
MODEL-DRIVEN APPROACHES FOR SERVICE-BASED
APPLICATIONS DEVELOPMENT

Selo Sulistyo and Andreas Prinz
Faculty of Engineering and Science, University of Agder, Grooseveien 36, N-4876 Grimstad, Norway

Keywords: Model-driven, Development, Service-based Applications.

Abstract: Service-based systems are considered as an architectural approach for managing software complexity and
their development. With this, a software application is built by defining a set of interactions of autonomous,
compound, and loosely-coupled software units called services. Another way of managing software
complexity is using model-driven approaches. With this, the development of software applications is started
from model levels and thereby, code for implementing the software application is generated automatically.
This paper presents AMG (abstract, model and generate), a combination of the two approaches.

1 INTRODUCTION

Information technology is spreading more and more
into all areas of daily life, leading to an ever
increasing amount of information and applications
of a very high complexity. Already in 1968,
(McIlroy 1968) has proposed the use of software
components (units) instead of coding manually from
scratch to build software systems (and applications).
Based on this, several component models were
introduced (i.e. modules, objects, components, and
the last component models called services).

With software components, the development of
complex software systems (and applications) is done
in two phases. First, component developers develop
components and second, application integrators
compose them as new software applications. Here,
the software composition is a way of the
development of component-based software systems.

Another way of managing complexity of
software systems is using models at different
abstraction levels. With the idea, the development of
software systems is done in an abstract manner on
the problem spaces without taking much attention on
the implementation details. In particular, OMG puts
forward their idea of a model-driven architecture
(MDA) (Kleppe, Warmer, and Bast 2003), which
focuses on the software development using high-
level models. With MDA, a complex software
system is specified by models thereby code for
implementing the solution can be generated
automatically.

This paper presents AMG (abstract, model,
generate), a model-driven method for developing
service-based applications (SBA). With this, an SBA
is built by defining sets of services interactions at
model levels, then code for implementation is
generated automatically. Note that we use the terms
software system and application interchangeable.

The remainder of the paper is organized as
follows: Section 2 gives a background for the paper.
Then in Section 3, 4, 5, and 6 we present the AMG
method, a case study, related work, and conclusion
respectively.

2 MANAGING SOFTWARE
COMPLEXITY

2.1 Software Component Approaches

With regard to the software component introduced
by (McIlroy 1968), we consider that a service, which
is a kind of an autonomous software unit, is the
newest software component model that has evolved
from the older component models (i.e. modular,
object, and component models). They were
developed for the purpose of managing software
complexity and their development. In modular
systems, for example, the development of a software
system is split into small and independent modules
that are developed and tested separately, that latter
will be composed. Fort this, export/import is used.

Modular component models were considered
inflexibility. To solve this, object-based systems

288
Sulistyo S. and Prinz A. (2010).
MODEL-DRIVEN APPROACHES FOR SERVICE-BASED APPLICATIONS DEVELOPMENT.
In Proceedings of the 5th International Conference on Software and Data Technologies, pages 288-291
DOI: 10.5220/0002926402880291
Copyright c© SciTePress

were introduced (Dahl, Myhrhaug, and Nygaard
1968). Software component models in object-
oriented systems might either classes or objects. An
object has a delegation function, inheritance, and
aggregation that are considered as a way to compose
objects to create new software systems.

The complexity of software systems is growing
over time and since the modular and object-based
systems were considered not to be able to manage
the complexity, component-based systems were
introduced. The basic idea is to completely isolate
the implementation and to provide ready-to-use
components. Among the most well known
component models are OMG’s CORBA, Sun’s
JavaBeans and Enterprise JavaBeans, Microsoft’s
DCOM and .NET.

Modules, objects, and components do not
consider the architecture of the new created software
systems. For this, service-based systems were
introduced. A new application is built by defining
set of interaction of loosely-coupled and
autonomous software components called services. In
general, service-based systems are well-known as a
service-oriented computing (SOC) which promotes
the service-oriented architecture (SOA) (Erl 2005)
as an architectural technology.

The development of service-based systems is, in
some ways, different from others older concepts
(modular-based, object-based, and component-based
concepts). The main difference from those older
concepts is ownership and control. A service-based
system does not have any control to the involved
services. They can only use them by service
invocations.

For the invocations, service description is used.
Examples of XML-based service descriptions are
services that are described using WSDL (Newcomer
2002), DPWS (OASIS 2009) and UPnP (Jeronimo
and Weast 2003).

