
HOW DEVELOPERS TEST THEIR OPEN SOURCE SOFTWARE
PRODUCTS

A Survey of Well-known OSS Projects

Davide Tosi
University of Insubria, Department of Informatica e Comunicazione, Varese, Italy

Abbas Tahir
Siemens AG, Munich, Germany

Keywords: Open source software, Testing, Survey, Testing frameworks, Aspect-oriented programming, Dynamic mea-
sures.

Abstract: Open Source Software (OSS) projects do not usually follow the traditional software engineering development
paradigms found in textbooks, thus influencing the way OSS developers test their products.
In this paper, we explore a set of 33 well-known OSS projects to identify how software quality assurance is
performed under the OSS model. The survey investigates the main characteristics of the projects and common
testing issues to understand whether a correlation exists between the complexity of the project and the quality
of its testing activity. We compare the results obtained in our survey with the data collected in a previous
survey by L. Zhao and S. Elbaum. Our results confirm that OSS is usually not validated enough and therefore
its quality is not revealed enough.
To reverse this negative trend, the paper suggests the use of a testing framework that can support most of the
phases of a well-planned testing activity, and describes the use of Aspect Oriented Programming (AOP) to
expose dynamic quality attributes of OSS projects.

1 INTRODUCTION

Software quality is becoming nowadays one of the
main differentiation factors between similar software
products. As an activity of the software quality assur-
ance process, a software product is normally validated
against its specified requirements. Software testing
can obviously help during verification and validation.

IEEE Standard for Software Test Documenta-
tion (IEEE, 1998) defines software testing as: ”The
process of analyzing a software item to detect the
differences between existing and required conditions
(that is, bugs) and to evaluate the features of the soft-
ware item”. The main goal of testing is to detect soft-
ware failures. Testing activities are performed to en-
sure that software design, code, and documentation
meet all the requirements imposed on them (Lewis,
2004). Software testing plays an important role in
providing evidence on the degree to which the re-
quirements have been met. Testing can only prove

that software does not function properly under spe-
cific conditions but it can not prove that it functions
properly under all conditions. Open Source Software
(OSS), compared to closed source software (CSS),
is different with regard to development. These dif-
ferences restrict the applicability of the well estab-
lished testing approaches developed for CSS in the
open source domain.

Zhao and Elbaum surveyed quality related activ-
ities in open source (Zhao and Elbaum, 2000), and
they reported that ”more than 80% of the OSS devel-
oper responded that their products do not have testing
plans. However most of the products spend close to
40% of their lifetime in the testing stage. Only 21%
of the products spend less than 20% of their lifetime
in testing.” These findings imply that most of the OSS
projects spend plenty of time performing testing ac-
tivities. The question with this regard is: How sys-
tematically do they address testing?

In this paper we investigate 33 well-established

22
Tosi D. and Tahir A. (2010).
HOW DEVELOPERS TEST THEIR OPEN SOURCE SOFTWARE PRODUCTS - A Survey of Well-known OSS Projects.
In Proceedings of the 5th International Conference on Software and Data Technologies, pages 22-31
DOI: 10.5220/0002919600220031
Copyright c© SciTePress

OSS projects to explore how they address software
testing. The investigation relies basically on the infor-
mation available in the projects repositories.We did
this analysis in the context of the european research
project QualiPSo [http://www.qualipso.org/] . Our re-
sults confirmed the results of Zhao and Elbaum in
which OSS is still usually not systematically tested.
To reverse this negative trend, we suggest the utiliza-
tion of comprehensive testing frameworks that sup-
port testing at different levels. Such frameworks pro-
vide an integrated, single-entry environment for most
of the testing activities. In this paper, we investi-
gate the well-known and frequently used test frame-
work, the Eclipse Test and Performance Testing Tools
(TPTP). TPTP is an open source test tools platform
that covers nearly all of the testing levels for software
implemented in Java.

In particular, the TPTP platform supports dynamic
testing. The main purpose of dynamic testing is to
provide confidence on the dynamic behavior of the
software. Therefore testing provides a way to eval-
uate some dynamic attributes of the software under
test. Another way to have insight into some quality at-
tributes of the software is by collecting quality-related
dynamic metrics. Collecting dynamic metrics is con-
sidered to be very challenging since it usually requires
instrumentation of the software. An approach that
considerably facilitates the transparent collection of
dynamic quality metrics may provide a means to ex-
pose some dynamic quality attributes of OSS. In this
paper, we discuss how AOP technology can support
the collection of dynamic software metrics. The pro-
posed approach is demonstrated by a showcase. The
paper is structured as follows: Section 2 summarizes
the main results of our survey. Section 3 discusses
the introduction of testing frameworks into the test-
ing process of OSS, and the use of AOP technology to
support the collection of dynamic quality metrics. We
conclude and we draw our future work in Section 4.

