A PLEA FOR PLUGGABLE
PROGRAMMING LANGUAGE FEATURES

Bernhard G. Humm
Darmstadt University of Applied Sciences, Darmstadt, Germany

Ralf S. Engelschall

Capgemini sd&m Research, Munich, Germany

Keywords:

Abstract:

Programming Language Features, Aspects, Flexibility, Evolutionary Prototyping, Plug-in.

Current programming languages are inflexible regarding their use of language features like typing, access

control, contracts, etc. In some languages, the programmer is forced to use them, in others he may not.
This article pleads for pluggable programming language features, a concept that allows greater flexibility for
application programmers without losing control over the use of those features.

1 INTRODUCTION

Flexibility is one of the most basic and important
design goals in software engineering (Ghezzi et al.,
2002) (Sommerville, 2004). Flexibility allows for
adaptation of applications to different and possibly
varying needs. This not only applies to the resulting
application, but also to the tools for creating them.

However, when analyzing current programming
languages and their features concerning their flexibil-
ity of use, the result is rather disappointing. Consider
just the following two examples.

e Current mainstream programming languages like
C/C++, Java, and C# are all statically typed. Static
typing is mandatory there and the programmer
has no flexibility as to omit type specifications
where sensible. Contrarily, dynamic languages
like Smalltalk, Scheme, Python and PHP are all
dynamically typed and the programmer has no op-
tion whatsoever to explicitly specify type declara-
tions statically where sensible.

e Access control in Java is mandatory. For all
classes, interfaces and members, accessibility
must be declared (public, protected, private or
package local as default). The programmer has
no option of omitting access control specifications
where sensible. On the other hand, declaring ac-
cess control for packages is not possible at all in
Java. Also, in dynamic languages like Smalltalk,

G. Humm B. and S. Engelschall R. (2010).
A PLEA FOR PLUGGABLE PROGRAMMING LANGUAGE FEATURES.

explicit access control on class and method level
is not possible. The programmer has no option of
specifying access control where sensible.

This inflexibility causes a number of problems:

Coding Overhead: In many industrial software
projects, the implementation technology is pre-
defined, e.g., Java. Implementing application
parts like scripts, code generators, or data migra-
tion routines — for which scripting languages are
most suitable — in Java result in unnecessary cod-
ing overhead due to mandatory language features,
whose use is not necessary in this context.

Poor Quality: Contrarily, implementing critical ap-
plication parts in a dynamic language like
Smalltalk may reduce quality — in this case
safety — due to missing compile-time checks
(Meijer and Drayton, 2005).

One might argue that in such a case, the language
choice is simply wrong and an industrial strength
language like Java should have been used. This
leads us to the next problem.

Incremental Development Impeded: In many
project situations it is sensible to develop soft-
ware incrementally (Martin, 2002), e.g., with
evolutionary prototyping (Floyd, 1984; Berger
et al., 2004; Gordon and Bieman, 1993; Hekmat-
pour, 1987). This means that an application or
a part of it is quickly prototyped first and then,

In Proceedings of the Fifth International Conference on Evaluation of Novel Approaches to Software Engineering, pages 5-11

DOI: 10.5220/0002925600050011
Copyright © SciTePress

ENASE 2010 - International Conference on Evaluation of Novel Approaches to Software Engineering

incrementally, the code quality is enhanced. If the
target application is critical and an industry-scale
language like Java is chosen, then quick prototyp-
ing is impeded due to many mandatory language
features.

The overall picture today is that programming lan-
guages define a fixed set of features that are to be
used. The programmer has no flexibility as to use
less strict features where acceptable or even to specify
more advanced features, e.g., access control on pack-
age level in Java, where necessary.

To alleviate those problems, we plead for a con-
cept that we call “pluggable programming language
features” and argue from the application program-
mer’s point of view, i.e., from the view of the user
of a programming language. In Sect. 2 we present the
concept. Sect. 3 and 4 present a sample application
and a research prototype of the concept. Sect. 5 dis-
cusses the results. Sect. 6 concludes this article.

2 PLUGGABLE PROGRAMMING
LANGUAGE FEATURES

Before introducing the concept of pluggable program-
ming language features, we need to distinguish two
kinds of programming language features.

Core programming language features are essen-
tial for implementing applications at all. Examples
are objects, classes, operations, variables, and control
constructs like loops.

Additional programming language features spec-
ify aspects of core language features. Examples are
access control for classes, type declaration of vari-
ables, and pre- and postconditions of operations. Ad-
ditional language features are not essential in the
sense that it is possible to implement applications
without using additional programming language fea-
tures.

