · st−1

11 ⊕ st−1
2 ⊕α · st−1

0 ,

whereα is the root of theGF(28)[x] polynomialx4+
β23x3+β245x2+β48x+β239 with β being the root of
the GF(2)[x] polynomialx8 + x7 + x5 + x3 + 1. The
FSM has two input wordsst

5 andst
15 from the LFSR

and is updated as

Rt
1 = Rt−1

2 ⊞ (Rt−1
3 ⊕ st−1

5 ),

Rt
2 = S1(R

t−1
1 ), Rt

3 = S2(R
t−1
2 ),

with the output wordF t = (st
15⊞Rt

1)⊕Rt
2, whereS1

andS2 are 32-bit to 32-bit S-boxes defined as com-
positions of 4 parallel applications of two 8-bit to 8-
bit small S-boxes,SR andSQ, with a linear diffusion
layer respectively. HereSR is the well known AES S-
box andSQ is defined asSQ(x) = x⊕ x9⊕ x13⊕ x15⊕

x33⊕ x41⊕ x45⊕ x47⊕ x49⊕0x25 forx ∈ GF(28) de-
fined by x8 + x6 + x5 + x3 + 1. If we decompose a
32-bit wordB into four bytesB = B0‖B1‖B2‖B3 with
B0 being the most andB3 the least significant bytes,
then fori = 1,2, the S-boxes are

Si(B) = MCi · (SR(B
0),SR(B

1),SR(B
2),SR(B

3))T ,

where MC1 is the AES mix-column forS1 over
GF(28) defined byx8 + x4 + x3 + x + 1 andMC2 is
the similar operation forS2 over GF(28) defined by
x8+ x6+ x5+ x3+1.

SNOW 3G is initialized with the keyK =
(k0,k1,k2,k3) and theIV = (IV0, IV1, IV2, IV3) as fol-
lows. Let1 be the all-one word, the LFSR is initial-
ized as follows.

s15 = k3⊕ IV0 s14 = k2 s13 = k1
s12 = k0⊕ IV1 s11 = k3⊕1 s10 = k2⊕1⊕ IV2
s9 = k1⊕1⊕ IV3 s8 = k0⊕1 s7 = k3
s6 = k2 s5 = k1 s4 = k0
s3 = k3⊕1 s2 = k2⊕1 s1 = k1⊕1
s0 = k0⊕1 .

The FSM is initialized withR1 = R2 = R3 = 0. Then
run the cipher 32 times with the FSM outputF xored
to the feedback of the LFSR and no keystream gen-
erated. After this, the cipher is switched into the
keystream generation mode, but the first keystream
word is discarded. Hence, there are 33 initialization
rounds. The keystream word generated at clockt is
zt = st

0⊕Ft . If we replace the two modulo additions
in SNOW 3G by xors, we get SNOW 3G⊕.

3 KNOWN IV ATTACK ON SNOW
3G⊕ WITHOUT FSM TO LFSR
FEEDBACK

In this section, we consider a knownIV attack on
SNOW 3G⊕ without the FSM to LFSR feedback, in

which the attacker has access to two keystreams cor-
responding to(K, IVa) and (K, IVb), whereIVa and
IVb are arbitrary known IVs. This attack works for
any number of key/IV setup rounds.

Let Rt
i,a and Rt

i,b be the individual values in the
FSM registerRi at clockt, then we have

∆Rt
1 = Rt

1,a ⊕Rt
1,b,

Rt
2,a = S1(R

t−1
1,a ), Rt

2,b = S1(R
t−1
1,b ),

∆Rt
2 = Rt

2,a ⊕Rt
2,b = S1(R

t−1
1,a )⊕ S1(R

t−1
1,b ) .

Here we define a new notation
out

∆ S1(∆Rt−1
1 ), S1(R

t−1
1,a )⊕ S1(R

t−1
1,b ) .

During the keystream generation, we have the follow-
ing equations for the differences at clockt

∆zt = ∆st
15⊕∆Rt

1⊕∆Rt
2⊕∆st

0,

∆Rt
1 = ∆Rt−1

2 ⊕∆Rt−1
3 ⊕∆st−1

5 ,

∆Rt
2 =

out

∆ S1(∆Rt−1
1 ), ∆Rt

3 =
out

∆ S2(∆Rt−1
2 ) .

