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Abstract: This paper describes details of a method for robust and accurate marker position estimation in projection CB 
images. The method is based on previously proposed tracking algorithms which can cope with multiple 
proximate markers and image clutter. The algorithm described in this paper can be seen as a post processing 
algorithm which uses all the calculated hypothetical marker positions, from the tracking algorithm, for all 
the markers and all projection images in a single combinatorial optimisation process. The algorithm has 
been design to estimate intra fraction motion during image guided radiation therapy. The results from the 
algorithm can be used in treatment planning, subsequent treatment monitoring and correction of motion 
artefacts in cone beam CT. The proposed post processing algorithm reduced the maximum marker position 
error from 5.6 pixels, using tracker alone, to 2.6 pixels after post processing. This should be compared to 
estimated 2.5 pixels maximum error present in the ground truth data. For the total number of 3,840 tracked 
markers after post processing 1.61% and 0.02% of their positional errors were respectively above three and 
six standard deviation of the ground truth, estimated separately for each marker and each projection image, 
whereas corresponding results after using tracker alone were 2.86% and 0.23%. 

1 INTRODUCTION 

Radiation therapy exploits the extra susceptibility of 
many cancers to repeated insult by radiation 
compared to healthy tissues. The radiation beams are 
applied sequentially to a target volume from 
different directions in a manner pre-determined by 
computerised dosimetric planning. The treatments 
are commonly divided into daily fractions delivered 
over several weeks. Because of uncertainties, 
including tumour motion, a safety margin is added 
around the clinical target volume (CTV) leading to a 
bigger planning target volume (PTV).  

Tumour tracking is an important tool in modern 
radiotherapy, as it is instrumental in measurement of 

tumour intra fraction motions enabling a variety of 
strategies for management of motion in 
radiotherapy. More specifically it is important in 
solving such tasks as treatment planning, patient 
position monitoring, gating, and CBCT volume 
reconstruction with motion corrections.  

There are a number of techniques being 
developed for tumour tracking which avoid 
additional ionising radiation delivered to the patient, 
including: MV portal image tracking (Keall et al 
2004), electromagnetic markers (Willoughby et al 
2006), optical surface sensing (Moore and Graham 
2000, Hoisak et al 2004). However, the technique 
becoming most widely available in clinical practice 
is using one or more pairs of kV x-ray tubes and 
imagers integrated with the MV x-ray treatment 
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machine (Balter and Cao 2007). Such devices 
provide information about local anatomy in the form 
of fluoroscopic images and/or cone beam CT 
(CBCT), enabling tracking and measurement of 
tumour motion (Shirato et al 1999, Marchant et al 
2008, Poulsen et al 2008). 

There are essentially two methodologies for 
tracking tumours in the kV images. The first is using 
directly the image intensity patterns to estimate 
tumour mass position without any implanted 
markers (Cui et al 2007) but this approach however 
is still considered to be under development. The 
second methodology tracks one or more implanted 
radio-opaque fiducial markers which are treated as a 
reliable tumour surrogate. The RTRT (Shirato et al 
1999) and IRIS (Berbeco et al 2004) are examples of 
the hardware platforms proposed to solve this 
problem. Both these systems use multiple pairs of 
diagnostic x-ray tubes and imagers to determine the 
3D marker position. The RTRT system uses a simple 
template matching tracking algorithm to track a 
single spherical marker. Tang et al (2007) proposed 
a tracking algorithm capable of tracking multiple 
cylindrical markers in fluoroscopic images acquired 
from a monoscopic system. Their method uses 
template matching in conjunction with a prediction 
stage and multiple hypotheses to improve robustness 
of the tracker in a presence of image clutter. More 
recently Matuszewski et al (2010) proposed tracking 
algorithm with multi-component score functions to 
select the most likely position of the marker from a 
set of generated marker position hypotheses. In 
comparison to the algorithm proposed in (Tang et al 
2007) the method uses: (i) the mean shift algorithm 
instead of template matching, which provides higher 
accuracy due to explicit sub-pixel accuracy of 
marker position estimation and dynamic implicit 
estimation of markers appearance (ii) use of random 
sampling for hypothesis generation instead of 
deterministic evaluation of all possible marker 
locations in the predefined size window, enabling 
efficient marker search in a much bigger region, and 
maintaining track of possibly widely spatially 
separated positional hypotheses. Additionally 
contrary to the method described in (Tang et al 
2007) the method proposed in (Matuszewski et al 
2010) can operate even when: (i) average intensity 
of the markers changes significantly; (ii) apparent 
marker shape changes significantly; (iii) the 
breathing pattern changes. The method does not 
assume posterior distribution to be Gaussian, indeed 
due to image clutter and presence of other proximate 
markers the likelihood function could be highly non-
Gaussian – with multiple significant modes. 