2 ZHAO AND ELBAUM: 10
YEARS LATER

2.1 Survey Goals

We had in mind three final goals when we started this
survey. First, we want to identify current best prac-
tices in testing OSS products and the limits these prac-
tices have. We would like to understand whether OSS
developers follow the well-agreed testing practices
used in CSS development models, and then detect
similarities and divergencies between the two prac-

Table 1: OSS project classification.

Application Domains #of Projects
Business Intelligence 6
Middleware 4
Operating System 4
Testing Tool 2
CMS 3
DBMS 2
Development Tool 4
Framework/Library 3
Other 5

Programming Language #of Projects
Java 14
C/C++ 15
PHP 3
Assembler 1

tices. Moreover, we would like to understand if there
are different testing practices for different application
domains. Second, we want to evaluate both the corre-
lation between the popularity of the OSS product and
its testing activities, and also the correlation between
the testing activities and the bug rate of the product.
Last, we want to suggest a set of testing remarks spe-
cific for OSS products. In this paper, we start report-
ing the data we collected by analyzing the testing ac-
tivity of 33 OSS projects.

We compared the results of our survey with the
outputs provided by L. Zhao and S. Elbaum to un-
derstand whether the current large adoption of OSS
products in industrial environments is influencing the
way developers test their OSS products. Ten years
ago, OSS products did not have the enjoying increas-
ing popularity and diffusion that they are experiencing
in the last few years.

2.2 Data Collection

The first step of our survey was to identify a repre-
sentative set of OSS products. We focused on active
and evolving OSS projects and we limited our uni-
verse to projects that are well known in industry and
in research. In line with the sample analyzed by L.
Zhao and S. Elbaum, we selected 33 OSS products
with in mind heterogeneity of the programming lan-
guage (Java, C, C++, PHP and Assembler) and het-
erogeneity of the application domain (business intel-
ligence, middleware, operating system, Content Man-
agement System, etc...). The complete list of the se-
lected projects can be found in (Qualipso, 2009). Ta-
ble 1 shows the distribution of the selected projects
against the two attributes programming language and
application domain.

The second step of our work was to prepare a

HOW DEVELOPERS TEST THEIR OPEN SOURCE SOFTWARE PRODUCTS - A Survey of Well-known OSS Projects

23

checklist that could simplify the analysis of each OSS
product. The checklist we obtained is composed of
10 entries: (1) project size, (2) time in market, (3)
number of developers, (4) user manual availability,
(5) technical documentation availability, (6) test suite
availability, (7) testing documentation availability, (8)
report of test results availability, (9) test domain, (10)
and testing framework usage. These entries have been
identified and defined with in mind the three goals
previously described.

Contrariwise to the work done by Zhao and El-
baum that derive the quality assurance of open source
development model by directly interviewing OSS de-
velopers, we manually collected the data by surfing
the repositories of the selected projects against each
entry of the checklist. To avoid errors and oversights
in collecting data, we double checked the obtained
results by performing the survey with two different
working groups. Each working group was composed
of two senior researchers. At the end of the survey, the
results obtained from the two working groups have
been compared and adjusted.

2.3 Survey Results

The data collection process ended with the availabil-
ity of 96% of the required information. During our
surfing process, we were not able to detect (or derive)
the size of 8 (out of 33) projects, and the number of
developers for 6 (out of 33) projects. Hereafter, we
will report these unavailable data as ”unknown” data
points.

2.3.1 General Descriptive Findings

Each project has been profiled with its project’s size,
the number of developers that contribute to its de-
velopment, and its time in market. We identified the
following ranges for these three general descriptive
findings:

Project’s Size. Tiny (less than 1000 lines of
code), small (1000 - 10000 lines of code), medium
(10000 - 100000 lines of code), large (100000
- 1000000 lines of code), very large (more than
1000000 lines of code).

Number of Developers. Small group (less than
10 developers); medium group (11 - 50 developers);
large group (more than 50 developers).

Time in Market. Very young (less than 1 year);
young (1 - 3 years); mature (3 - 5 years); old (more
than 5 years).

In our sampling, the projects are distributed in the
size category as follows: 0% are tiny projects, 3% are
small, 15.5% are medium, 36% are large, 21.5% are
very large, and for 24% of the projects we are not able
to detect (or derive) the size of the projects.