The differences in the LFSR part propagate linearly
and are completely predictable.

The main procedures of our attack are: assume
that at timet we have∆Rt

1 = 0. From the linear evo-
lution of the difference in the LFSR and the keystream
difference equations, we deduce potential differences
in the other FSM registers at different times. Know-
ing the input-output difference for the S-boxes, de-
duce the few possibilities for the actual values of the
FSM registers. Combine the knowledge of the FSM
state with that of the keystream to get linear equations
on the LFSR state. Collect enough equations to get
a solvable linear system which will recover the state
of the LFSR. By the invertibility of the cipher, run it
backwards to find the 128-bit secret keyK.

Assume∆Rt
1 = 0. If this is not true, we just take

the next clock and so on. If we try this step 232 times,
then it will happen with a good probability. Denote
the time that∆R1 = 0 by t = 1. Then∆R1

1 = 0, ∆R2
2 =

0 and∆R3
3 = 0. From the keystream equation att = 1,

we know∆R1
2; similarly we know∆R2

1 at t = 2, from
which we can derive∆R1

3, as shown below. Hereafter,
we denote the known difference values by∆ki.

clock t ∆R1 ∆R2 ∆R3

1 0 ∆k1 ∆k3
2 ∆k2 0
3 0

At t = 3, we have

∆R2
3⊕∆R3

2 = ∆z3⊕∆s3
15⊕∆s2

5⊕∆s3
0 .

By the notations introduced before, we get
out

∆ S2(∆k1)⊕
out

∆ S1(∆k2) = ∆k4. (1)
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Here we have 228 ·228/232 = 224 pairs satisfying(1).
(In the two 8-bit S-boxes, there are at most 27 possible
output differences for any fixed input difference.) To
enumerate the possible pairs, we proceed as follows.
First rewrite (1) as












out
∆ SR(∆k0

2)
out
∆ SR(∆k1

2)
out
∆ SR(∆k2

2)
out
∆ SR(∆k3

2)













=













out
∆ SQ(∆k0

1)
out
∆ SQ(∆k1

1)
out
∆ SQ(∆k2

1)
out
∆ SQ(∆k3

1)













⊕









pmsb
0

pmsb
1

pmsb
2

pmsb
3









⊕ MC−1
1 ·









∆k0
4

∆k1
4

∆k2
4

∆k3
4









,

wherepmsb
i (i = 0,1,2,3) denotes a byte polynomial

which contains only the most significant bits of all the

four
out

∆ SQ values. For a detailed explanation, please
see the Appendix. Thus we can fulfill the enumer-
ation byte by byte. For the first row, we need the

value of
out

∆ SQ(∆k0
1), which has 27 possibilities and

three more bits forpmsb
0 . Then we check whether the

value computed at the right side of the equation is a

correct value for
out

∆ SR(∆k0
2). This would cost 210 steps

and we will obtain 29 solutions for this equation. For
the next three equations, since we already know the
leading bits, we only have 26 possibilities left in each
byte equation, which yields the same time complex-
ity and 25 solutions. To get the solution of the word
equation, we have to combine the corresponding byte
solutions and get 29 ·25 ·25 ·25 = 224 solutions, which
needs about 2× 224 = 225 words of memory. Now,
the states of the FSM are as follows.

clock t ∆R1 ∆R2 ∆R3

1 0 ∆k1 ∆k3
2 ∆k2 0 (224)
3 (224) (224) 0
4

next
part
→

reduction

clock t ∆R1 ∆R2 ∆R3

1 0 ∆k1 ∆k3
2 ∆k2 0 (220)
3 (220) (220) 0
4 (220) (220)

Each possible value of∆R3
2 results in a possible value

of ∆R4
1. At t = 4, we have

∆R3
2⊕∆R4

2 = ∆z4⊕∆s4
15⊕∆s3

5⊕∆s4
0 .

Replacing the difference∆R4
2 with the S-Box repre-

sentation, we receive∆R3
2⊕

out

∆ S1(∆R3
1) = ∆k5. Let

∆R3
1 = c0‖c1‖c2‖c3, ∆R3

2 = a0‖a1‖a2‖a3. Expanding

this equation to the byte form, we get












out
∆ SR(c0)
out
∆ SR(c1)
out
∆ SR(c2)
out
∆ SR(c3)













= MC−1
1 ·









a0

a1

a2

a3









⊕MC−1
1 ·









∆k0
5

∆k1
5

∆k2
5

∆k3
5









.