The method described in this paper can be seen 
as an extension of the method proposed in 
(Matuszewski et al 2010) where all the marker 
position hypothesis are used in a batch processing 
mode in a single combinatorial optimisation process.  

The batch processing rather than real-time 
tracking can be justified for some applications, for 
example in CBCT motion correction. The tracking 
of fiducial markers in such data is a challenging 
problem. There are a number of reasons for this 
including: a high level of noise due to scatter and a 
low radiation dose delivered during a single CB 
projection image acquisition; markers changing 
shape and size for different projection angles; 
occlusions and clutter caused by possible presence 
of the foreign objects; markers overlapping with 
each other or being masked by anatomical 
structures; significant variations of the marker and 
background intensities with projection angle. 
Additionally apparent marker displacement in two 
consecutive images could be quite significant as it is 
a superposition of an intrinsic motion caused, for 
example, by respiration and an extrinsic motion 
induced by the sensor rotation. 

The rest of the paper is organised as follows: in 
section 2 the cone beam CT projection images are 
introduced, section 3 briefly summarises the 
algorithm proposed in (Matuszewski et al 2010), 
whereas section 4 describes in details proposed 
extensions of the method. The experimental results 
are presented in section 5 with conclusions drawn in 
section 6. 

2 CONE BEAM CT PROJECTION 
IMAGES 

CB projection images shown in this paper were 
acquired using Electra Synergy (XVI 3.5, Elekta, 
Crawley, UK). This system has a kV imager fixed to 
the rotating gantry, mounted orthogonally to the MV 
treatment beam. Projection images were captured 
over 360o of rotation at a frame rate of 5.5Hz with 
640 projections. Projection images were acquired 
using a 512x512 matrix with square pixel of size s = 
0.8 mm at the detector. The geometrical 
configuration of the rotating gantry with kV and MV 
sources and kV imager is shown in Figure 1.  

Assuming that the position (x,y,z) of a marker in 
3D space is fixed its apparent motion in the 
projection images as a function of the gantry angle is 
given by (Marchant 2008): 
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Figure 1: Geometry of the CB imaging system. 
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Where u(θ) and v(θ) are respectively row and 
column coordinates of the marker in the projection 
image acquired at θ gantry angle, ou and ov represent 
the position of the principal point in the image 
coordinates; θ is the known gantry rotation angle, 
SDD and SAD are the known distances from the 
source to the detector and gantry rotation axis 
respectively. The apparent 2D motion of the marker 
in the sequence of projection images is a 
superposition of the motion induced by the rotating 
gantry and the motion due to 3D marker movement.  

The apparent marker motion in the projection 
images due to the gantry rotation and the actual 
marker displacement in 3D space can be separated 
by fitting functions u(θ) and v(θ) given in (1) to the 

observed marker positions ( )m
k

m
k uv  ,  in the 

projection images, with k and m indexes identifying 
projection image and marker respectively. This has 
been implemented using the Levenberg-Marquardt 
method to optimise a nonlinear least squares cost 
function. As the result of this procedure for each 
marker, m, vector ( )mmm zyx ,,  is estimated 
representing its mean position in the 3D space. 

The method was tested using projections from 
CBCT image of a pancreatic cancer patient. The 
patient had six gold seeds (fiducial markers) each 
size of 1mm × 10mm placed into the pancreas at 
surgery prior to radiotherapy. Figure 2 shows sample 
CB projection images acquired for different gantry 
rotation angles, illustrating changes in signal level 

and contrast, with location of the markers indicated 
by white circles. 

 
Figure 2: Sample of CB projection images acquired with 
different gantry rotation angle. 