12% of the projects are developed by a small
group of contributors, 45.5% by a medium group,
24.5% by a large group, and for 18% of the projects
we are not able to identify (or derive) the number of
the developers.

The vast majority of projects are old or mature
projects. Specifically, 3% are young, 30.5% are ma-
ture, and 66.5% are old projects.

Most of the projects are large and very large
projects with a high maturity and a medium or large
community of developers and contributors. As ex-
pected, most of the projects started as small projects
and tend to evolve during time, and the size of the
project depends on the number of the developers.
However, in our sampling, we also have two excep-
tions to these tendencies, where an old project is still
small, and a very large project is characterized by a
small community of developers. Figure 1 shows the
relationship between the project maturity and its size,
while Figure 2 highlights the relationship between the
number of developers and the size of the project.

0%
0%
0%
3%

0%
3%
0%
12%

0%
0%
9%

0%

5%

10%

15%

20%

25%

30%

small medium large very large unknown

young

adult

old

Pe
rc
en

t o
f P

ro
je
ct
s

Project Size9%
27%

0%

5%

10%

15%

20%

25%

30%

small medium large very large unknown

young

adult

old

Pe
rc
en

t o
f P

ro
je
ct
s

Project Size

Figure 1: Time in market by project size.

0%
0%
0%
0%

0%
3%
0%
0%

0%
12%
0%
3%

3%
21%

0%

5%

10%

15%

20%

25%

small medium large very large unknown

small
medium
large
unknown

Pe
rc
en

t o
f P

ro
je
ct
s

Project Size

#of Developers

21%
6%

0%

5%

10%

15%

20%

25%

small medium large very large unknown

small
medium
large
unknown

Pe
rc
en

t o
f P

ro
je
ct
s

Project Size

#of Developers

Figure 2: Number of developers by project size.

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

24

2.3.2 Evaluated Testing Aspects

Testing Activity. In our survey, we were interested
in understanding whether testing is a consolidated
activity, or not, during the development of an OSS
product. Developers, customers and end users have
the perception that testing activities receive less
importance in OSS than in CSS. In their survey,
Zhao and Elbaum found that 58% of the analyzed
projects spent (Zhao and Elbaum, 2003) 20% of the
time on testing, while more than 15% of the projects
spent more than 40% of their time in testing. In
our sampling, we found that 58% of the projects
have a test suite or a testing activity, while the
remaining 42% does not publish the source code of
their testing activities. Specifically, 13 (out of 22)
old projects have an updated test suite, while 9 of
them do not have a testing activity; 5 (out of 10) adult
projects have an updated test suite, 1 project a very
preliminary test suite, and 4 projects do not have a
testing activity; the young project is released with
its test suite. Referring to the project size: the small
project has testing activities; all of the 5 medium
projects have testing activities; only 6 (out of 12)
large projects have a testing activity; and only 4 (out
of 7) very large projects have a testing activity. These
data confirm the Zhao and Elbaum statement: ”it
seems that larger projects tend to spend less time in
their testing phase compared with smaller projects.”

Test Planning. The IEEE Standard for Software Test
Documentation (IEEE, 1998) defines a test plan as:
”A document describing the scope, approach, re-
sources, and schedule of intended testing activities”.
It identifies test items, the features to be tested, the
testing tasks, who will do each task, and any risks
requiring contingency planning. Our investigation
has shown that only 15% of the analyzed projects
plan the testing activities separately, while 6 projects
use the development plan for documenting the testing
activities. This can be explained as for these projects
the focus is on unit testing which is usually performed
by the developers themselves. For the remaining 67%
of the 33 investigated projects, we were not able to
identify any test planning document. This strongly
supports the findings of Zhao and Elbaum (Zhao and
Elbaum, 2000) where more than 80% of the OSS
developer responded that their products do not have
testing plans.

Testing Strategies and Approaches. The Test Strat-
egy defines the strategic plan for how the test effort
will be conducted against one or more aspects of the
target system. Test Approach is the implementati-

on of the test strategy for a specific project. It
typically includes (a) the decisions made that fol-
low based on the (test) project’s goal and the risk
assessment carried out, (b) starting points regarding
the test process, (c) the test design techniques to
be applied, (d) exit criteria and (e) test types to be
performed. 21 of the investigated projects provide no
information about the test strategy and the approach
followed to implement it. The other 12 projects
provide some information on the test strategy and the
test approach. For example, the project ServiceMix
(http://servicemix.apache.org) provides recommen-
dations like ”every major code change must have
a unit test case”, ”the test must provide as much
coverage as possible” or ”every bug filled should
have a unit test case”. Though such recommendations
provide some information on the test strategy, it does
not provide a clear and comprehensive test strategy.