We have to insert all the 224 possible pairs of

(∆R3
2,∆R3

1) and verify the value
out

∆ SR for the sin-
gle bytes. This results in a time complexity of
224. There are 224·228

232 = 220 entries satisfy this
equation. This means we have 220 sequences
(∆R2

3,∆R3
1,∆R3

2,∆R4
1,∆R4

2) left. For each of them, we
know the input-output difference ofS1 at clock 2 and
3. Thus, we can recover(2 · 126

127+ 4 · 1
127)

4 = 16.51
sorted pairs of values forS1. This means that we have
16.51

2 = 8.255 possible values for∆R4
3. Looking at

clock 5, we have∆R4
2⊕∆R4

3⊕
out

∆ S1(∆R4
1) = ∆k6. We

can rewrite this equation into byte form and check
the 220 remaining sequences by the byte equations.
There are220·8.255·228

232 ≈ 219.05 possible sequences left

and the complexity is about 220 ·8.255= 223.05. This
identification of the individual values in the FSM for
both keystreams has to be repeated for the next 9
clocks. Each step will have a lower time complex-
ity than the one before and will reduce the possible
number of differences. The time complexity for all
10 steps together is∑9

i=0220· ( 227

1274 )
i · 231

1274 = 224.1 and

the number of sequences left is 220 · ( 227

1274 )
10 = 210.5.

Then we insert the individual values of the FSM into
the keystream generation equations and the FSM up-
date equations to get a linear system of the LFSR
initial states. This would need a time complexity of
210.5 ·210 = 220.5 steps. The overall time complexity
is

232 · [210+224+
9

∑
i=0

(220 · (
227

1274)
i ·

231

1274)] = 257.1 .

The memory requirement is 225 words and the
keystream is of length 233 words.

4 DIFFERENTIAL CHOSEN IV
ATTACKS ON REDUCED
ROUND SNOW 3G⊕

Now we look at the full SNOW 3G⊕ (with the feed-
back). We consider a differential chosen IV attack
scenario. Assume that we have two 128-bit IVs dif-
fering only in the most significant wordIV0, which
gives the difference ins15 of the LFSR. As mentioned

þÿ�A�N�A�L�Y�S�I�S� �O�F� �S�N�O�W� �3�G"•� �R�E�S�Y�N�C�H�R�O�N�I�Z�A�T�I�O�N� �M�E�C�H�A�N�I�S�M
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below in Section 4.2 and Section 4.3, we can restrict
the difference to a single byte ofIV0 in order to reduce
the complexity of our attacks. Denote this difference
by ∆d. Then until round 10, this difference will not
affect the FSM. In round 11, the known∆d enters the
FSM wordR1.

4.1 Reduced Initialization of 12 Rounds

Since all the differences in the FSM are 0, there are
no differences fed back into the LFSR. Thus the dif-
ferences in the LFSR are all known. Our knowledge
of differences in the FSM is shown below. We try to
compute the unknown values (”?”s) in this table.

round clock t ∆R1 ∆R2 ∆R3

11 −1 ∆d 0 0
12 0 ∆d ? 0

1 ? ?

From the keystream equation∆z0 = ∆s0
15 ⊕ ∆R0

1 ⊕

∆R0
2 ⊕ ∆s0

0, where ∆R0
1 = ∆d, we get ∆R0

2, which
gives us immediately∆R1

1 and also∆R1
2 from the

next keystream equation. Therefore, we have only
one known sequence(∆R−1

1 = ∆d, ∆R−1
2 = ∆R−1

3 =

0, ∆R0
1 = ∆d, ∆R0

2,∆R0
3 = 0, ∆R1

1,∆R1
2). Now we

know the input and output difference ofS1: ∆R−1
1 =

∆d → S1 → ∆R0
2. Thus, we switch from the differ-

ences of the FSM words to the individual values of
them, similar to the procedures explained in Section
3. The time complexity is 10· 231

1274 = 26.4 steps. Af-
terwards we insert the individual values of the FSM
into the keystream generation equations and the FSM
update equations to get a linear system of the LFSR
initial states with a complexity of 210. We use the
keystream equation of clock 12 to check the candi-
dates. The total time complexity is 26.4+210 = 210.1

steps, the memory complexity is small and the known
keystream is only 12 words for each IV.