3 MARKER TRACKING 

As it was explained in the introduction tracking 
fiducial markers in the CB projection images is a 
challenging problem. To tackle this problems 
effectively and robustly Matuszewski et al (2010) 
proposed tracking algorithm which brings together 
prior knowledge about the apparent motion of the 
markers in the CB image sequence with a hybrid 
tracking algorithm combining mean shift 
(Comaniciu and Meer 2002) and particle filter 
(Doucet et al 2001, Arulampalam et al 2002) 
methodologies. At initialisation the position of all 
the M markers { }Mmxm …1; 0 =  are selected 
manually in the first CB projection image. The 
positions of the corresponding markers in the 
subsequent projection images are estimated (tracked) 
using probabilistic framework where the position 

( )Tm
k

m
k

m
k uvx ,=  of marker m at image k given all 

observations kz :1  till current image is given in terms 

of posterior probability ( )k
m
k zxp :1  and the tracking 

consist of two interleaving steps of prediction and 
update. During the prediction step the position of the 
marker in the next frame ( )k

m
k zxp :11+  is calculated 

based on the estimated position in the current frame, 
a dynamic model of motion consisting of a 
deterministic propagation model and a stochastic 
perturbation model. In the update state the new 
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observations 1kz +  are used to refine the marker 
position using measurements ( )1 1

m
k kp z x+ +

 in the 
Bayesian formula  
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Due to the previously mentioned clutter and 
occlusions in the projection images ( )1:

m
k kp x z  could 

be highly non-Gaussian with multiple significant 
modes. This prevents the use of standard Kalman 
Filter or Extended Kalman Filter trackers. Instead a 
particle filter tracker is used where the posterior is 
approximated by a discrete set of particles 
{ }Nix im

k …1;, =  (samples from the posterior 
distributions) and the corresponding weights 
{ }Niπ im

k …1;, =  corresponding to probabilities of 
drawing corresponding particles: 
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The position of the marker is estimated based on 
the posterior using maximum a posteriori probability 
approach (MAP). The main modifications to the 
particle filter proposed used for the tracking of 
fiducial markers in the sequence of CB projection 
images include use of equations of apparent motion 
of the markers due to rotation of the gantry and 
introduction of the mean shift in the prediction stage. 
The use of the mean shift has a twofold effect. 
Firstly it significantly reduces the number of 
particles necessary for representing the posterior as 
in this case all the particles would represent main 
modes of the posterior. In fact the number of 
particles can vary between different images. If there 
are no occlusions or clutter there may be a single 
particle propagating to the next frame, describing the 
position of the mode of the uni-modal posterior 
distribution. If there is significant clutter in the 
image more particles will be used to describe the 
multimodal posterior distribution. Secondly it 
provides more accurate MAP estimates as the mean 
shift algorithm guarantees convergence to, at least, 
local maxima of the posterior, whereas the original 
particle filter only randomly samples from the 
posterior and as such the location of the maximum 
of the posterior may not be represented in the drawn 
particles. In most cases this scheme provides 
accurate tracking results. In some cases where 
markers come very closely together or indeed 
overlap in the projection images the tracking 
accuracy may drop and in some cases the identity of 

the markers might be confused. By the tracker 
design when markers move apart the tracker is able 
to recover correct marker identity and resume 
tracking with normal accuracy. For some 
applications, for example  CB volume reconstruction 
(Marchant et al 2009), real-time tracking is not 
necessary as the data may be processed after 
acquisition of all projection images is complete. In 
this case results can be improved further by batch 
post-processing of the data. In the post processing 
algorithm proposed in this paper all the particles 

im
kx , generated for all the markers m, and all images 

k are fed to a function which assigns a cost to all 
possible track configurations supported by the drawn 
particles. The configuration of particles with the 
lowest cost function defines final estimate of the 
markers’ positions. 

4 MARKER TRACKS POST 
PROCESSING 

The tracking method introduced in the previous 
section generates particles (hypotheses) for the 
estimated marker’s position. The number of these 
particles depends on the local image complexity. 
This may include image clutter, and/or presence of 
other markers being close or indeed overlapping 
with the marker for which position is estimated. For 
complex configurations the tracker can generate tens 
of hypothetical positions for each marker, or just a 
single one if there is no image clutter or other 
adjacent markers. To evaluate the quality of the 
generated particles it is proposed to calculate for 
each particle a score based on a number of criteria, 
assessing how well the given prediction describes 
the prior knowledge about the marker. This is 
aiming at improving estimation accuracy and 
helping to recover from possible track losses. The 
score function adopted in this paper is defined as: 
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And the final estimate m
kx̂ of the mth marker 

position is given as: 

 ( ) max  argˆ     ,ˆ ,ˆ, im
ki

im
k

m
k xsixx ==  (5) 

where: ( )im
k

im
k

im
k uvx ,,, ,=  is i-th position prediction for 

m-th marker in the k-th image; ( )im
kMs xs , , ( )im

kMu xs , , 
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( )im
kMv xs , , and ( )im

kDs xs ,  are respectively mode 
similarity measure, u- and v-coordinate prediction 
measures, and distance measure to the closest 
marker, described below. 