Only additional programming language features
may be pluggable. For a programming language to
adhere to the concept of pluggable programming lan-
guage features we postulate the following require-
ments.

Optional Language Features: The language must
allow for implementing applications without us-
ing any additional programming language fea-
tures at all. In particular, static typing must not
be mandatory.

Independent Language Features: The language
must allow for specifying additional program-
ming language features independently and to
check for their conformance at an adequate point

in time. In particular, static type checking must
be possible.

Extensible Language Features: The programming
language must be extensible to allow for the im-
plementation of new additional language features.

Language Feature Configuration: The program-
ming language must allow for configuring the use
of additional language features in an application
or parts of them. The use may be enabled manda-
tory or optionally, or disabled. Enabled language
features will be checked, e.g., by the compiler.

In total, the concept allows for plugging in additional
language features, either pre-defined ones or new
ones. Arbitrary use of language features is avoided
via language feature configuration.

We see two major use cases for pluggable pro-
gramming language features.

Customizing Features according to Requirements:
Pluggable programming language features allows
system architects to customize a programming
language with respect to the quality requirements
of an application to be developed. Depending
on the criticality, more language features may be
plugged in — even additional ones that have not
been pre-defined in the programming language.
The configuration enforces the use of those
language features by the programmers.

Customizing Features per Development Stage:
Pluggable programming language features allows
for efficient incremental software development,
particularly with evolutionary prototyping. In an
early stage of development, additional language
features may be omitted completely by program-
mers. This allows for rapid prototyping. Such a
rapid prototype may be used to get user feedback
quickly, as well as checking for architectural
integrity of the application. Gradually, the code
quality of the application may be enhanced
by plugging in additional language features.
Language feature configuration gives control
over this process. For different stages in the
development process, e.g., “Proof of Concept”,
“Alpha Release”, “Beta Release”, and “Final
Product”, specific language features may be
enforced.

We now demonstrate the concept via a research proto-
type and its use via a sample application that focuses
on the second use case.

A PLEA FOR PLUGGABLE PROGRAMMING LANGUAGE FEATURES

3 EXAMPLE DOMAIN:
CUSTOMER MANAGEMENT
COMPONENT INTERFACES

3.1 Customer Management

We demonstrate pluggable programming language
features exemplary via interfaces for a customer man-
agement component of a business information sys-
tem.

Our example is the create-customer operation
with parameters name, address, and date-of-birth
for adding a new customer object to a customer man-
agement data store. The example seems trivial but
may be quite complex in practice. For instance,
address may be checked for validity syntactically as
well as semantically via city map data.

3.2 Interface Specification Aspects

An interface is specified by a name and its operations.
An operation’s signature is minimally specified by its
name and the parameter names. Additionally, the fol-
lowing aspects may be specified:

e Access control, e.g., public, private
e Parameter mode: input, output, input/output

e Parameter obligation: mandatory, optional (e.g.,
expressed by null values)

e Parameter types, e.g., primitive types like
Integer and complex types like Customer

e Type restrictions, e.g., only positive Integer val-
ues for a bank transfer. Note: Type restric-
tions may be implemented as separate types, e.g.,
Positive-Integer

e Pre- and postconditions: constraints before and
after operation execution, respectively — e.g.,
date-of-birth < now. Note: parameter modes,
obligations, types and type restrictions may all be
specified as pre- and postconditions

e Exceptions: specification of exceptional situa-
tions that are externally visible, e.g., duplicate
customer

o Side effects, e.g., read-only, modifying

Semantics documentation: specification of the op-

eration’s behavior and documentation of its pa-

rameters, usually informally in prose. Note: pre-
and postconditions are part of the semantic speci-
fication, too

e Non-functional characteristics: specifying (for-
mally or informally) performance and other non-
functional characteristics

2 2 5|z
@ Sla|l®8 =|s=
. . . o o 2| =[(g|lws. 8|82
c o] 9] 3 5|@o 5 <] T|IO|lo8CE|TCT
Salealz, |22l |2(2] 3| 5|E|2Cl|Esg
= 1) g =38 ol w =]
ge ECIE8|ES|E58|5|8| e8| E%: £ g
s=lSglglelaale @l Sglgs
2E|55|58|8%5 s S|l2|x[5e|LS|2|oc3o|ss
Quality Level OZlaz|aZ3|allaF|5S|d|Fad|jaa|b|lwad|Z20
Proof of Concept_|x X
Alpha Release X X X X X
Beta Release X X X x X X X
Final Product X X X X X X |x X

Figure 1: Language Feature Configuration.

Generally speaking, for a production-grade business
information system, the more complete the interface
specification, i.e., the more intrinsic information is
specified explicitly, the better.