4.2 Reduced Initialization of 13 Rounds

Here we extend the attack above by one more round.
In the 13 round case, since all the differences in the
FSM until now are either 0 or the known∆d, no un-
known difference was fed back into the LFSR. Thus,
the differences in the LFSR values are known. We
compute ”?”s in the following table as follows.

round clock t ∆R1 ∆R2 ∆R3

11 −2 ∆d 0 0
12 −1 ∆d ? 0
13 0 ? ?

From∆z0 and∆R0
1, we have

∆z0 = ∆s0
15⊕∆R−1

2 ⊕∆s−1
5 ⊕∆R0

2⊕∆s0
0 ,

which is

∆R−1
2 ⊕∆R0

2 = ∆z0⊕∆s0
15⊕∆s−1

5 ⊕∆s0
0 .

Then we replace the differences at the left side with
their S-Boxes description, denote the known part at
the right side withk0 and get the equation

out

∆ S1(∆d)⊕
out

∆ S1(∆d) = ∆k0.

Multiplying by MC−1
1 , we get the byte form equation













out
∆ SR(∆d0)
out
∆ SR(∆d1)
out
∆ SR(∆d2)
out
∆ SR(∆d3)













⊕













out
∆ SR(∆d0)
out
∆ SR(∆d1)
out
∆ SR(∆d2)
out
∆ SR(∆d3)













= MC−1
1









∆k0
0

∆k1
0

∆k2
0

∆k3
0









.

We can check these four byte equations in
4 ·27 = 29 steps. The number of solutions will be
228·228

232 = 224 pairs of (∆R−1
2 ,∆R0

2). We have 224

sequences(∆R−2
1 = ∆d, ∆R−2

2 = ∆R−2
3 = 0,∆R−1

1 =

∆d,∆R−1
2 ,∆R−1

3 = 0,∆R0
1,∆R0

2). Again, we switch
from the differences of the FSM words to the in-
dividual values of them by using the input and
output difference ofS1: ∆R−2

1 = ∆d → S1 →

∆R−1
2 . The time complexity of this step is

∑9
i=0224 · ( 227

1274 )
i · 231

1274 = 228.09. In the end, we have

224 · ( 227

1274 )
10 = 214.45 difference sequences left. The

memory complexity is 225 ·10·3= 229.91 words. We
then insert the individual values of the FSM into the
keystream generation equations and the FSM update
equations to get a linear system of the LFSR ini-
tial states. This would need a time complexity of
2294

12740 ·2
10= 224.45. The overall time complexity is

29+
9

∑
i=0

(

224 · (
227

1274)
i ·

231

1274

)

+
2294

12740 ·2
10= 228.2

steps. The memory complexity is 229.91 words and the
keystream is of length 12 words for each IV.

If we restrict the known arbitrary difference∆d to
a word with three bytes equal to zero and only one non
zero byte, we can reduce our attack complexity con-
siderably. We then have only one pair(∆R−1

2 ,∆R0
2)

of difference left, as in the attack on 12 rounds ex-
plained in Section 4.1. In this way, we will have the
same time complexity 210.1 and the memory require-
ment is small. The keystream will be of 12 words for
each IV.

4.3 Reduced Initialization of 14 Rounds

Nearly all the differences in the LFSR are known, the
only unknown difference is∆R−2

2 , which was fed back
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into the LFSR, the remaining differences are either 0
or the known∆d. We guess the individual valueR−3

1,a

for the first pair(K, IVa) with complexity of 232. From
the valueR−3

1,a, we get with∆R−3
1 = ∆d the valueR1−3

b
for the second pair(K, IVb). Furthermore we obtain
R−2

2,a,R
−2
2,b,R

−1
3,a,R

−1
3,b. We denote the known difference

∆R−2
2 with ∆k0, the linear dependent∆R−1

1 with ∆k1

and∆R−1
3 with ∆k2. This gives the following differ-

ences for the FSM.
round clock t ∆R1 ∆R2 ∆R3

11 −3 ∆d 0 0
12 −2 ∆d ∆k0 0
13 −1 ∆k1 ? ∆k2
14 0 ? ?