Mode similarity measure is directly obtained 
from the mean shift algorithm. It indicates how 
strongly the intensity pattern around the predicted 
position (mode location) reflects the expected 
marker shape and orientation. It is defined as: 
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where: 
m

gΣ is Gaussian kernel with covariance 

matrix mΣ ; ( )lxw  represents the image intensities.  
The estimated marker size and orientation in the 
projection image, encoded by the kernel’s 
covariance matrix mΣ , is updated in each image as 
long as there is no clutter in the proximity of marker 
m. 

u-coordinate prediction measure penalises 
(assigns low score values to) predicted marker 
positions for which the error between their u-
coordinates and the corresponding model prediction 

( )k
m θu  differs significantly from what is expected. 

Based on experimental analysis ( )im
kMu xs ,  is 

modelled as having the Gaussian distribution with 
mean value of ( )k

m θû  calculated from (1) using all 

position estimates { }{ }1
,ˆ: == i
im

n
m
n uun  with only one 

particle (indicating uni-modal probability 
distribution), and the dispersion uσ  set as one of the 
method design parameters: 
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v-coordinate prediction measure, weighs v-
coordinate of the predicted marker position im

kv ,  

with respect to the corresponding coordinate m
kv 1ˆ −  

estimated for the previous frame. This prediction 
error is modelled using a Gaussian distribution  with 
a mean value of { }Nm

kv ,−Δ  and dispersions 

{ }Ncardvσ ,  defined as the method design parameters: 
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where: { }Nm
kv ,−Δ  is an estimated displacement of 

marker m, used to predict its v-position in the k 
image, calculated as the mean from the displacement 
calculated for all the other reliable markers (markers 
described by a uni-modal distribution): 
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with {N} representing the set of indexes of markers 
described by a uni-modal distribution in frame k-1; 
model dispersion { }Ncardvσ ,  is the method design 
parameter, which depends on number card{N} of 
reliable markers in frame k-1. 

( )im
kMv xs ,  is used in the score function only if there 

is at least a single marker from which { }Nm
kv ,−Δ  can 

be calculated. 
 

Distance measure to the closest marker, is used 
to “encourage” separation of the overlapping 
markers. Without this component, on some 
occasions when markers are crossing each other, the 
estimated positions for two or more markers can be 
assigned to the marker which is better defined in the 
image. This component has only local influence as 
the u-direction prediction quality measure would 
dominate when the markers are becoming 
significantly separated in u-direction, and therefore 

this is only used when   min ,,
;
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Corresponding weighting parameters 
DsMvMuMs αααα   ,  ,  ,  are problem dependent and 

are selected so 1=+++ DsMvMuMs αααα . 
 
Although the processing stages described so far 

constitute a complete tracking algorithm, the 
performance can be improved by batch post-
processing. The post-processing proposed in this 
paper uses all the available im

kx ,  from the tracking 
algorithm in the batch processing mode. The main 
objective of this post- processing step is to correct 
possible mistakes in the estimated marker positions 
when markers appear very closely in the images as 
the proposed tracking algorithm can “confuse” their 
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identity. When markers move further apart, the 
algorithm eventually recovers and tracks markers 
correctly as the previously described score function 
forces the tracker to reassign correct marker 
identities. There are two basic ideas behind proposed 
post processing. Firstly; to use motion models 

( )θum  calculated for all markers m estimated using 
all reliable marker positions and thereby enabling 
higher accuracy of parameter estimation in the 

( )θum  models. Secondly; to replace multiple 
trackers using multiple score functions with a single 
tracker using a single score function to assign the 
best marker position configuration as a result of a 
single optimisation process. Assuming that set { }M  
represents markers which are close in image k as 
estimated from the models ( )k

m θu , for each 
{ }Mm∈  the proposed post-processing algorithm 

uses all im
kx , , as defined in previous section. 