3.3 Language Feature Configuration

For instance, consider the development stages “Proof
of Concept”, “Alpha Release”, “Beta Release”, and
“Final Product”. Then, language features may be as-
signed to the development stages as shown in Fig. 1.

In the following section, we describe language
features for specifying some of the interface specifi-
cation aspects exemplary.

4 LANGUAGE FEATURES FOR
INTERFACE SPECIFICATION

4.1 Research Prototype in Lisp

We have chosen Lisp! (McCarthy, 1960) as the im-
plementation language for our research prototype to
demonstrate pluggable programming language fea-
tures. Lisp is dynamically typed but contains a pow-
erful type system as well as a built-in macro processor
for implementing new language features.

We have implemented a custom macro
define-function that extends the basic built-
in defun macro for defining an operation.
define-function is a real extension of defun
in the sense that it accepts all declarations of defun
but, additionally, optional aspects.

In the next sections, we show some of the lan-
guage features exemplary step by step by means of
the example create-customer, thereby incremen-
tally enhancing code quality by the use of pluggable
language features.

4.2 Operation and Parameter Naming

In the simplest form (development stage “Proof of
Concept”), the name of an operation and its param-

'More specifically: Allegro Common Lisp, a profes-
sional implementation of the ANSI Common Lisp standard

ENASE 2010 - International Conference on Evaluation of Novel Approaches to Software Engineering

eter names are specified only.

(define-function create—customer
(name address date-of-birth))

This expression declares the operation
create-customer with input parameters name,
address, and date-of-birth. No additional
language features need to be specified at this stage.

4.3 Parameter Typing

The type of an input parameter (necessary for devel-
opment stage “Alpha Release”) is specified via the
keyword :type in a list per parameter. The type of
the operation result (out parameter) is specified via
the keyword : result-type in an options list follow-
ing the parameter list.

(define-function create-customer

((name :type Structured-Name)
(address :type Structured-Address)
(date-of-birth :type Date))
(:result-type Customer))

The parameter name is of type St ructured-Name, the
parameter address of type Structured-Address,
etc.

4.4 Pre- and Postconditions

Pre- and postconditions (necessary for development
stages “Beta Release” and “Final Product”) are spec-
ified via the keywords :pre and :post in the options
list, followed by a Lisp boolean expression that can
be evaluated at run-time.

(define-function create-customer

((name :type Structured-Name)
(address :type Structured-Address)
(date-of-birth :type Date))

(:result-type Customer
:pre (is-valid? address)
:pre (lies-in-past?
date-of-birth)
:pre "No duplicate of
previously created
customer"

:post (get-id result)))

The first precondition is satisfied if the operation
is-valid? with the actual parameter address eval-
uates to true (non-nil). This checks for valid ad-
dresses. lies-in-past? checks whether the birth
date is plausible. The third pre-condition regarding
duplicate checking is treated as an informal com-
ment. The postcondition specifies that the resulting
Customer object contains a non-nil identifier.

4.5 Documentation of Semantics

To document the semantics of the operation and
the input and output parameters, the keywords

:documentation and :result-documentation are
used in the options list and the parameters lists.

(define-function create-customer

((name :type Structured-Name
:documentation "Customer
name consists of ...")
(address :type Structured-Address

:documentation "Postal
address consists of ...")
(date-of-birth :type Date
:documentation "Customer
birth date"))
Customer
:result—-documentation
"New Customer object"

(:result-type

:pre (is-valid? address)

ipre (lies-in-past? date-of-birth)

:pre "No duplicate of previously
created customer object"

:post (get-id result)

:documentation "Creates
a new Customer object"))

4.6 Additional Language Features

Analogously, we have implemented the follow-
ing additional language features: access control,
modes, obligations, exception specification, and non-
functional characteristics. None of those are natively
provided in the core language feature set of Lisp.
With our extensions, application programmers may
optionally and independently use all of those addi-
tional programming language features.

4.7 Conformance Checking

It is not enough to provide language features for spec-
ifying interface aspects — the specification confor-
mance has to be checked, too. Therefore, we have
implemented the macro define-function to gener-
ate conformance checks. Type specifications are, if
possible, checked at compile time. Pre- and post-
conditions are checked at runtime. All specification
aspects are compiled into the built-in function docu-
mentation of Lisp.

But checking the specified aspects is only one kind
of conformance check. The macro also checks the
conformance of the application code with the lan-
guage feature configuration during compilation. In
case of violations, warnings are being generated. For
example, static parameter type checking is enforced
from development stage “Beta Release” on as in any
statically typed language like Java.