From
∆z0 = ∆s0

15⊕∆R0
1⊕∆R0

2⊕∆s0
0 ,

we insert the update equations for∆R0
1 and∆R0

2 and
receive

∆z0 = ∆s0
15⊕

out

∆ S1(∆d)⊕∆k2⊕∆s−1
5

⊕
out

∆ S1(∆k1)⊕∆s0
0 ,

which gives
out

∆ S1(∆d)⊕
out

∆ S1(∆k1)

= ∆z0⊕∆s0
15⊕∆k2⊕∆s−1

5 ⊕∆s0
0 .

We denote the known right part by∆k3, multiply the
equation withMC−1

1 and rewrite it in byte notation as












out
∆ SR(∆d0)
out
∆ SR(∆d1)
out
∆ SR(∆d2)
out
∆ SR(∆d3)













⊕













out
∆ SR(∆k0

1)
out
∆ SR(∆k1

1)
out
∆ SR(∆k2

1)
out
∆ SR(∆k3

1)













= MC−1
1









∆k0
3

∆k1
3

∆k2
3

∆k3
3









.

Then we check this equation line by line for each
byte in 4· 27 = 29 steps. The number of solutions
will be 228·228

232 = 224 pairs of (∆R−1
2 ,∆R0

2). Again,
we switch from the differences of the FSM words to
the individual values of them by using the input and
output difference ofS1: ∆R−2

1 → S1 → ∆R−1
2 . Since

we start with 224 sequences, we have completely the
same procedure as in the attack on 13 rounds of ini-
tialization and thus the same complexities. The over-
all time complexity is the same as that in 12 rounds of
initialization for each guess ofR1−3

1 , which gives

232·

[

29+
9

∑
i=0

(

224·(
227

1274)
i ·

231

1274

)

+
2294

12740 ·2
10

]

=260.2.

The memory requirement is 229.91 words and the
keystream is of length 12 words for each IV.

If we restrict the known difference∆d to only one
byte in IV0, we can reduce our attack complexity to
242.7 with similar procedures as above. The corre-
sponding memory complexity is 29 words and the
keystream is of 12 words for each IV.

4.4 Reduced Initialization of 15 Rounds
and 16 Rounds

Nearly all the differences in the LFSR are known,
only two unknown differences∆R−3

2 and∆R−2
2 were

fed back into the LFSR, the remaining differences are
either 0 or the known∆d. We guess the individual
values ofR−4

1,a andR−3
1,a for the first pair(K, IVa) with

complexity of 264. From the valueR−4
1,a and∆R−4

1 =

∆d, we get the values ofR−4
1,b, R−3

2,a,R
−3
2,b, R−2

3,a,R
−2
3,b. De-

note the known difference∆R−3
2 by ∆k0, ∆R−2

1 by ∆k1

and∆R−2
3 by ∆k2. FromR−3

1,a and∆R−3
1 = ∆d, we get

the values ofR−3
1,b,R

−2
2,a,R

−2
2,b,R

−1
3,a,R

−1
3,b. Again, we de-

note the now known difference∆R−2
2 by ∆k3, ∆R−1

1
by ∆k4 and∆R−1

3 by ∆k5. This gives the following
differences for the FSM.

round clock t ∆R1 ∆R2 ∆R3

11 −4 ∆d 0 0
12 −3 ∆d ∆k0 0
13 −2 ∆k1 ∆k3 ∆k2
14 −1 ∆k4 ? ∆k5
15 0 ? ?

We have now the same starting point as that of the
attack on 14 initialization rounds. We proceed in the
way as explained there. Since we guessed one more
word in the beginning of the attack, the time complex-
ity becomes

232 ·260.2 = 292.2 .

The memory complexity remains 229.91 words and the
keystream is of length 12 words for each IV.

In the 16 rounds case, we guess one more word
and then proceed as that of the attack on 15 rounds.
The time complexity is

232 ·292.2 = 2124.2

and the memory complexity remains 229.91 words and
the keystream is of length 12 words for each IV.

The summary of our results is given in Table 1.