2.2 Model-driven Approaches

New ways of complexity handling take higher levels
of abstraction and describe systems using models. In
particular, OMG puts forward their idea of a model-
driven architecture, which focuses on software
development by means of high-level models. Using
MDA implies creation of models of the following
kinds: the computational independent model (CIM)
the platform independent model (PIM) and the
platform-specific model (PSM). The models (PIM,
PSM) represent the structural and behavioral parts of
a software system. From the models, code

conforming to a specific programming language is
generated automatically.

A model is an abstract presentation of a system
which describes the structure and the behavior of the
system. The structure specifies what the instances of
the model are; it identifies the meaningful
“components” of the model construct and relates
them to each other. The behavioral model
emphasizes the dynamic behavior of a system,
which can essentially be expressed in three different
types of behavioral models; interaction, activity
diagrams, and state machine diagrams.

Expressing a software system by models requires
a modeling language. The models itself might come
in different abstraction levels. Here, the lower the
abstraction level, the more information a model has.
For these different abstraction levels, it might need
to have different languages. For example, BPMN
and BPEL (Allweyer 2009) is considered as a
modeling language for the highest abstraction level
(business models), which in MDA would be CIM.

However in software development, the main goal
is always a running system. To achieve this, two
alternatives exist. The first alternative is by
developing an interpreter (or a virtual machine) that
executes directly the models or the second
alternative, by transforming the models into code
conforming to existing programming languages
using code generators.

3 THE AMG METHOD

AMG stands for abstract, model and generate. For
the development of service-based system, defining
service interactions by models is only possible if the
service models are in place. For this, service
abstraction is an important step. This mean also that
service can be concrete or/and abstract.

 Abstract Mode Generate

Figure 1: The AMG method.

MODEL-DRIVEN APPROACHES FOR SERVICE-BASED APPLICATIONS DEVELOPMENT

289

3.1 Abstraction of Existing Services

See Figure 1. The abstraction process might be a
kind of re-engineering, reverse engineering, or
presentation processes. In the context of Web
services, WSDL2Java from Axis (Goodwill 2004) is
used to re-engineers service described with WSDL
into Java classes. These classes are used as a proxy
for the service invocations to real services in the
service providers. With model driven approaches,
these classes should be presented graphically, for
example a UML class.

In this paper we do not use UML as modeling
language instead of using Arctis (Kræmer 2007).
With Arctis, a service is presented as a building
block. For this, we have developed an abstractor to
present services descriptions into Arctis building
blocks. At the moment, the abstractor is able to read
services with are described in UPnP and WSDL. The
abstractor uses existing service frameworks,
Cyberlink for Java for UPnP (Ouyang et al., 2007)
and Axis (WSDL2Java) (Goodwill 2004) for the
WSDL.

3.2 Modeling

We model an SBA as a building block diagram.
Figure 2 shows a conceptual of a building block-
based SBA.

EventOutputEventInput

Action

Act ionResult

1

1

1

1

Port
Activity

External Behavior Internal Behavior

Interaction Building Block
0..*0..*

11 1..*1..*

Code
1..*

1

1..*

1

Service-based Application

0..*0..*

1..*1..*

1..*

1

1..*

1

Init

Figure 2: A conceptual model of SBA.

An SBA might include two or more building
blocks that are connected using activity elements
such as, relations, decisions, forks, and joins trough
ports. A building block represents a service that can
be considered as an encapsulation of activities
(internal behavior). They execute functionalities.
Ports are used to access this internal behavior.

3.3 Code Generation

The code generation process in AMG is depicted in
Figure 3. In our prototype, one Java class will be

generated for one SBA model (a system). The Java
code for an SBA model is generated based on the
models, templates, and proxy classes.

Code
Generator

Arctis
Model

*.java

Arctis
modeling

Editor Service
Abstractor

*.java

Building
blocks

Template

Building
block, *.java
and reference

Figure 3: The code generation concept.

Different code generators can be used for
different target languages. This can simply be done
by applying a new template for each code generator.
In our prototype we have developed template for
J2SE code.

4 A CASE STUDY

To illustrate the AMG method we develop an SBA
in a smart home environment where a residential
gateway is controlling and managing home devices
(and services) that running independently. Among of
them are a UPnP SunSPOT service, UPnP light
services and a sendEmail Web service. We want to
provide an application and install it on the
residential gateway that enables sending a message
(email) and at the same time, switch on the light
when the SunSPOT senses the home temperature is
greater than 50 degree.

The first step of the development is abstraction
of existing services into building blocks and
implementation classes. Since we use UPnP and
WSDL, the process is only a kind of presentation
process, instead of abstraction. Each of building
blocks has a reference to its own implementation
class.

Figure 4: A model of the new SBA.