Note: not all all conformance checks can be fully
automated. For example, a conformance checker can

A PLEA FOR PLUGGABLE PROGRAMMING LANGUAGE FEATURES

not decide whether or not there are meaningful pre-
conditions for an operation.

S DISCUSSION

5.1 Evaluation

This article is a plea for pluggable programming lan-
guage features. We cannot empirically prove the
usefulness of the approach. However, our confi-
dence stems from our long-time experience in devel-
oping large-scale business information systems and
the promising results of our research prototype and
sample implementation. Furthermore, we qualita-
tively justify our approach by evaluating it and the
sample implementation against the problems identi-
fied in Sect. 1.

Coding Overhead: Pluggable programming lan-
guage features allow to reduce coding overhead
by omitting unnecessary language features in
certain application contexts, like scripts, code
generators, or data migration routines. A lan-
guage switch towards a scripting language is not
necessary since the programming language itself
offers the necessary flexibility.

Poor Quality: Pluggable programming language
features allow critical applications to be imple-
mented in a strict manner thus improving code
quality. Not only language features common in
industrial-strength programming languages can
be used. Additionally, even more strict language
features may be plugged in. Examples are pre-
and postconditions or advanced access control
which extends towards packages and components.

Incremental Development Impeded: Pluggable
programming language features particularly boost
incremental application development, e.g., with
evolutionary prototyping. An application or a
part of it may be quickly prototyped first and
then, incrementally, the code quality may be en-
hanced. Language feature configuration prevents
arbitrary use of language features at the program-
mers’ goodwill. Certain quality levels at certain
development steps can be enforced.

5.2 Language Support Today

Current programming languages, both in industry and
academia, support pluggable programming language
features very poorly. Today, there is a strict demar-
cation of languages focusing either on rapid applica-

tion development (RAD) or on industry scale devel-
opment.

Industry Scale Languages, Statically Typed:
Languages like Java and C# are currently in
mainstream use for developing large-scale, high-
quality applications. They are all statically typed
and are not well suitable for rapid application
development (RAD). Some language features like
visibility (public, private) are, indeed, optional.
However, more advanced quality features like
pre- and postconditions are not directly pro-
vided and can only be indirectly injected at the
byte-code level.

RAD Supporting Languages, Dynamically Typed:
RAD supporting languages like Smalltalk, Perl,
Python, Ruby, Groovy, Scala and F#, conversely,
are currently not in mainstream use for devel-
oping industry-scale applications. They are
either used for throw-away prototyping or for
developing special-purpose applications like web
sites. Most of them are dynamically typed and do
not allow for static typing. Quality features may
be added as we have shown with Lisp macros in
this article but this is not commonly done.

Hybrid Typing Languages: A few languages like
VisualBasic, Perl 6 and Lisp (partially) exist that
allow for static as well as dynamic typing. They
also allow, in limited ways, for extending the lan-
guage by new quality features. Neither is in main-
stream use. However, with C# 4.0, now in beta re-
lease, the first mainstream programming language
will incorporate dynamic typing optionally — one
important step towards pluggable programming
language features.

5.3 Related Work

In their article “Static Typing Where Possible, Dy-
namic Typing When Needed: The End of the Cold
War Between Programming Languages” (Meijer and
Drayton, 2005), Meijer and Drayton plead for typ-
ing as a pluggable programming language feature.
Though typing is only one of many features of pro-
gramming languages, the difference between static
and dynamic typing are sometimes exaggerated as
“language war”. We fully agree with Meijer and
Drayton — language wars are not at all necessary.
We extend their point of view in three ways.
Firstly, we regard typing as one language feature only.
Although most important, it represents only one point
in a whole spectrum between flexible prototype devel-
opment and extremely strict development of critical
applications. Secondly, we allow for true plugging

ENASE 2010 - International Conference on Evaluation of Novel Approaches to Software Engineering

of programming language features in the sense that
new features may be added to the language. Finally,
we add the concept of language feature configuration
which gives control over the use of language features.

The comparison with Bracha’s article “Pluggable
Type Systems” (Bracha, 2004) is similar. His imple-
mentation of Strongtalk (Bracha and Griswold, 1993)
on the basis of Smalltalk is an example of a pluggable
language feature, namely typing.

With the Scala programming language (Odersky,
2004), Odersky targets at scalability and flexibility,
too. He tries to reduce the set of language features
as much as possible and, instead, provides features
in libraries. However, on the level of additional lan-
guage features like typing and access control, Scala
is still inflexible. Scala uses type inference to ease
the programmer from the burden of specifying types
unnecessarily often but is still statically typed at any
time.