5 CONCLUSIONS

In this paper, we have shownknown IV and chosen
IV resynchronization attacks on SNOW 3G⊕. We can
attack arbitrary many key/IV setup rounds of SNOW
3G⊕ if there is no feedback from FSM to LFSR. With
such feedback, we show key recovery attacks up to
16 rounds of initialization by using a few keystream
words. Our results indicate that about half of the ini-
tialization rounds of SNOW 3G⊕ might succumb to
chosen IV resynchronization attacks. The remaining
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Table 1: The summary of our results on SNOW 3G⊕.

attack data time memory

SNOW 3G⊕ 233 257.1 225

without feedback

SNOW 3G⊕

with feedback
12 rounds 24 210.1 small

13 rounds with 1 24 210.1 small
byte difference∆d

14 rounds with 1 24 242.7 29

byte difference∆d

15 rounds 24 292.2 229.91

16 rounds 24 2124.2 229.91

security margin however is quite significant and thus
these attacks pose no threat to the security of SNOW
3G itself.
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APPENDIX

We want to simplify the equation
out

∆ S2(∆k1)⊕
out

∆ S1(∆k2) = ∆k4 .

The main difficulty is thatS1 and S2 use the same
Mix-Column matrix but over two different fields

GF(28). At first we rewrite this equation in the byte
notation as

MC2 ·













out
∆ SQ(∆k0

1)
out
∆ SQ(∆k1

1)
out
∆ SQ(∆k2

1)
out
∆ SQ(∆k3

1)













⊕ MC1 ·













out
∆ SR(∆k0

2)
out
∆ SR(∆k1

2)
out
∆ SR(∆k2

2)
out
∆ SR(∆k3

2)













=









∆k0
4

∆k1
4

∆k2
4

∆k3
4









.

Then multiplying this equation with the inverse ma-
trix MC−1

1 , we get

MC−1
1 ·













MC2 ·













out
∆ SQ(∆k0

1)
out
∆ SQ(∆k1

1)
out
∆ SQ(∆k2

1)
out
∆ SQ(∆k3

1)

























⊕













out
∆ SR(∆k0

2)
out
∆ SR(∆k1

2)
out
∆ SR(∆k2

2)
out
∆ SR(∆k3

2)













= MC−1
1 ·









∆k0
4

∆k1
4

∆k2
4

∆k3
4









.

If we expand the matrix multiplications and have a
look at the byte vectors, it shows that the first entry of

the first vector contains the byte
out

∆ SQ(∆k0
1) and a byte

polynomial containing only the most significant bits

of all four
out

∆ SQ values. We denote this polynomial
with pmsb

0 . The other three rows have similar struc-
tures, but with different polynomialspmsb

i (i= 1,2,3).
Therefore we can rewrite the equation to













out
∆ SR(∆k0

2)
out
∆ SR(∆k1

2)
out
∆ SR(∆k2

2)
out
∆ SR(∆k3

2)













=













out
∆ SQ(∆k0

1)
out
∆ SQ(∆k1

1)
out
∆ SQ(∆k2

1)
out
∆ SQ(∆k3

1)













⊕









pmsb
0

pmsb
1

pmsb
2

pmsb
3









⊕ MC−1
1 ·









∆k0
4

∆k1
4

∆k2
4

∆k3
4









.

We denote bym0 the most significant bit of the

value
out

∆ SQ(∆k0
1) and withm1 the most significant bit

of the value
out

∆ SQ(∆k1
1) as well asm2 for

out

∆ SQ(∆k2
1)

andm3 for
out

∆ SQ(∆k3
1). Then the polynomialspmsb

i
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i = 0, . . . ,3 are

pmsb
0 =(m1⊕m3)x

7+(m0⊕m1)x
6+(m2⊕m3)x

5

+(m1⊕m2)x
4+(m0⊕m2)x

2+(m1⊕m2)x

+(m0⊕m1⊕m2⊕m3)

pmsb
1 =(m0⊕m2)x

7+(m1⊕m2)x
6+(m0⊕m3)x

5

+(m2⊕m3)x
4+(m1⊕m3)x

2+(m2⊕m3)x

+(m0⊕m1⊕m2⊕m3)

pmsb
2 =(m1⊕m3)x

7+(m2⊕m3)x
6+(m0⊕m1)x

5

+(m0⊕m3)x
4+(m0⊕m2)x

2+(m0⊕m3)x

+(m0⊕m1⊕m2⊕m3)

pmsb
3 =(m0⊕m2)x

7+(m0⊕m3)x
6+(m1⊕m2)x

5

+(m0⊕m1)x
4+(m1⊕m3)x

2+(m0⊕m1)x

+(m0⊕m1⊕m2⊕m3)
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