After all services are abstracted, then the models
of the new SBA can be modeled. Figure 4 shows a
model of the new software application as specified
in the scenario. The model has include three building

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

290

blocks, a building block presenting the UPnP light
service, a building block presenting the send email
Web service and a building block presenting the
UPnP temperature sensor (on SunSpot).

The behavior of the composite service is
described using activity diagram. We consider that a
building block is an entity that executes
functionalities. Therefore, a model of collaboration
of these entities using activity diagram is executable.
The problem is how to formalize the activity
diagrams as they are not formal enough. We will
work on this in future work.

5 RELATED WORKS

Service composition is the only way for the
development of SBA. SBA should able to include
different service description technologies as a
consequence of different ways of implementing
service-based systems. Unfortunately, only a few
method supports for non-Web Services technology,
while there exists other service technologies that are
potential to be included in the development SBA.

In Web service contexts, different techniques
and composition languages exist. For examples,
WS-BPEL (Ouyang et al. 2007) is considered as a
composition language that can be used to compose
Web services. However, BPEL is not a model-based
language and for the execution, there is a need to
develop/implement BPEL engines.

SOAML (OMG 2009) is also a language that can
be considered as for services composition. However,
SOAML is an UML profile and it is still a problem
to automate the code generation from UML models.

The AMG abstract (or represent) existing
services and present them graphically. The services
are not limited for only Web services, but also other
services (e.g. OSGi and UPnP services). AMG
abstracts (or presents) existing services as building
blocks, then based on the building block service
integrators can specify building block interactions to
define a new SBA. Since each building block refers
to implementation class, code can be generated
automatically.

6 CONCLUSIONS
We have proposed and demonstrated the AMG
(abstract, model, and generate), a model-driven
method for developing service-based applications.
The prototyped AMG-abstractor abstracts existing
services and presents them as building blocks. With
these building blocks, a model of service-based
software is created. At the end, code generators are
used to generate code from the models. The AMG

generates code fully automated, since each building
block refers to its implementation class.

ACKNOWLEDGEMENTS

This work has been supported by The Research
Council of Norway in the ISIS project.

REFERENCES
Allweyer, Thomas. 2009. BPMN - Business Process

Modeling Notation. BoD, February. http://
www.amazon.ca/exe℅bidos/redirect?tag=citeulike09-
20&path=ASIN/3837070042.

Dahl, Ole-Johan, BJørn Myhrhaug, and Kristen Nygaard.
1968. Some features of the SIMULA 67 language. In
Proceedings of the second conference on Applications
of simulations, 29–31. New York, New York, United
States: Winter Simulation Conference. http://portal.
acm.org/citation.cfm?id=805258.

Erl, Thomas. 2005. Service-Oriented Architecture (SOA):
Concepts, Technology, and Design. Prentice Hall
PTR, August.

Goodwill, James. 2004. Apache Axis Live: A Web
Services Tutorial. Sourcebeat, December.

Jeronimo, Michael, and Jack Weast. 2003. UPnP Design
by Example: A Software Developer's Guide to
Universal Plug and Play. Intel Press, May.

Kleppe, Anneke G., Jos B. Warmer, and Wim Bast. 2003.
MDA explained. Addison-Wesley, May.

Kraemer, Frank Alexander. 2007. Arctis and Ramses:
Tool Suites for Rapid Service Engineering. In
Proceedings of NIK 2007 (Norsk
informatikkonferanse), Oslo, Norway. Oslo: Tapir
Akademisk Forlag.

McIlroy, D. 1968. Mass-Produced Software Components.
In Proceedings of the 1st International Conference on
Software Engineering, 98, 88.

Newcomer, Eric. 2002. Understanding Web Services:
XML, WSDL, SOAP, and UDDI. 7th ed. Addison-
Wesley Professional, May. http://www.informit.
com/store/product.aspx?isbn=9780201750812.

OASIS. 2009. Devices Profile for Web Services 1.1.
OASIS. http://specs.xmlsoap.org/ws/2006/02/devprof/.

OMG. 2009. Service oriented architecture Modeling
Language (SoaML): Specification for the UML Profile
and Metamodel for Services (UPMS). Object
Management Group.

Ouyang, Chun, Eric Verbeek, Wil M. P van der Aalst,
Stephan Breutel, Marlon Dumas, and Arthur H. M ter
Hofstede. 2007. Formal semantics and analysis of
control flow in WS-BPEL. Science of Computer
Programming 67, no. 2-3: 162–198. doi: http://dx.doi.
org/10.1016/j.scico.2007.03.02.

MODEL-DRIVEN APPROACHES FOR SERVICE-BASED APPLICATIONS DEVELOPMENT

291