Assuming that indexes of the M close markers are 
denoted by i1,...,iM and for each of these markers 
there are 

1iK ,…,
MiK  predicted positions from the 

mean shift mode seeking stage the cost function will 

evaluate all 
ni

M

n
K

1=
∏  combinations of the form 

{ } ,..., ,, 11 MM ji
k

ji
k xx  where 

nin Kj ,...,1= . In this new 

score function ( )MM ji
k

ji
k xxS ,, ,..., 11  component 

( )im
kDs xs ,  from equation 9 is replaced with the score 

component which penalises any disparity between 

⎟
⎠
⎞⎜

⎝
⎛ − nnmm ji

k
ji

k uu ,,  and ( ) ( )( )k
i

k
i θuθu nm −  calculated 

pair wise, where { } { }MiiCnm ,...,
2

1, ∈  (all 2 element 
combinations from the set { }Mii ,..., 1  of M 
elements). 

5 EXPERIMENTAL RESULTS 

To help with the development of the algorithm as 
well as to provide means for algorithm validation 
ground truth data was gathered first. The ground 
truth data describes the position, of the marker mid-
point, for each marker in each projection image. It 
was calculated as an arithmetic mean from three 
manual measurements taken by three different 
observers. The quality of this data has been assessed 
using the standard deviation calculated for each 

marker and each image. The information about the 
precision of the ground truth data is subsequently 
used in quantitative evaluation of the proposed 
method. Figure 3 shows an example of three images 
from the sequence of CB projection images. In these 
images the ground truth markers’ positions are 
shown by circles and the corresponding estimated 
marker positions by crosses, with the corresponding 
particles represented by squares. These images show 
an example when two of the markers (on the left of 
the image) are getting closer till they completely 
overlap, subsequently markers separate but the 
proposed algorithm is able to maintain correct 
identity of the markers. The images also show that 
for isolated markers only one particle is maintained 
as the probability density function describing their 
position is uni-modal. 

(c)(a) (b)

 
 

Figure 3: Images showing tracking results for overlapping 
markers. 

Figure 4 shows the difference (red line) between 
estimated, using the tracking method described in 
section 3, and ground truth position as a function of 
the gantry rotation angle for three randomly selected 
markers. For reference standard deviation limits σ±  
and σ3±  for the ground truth are also shown as blue 
and green lines respectively. The ground truth 
standard deviation changes significantly from one 
image to another as it is estimated from only three 
measurements per marker. To reduce this effect the 
dispersion was filtered by a moving average filter 
and used subsequently in the method evaluation. The 
filtered version of the σ3±  is shown as magenta 
coloured lines. As seen most of the error is within or 
close to σ3±  of the ground truth apart from a few 
spikes caused by temporal errors in marker identity 
estimation. Figure 5 shows the same information as 
in figure 4 but after post-processing as described in 
section 4. It can be seen that the error spikes caused 
by marker identity estimation error are eliminated 
and indeed for most of the time the markers’ 
position is estimated within σ±  of the ground truth 
marker position. After applying proposed post 
processing the maximum marker position error was 
estimated at 2.59 pixels compared to 2.51 pixels for 
the ground truth and 5.6 pixels for tracking without  
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Figure 4. Error between estimated marker position and the corresponding ground truth position obtained for the tracking 
algorithm described in section 3. 

 
Figure 5. Error defined as in figure 4 obtained after applying proposed post-processing described in section 4. 

post processing. The average standard deviation was 
estimated at 0.42 pixels compared to 0.44 for the 
ground truth and 0.47 pixels without post 
processing. For the total number of 3,840 tracked 
markers after post processing 1.61% and 0.02% of 
their positional errors were respectively above three 
and six standard deviation of the ground truth, 
estimated separately for each marker and each 
projection image, whereas corresponding results 
without post processing where 2.86% and 0.23%. 

6 CONCLUSIONS 

The paper describes in detail a modification to 
previously proposed automatic fiducial marker 
tracking algorithm. The proposed modifications 

require batch processing of all the available 
measurement but as result improve the robustness 
and accuracy of markers’ position estimates. The 
proposed method uses a combination of the mean 
shift algorithm, sequential random sampling, custom 
designed constraints, and combinatorial 
optimisation. The tests show that the accuracy and 
robustness of the proposed method is superior to the 
results obtained by human observers. The method 
was specifically developed for CBCT projection 
images for correction of motion artefacts in the 
reconstructed 3D CBCT volume. 
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