Finally, we see a strong relationship be-
tween Aspect-Oriented Programming (AOP) (Kicza-
les et al., 1997) and pluggable programming language
features. While not inherently tied to it, AOP in
practice is used for implementing functionality for
the end-user like, e.g., logging. On the other hand,
pluggable programming language features target the
application programmer by addressing internal code
quality like maintainability, stability, reliability, etc.
Hence, our approach follows the tradition of AOP, but
with a different focus.

6 CONCLUSIONS AND FUTURE
WORK

In this article, we plead for pluggable programming
language features, a concept that adds flexibility to
programming languages. It allows for using or omit-
ting programming language features with full control
via programming feature configuration.

We demonstrated the concept via a research pro-
totype and a sample application in Lisp. While the
concept has obvious benefits, it is not well supported
by current programming languages. Furthermore, we
agree with Meijer and Drayton, who identify a “huge
cultural gap” between the communities of statically
and dynamically typed languages (Meijer and Dray-
ton, 2005).

However, we see a new trend towards dynamic
programming languages in the last decade that are im-
plemented on top of mainstream platforms. Exam-
ples are implementations of Python, Ruby, Groovy,
and Scala on the Java Platform or F# and C# 4.0 on
the .NET platform. Furthermore, there are a number

10

of Lisp implementations on the Java platform, e.g.,
ABCL, Clojure, Jatha, and CLForJava.

This may allow for pluggable language features to
eventually break through — for two reasons. Firstly,
the technical integration of languages of different
styles eases the implementation of pluggable lan-
guage features. Optional typing in C# 4.0 is a perfect
example for that. Secondly, a growing community
of programmers who are proficient in both language
styles will help closing the cultural gap. Addition-
ally, if mainstream languages already had real support
for pluggable programming language features, the ne-
cessity for numerous special languages would be re-
duced.

Our plea for pluggable programming language
features is from the application programmers’ point
of view. We see future work in the following ar-
eas. Pluggable programming language features need
to be implemented in programming languages on top
of mainstream platforms. Integrated development en-
vironments need to support pluggable programming
language features, particularly their configuration.
Experience needs to be gained in industrial projects
of different sizes. Finally, a development method-
ology that best utilizes pluggable programming lan-
guage features needs to be developed.

REFERENCES

Berger, H., Beynon-Davies, P., and Cleary, P. (2004). The
Utility of a Rapid Application Development (RAD)
approach for a large complex Information Systems
Development. In Proceedings of the 13th European
Conference on Information Systems (ECIS 2004),
Turku, Finland.

Bracha, G. (2004). Pluggable type systems. In OOPSLA
Workshop on Revival of Dynamic Languages, 2004.

Bracha, G. and Griswold, D. (1993). Strongtalk: Type-
checking Smalltalk in a production environment. In
Proc. of the ACM Conf. on Object-Oriented Program-
ming, Systems, Languages and Applications (OOP-
SLA’93).

Floyd, C. (1984). A systematic look at prototyping. Ap-
proaches to Prototyping, pages 1-18.

Ghezzi, C., Jazayeri, M., and Mandrioli, D. (2002). Funda-
mentals of Software Engineering. Prentice Hall PTR,
Upper Saddle River, NJ, USA.

Gordon, V. S. and Bieman, J. M. (1993). Reported Effects
of Rapid Prototyping on Industrial Software Quality.

Hekmatpour, S. (1987). Experience with evolutionary pro-
totyping in a large software project. SIGSOFT Softw.
Eng. Notes, 12(1):38-41.

Kiczales, G., Lamping, J., Mendhekar, Videira Lopes,
C., Loingtier, J.-M., and Irwin, J. (1997). Aspect-
Oriented Programming. In Proceedings of the Eu-

A PLEA FOR PLUGGABLE PROGRAMMING LANGUAGE FEATURES

ropean Conference on Object-Oriented Programming
(ECOOP’97). Springer-Verlag LNCS 1241.

Martin, R. C. (2002). Agile Software Development, Princi-
ples, Patterns, and Practices. Prentice Hall.
McCarthy, J. (1960). Recursive Functions of Symbolic Ex-

pressions and Their Computation by Machine, Part I.
Communications of the ACM, 3(4):184-195.

Meijer, E. and Drayton, P. (2005). Static Typing Where Pos-
sible, Dynamic Typing When Needed. In Workshop on
Revival of Dynamic Languages.

Odersky, M. (2004). An Overview of the Scala Program-
ming Language: EPFL Technical Report IC/2004/64.

Sommerville, 1. (2004). Software Engineering, 7th Edi-
tion (International Computer Science Series). Addi-
son Wesley.

11