As for this testing aspect, we are not able to
provide a comparison with Zhao and Elbaum work,
because of the lack of this aspect in their survey.

Testing Levels. Testing can be done at different lev-
els; ranging from testing the individual smallest units
of code to testing the completely integrated system.
The analysis has shown that only for 1 project three
levels of testing are defined, namely: unit, integra-
tion and system testing. Unit testing is the preferred
activity (16 projects perform unit tests), while accep-
tance testing is the omitted activity (0 projects have
a serious campaign of acceptance tests). This can
be explained by the interpretation a lot of develop-
ers have regarding unit testing: often, an entire sub-
system is wrongly regarded as a unit, or acceptance
tests are wrongly mixed with unit tests. Just 1 project
has a comprehensive test suite that covers the follow-
ing testing levels: unit; integration; system testing;
and other non-functional tests. In 6 projects, non-
functional tests are also considered besides functional
tests. In Figure 3, we summarize the distribution of
testing levels covered by the investigated projects.

Testing at different levels reduces the costs of re-
pairs since most problems will be exposed early by
the lower testing levels (mostly by the developers
themselves). Having multiple testing levels increases
the chance of uncovering software errors.

Contrariwise to the results of Zhao and Elbaum,
where 68% of the respondents ”provide inputs trying
to imitate user behavior” and only 25% of them ”use
assertions”, our results suggest that the preferred ac-
tivity is unit testing. This can be explained by the
large popularity reached by xUnit frameworks in the
last few years.

HOW DEVELOPERS TEST THEIR OPEN SOURCE SOFTWARE PRODUCTS - A Survey of Well-known OSS Projects

25

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Test Suite Level

Pe
rc
en

t o
f P

ro
je
ct
s

un
it

in
te
gr
at
io
n

sy
st
em

ac
ce
pt
an

ce

re
gr
es
si
on

co
nf
or
m
an

ce

se
cu
ri
ty

pe
rf
or
m
an

ce

un
kn
ow

n
0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Test Suite Level

Pe
rc
en

t o
f P

ro
je
ct
s

un
it

in
te
gr
at
io
n

sy
st
em

ac
ce
pt
an

ce

re
gr
es
si
on

co
nf
or
m
an

ce

se
cu
ri
ty

pe
rf
or
m
an

ce

un
kn
ow

n

Figure 3: Test level.

0%

10%

20%

30%

40%

50%

updated out‐of‐date not available

young

adult

old

Pe
rc
en

t o
f P

ro
je
ct
s

Test Documentation

0%

10%

20%

30%

40%

50%

updated out‐of‐date not available

young

adult

old

Pe
rc
en

t o
f P

ro
je
ct
s

Test Documentation
Figure 4: Documentation availability by time in market.

Testing Documentation. Any project document
that aims to provide testing related information is
considered to be part of the test documentation.
This includes test specifications, test design, test
procedures, test plans, and test results reports. 8
projects (24%) deliver a report that describes the test
results: 7 of them are updated, while one report is out
of date. Only 5 projects provide test plans. In general,
we discovered 14 testing documents, 12 of which are
updated and 2 are out of date. In Figures 4 and 5,
we show the relationship between the availability of
testing documents and the project maturity, and the
availability of testing reports and the project maturity,
respectively.

As for this testing aspect, we are not able to
provide a comparison with Zhao and Elbaum work,
because of the lack of this aspect in their survey.

Testing Tools Support. It is important for a project
to control and manage its testing process. A man-
aged testing process increases the overall efficiency
of the testing activities. Currently, a lot of tools and

0%

20%

40%

60%

updated out‐of‐date not available

young
adult
old

Pe
rc
en

t o
f P

ro
je
ct
s

Report of Test Results

0%

20%

40%

60%

updated out‐of‐date not available

young
adult
old

Pe
rc
en

t o
f P

ro
je
ct
s

Report of Test Results

Figure 5: Reports availability by time in market.

plugins are available to support the whole testing pro-
cess. For example, HP Quality Center [www.hp.com]
is a test management tool that covers many aspects
of the testing process including: requirements trace-
ability, test planning, test execution, defect manage-
ment and test reporting. Additionally, the open source
Test and Performance Test Tools Platform (TPTP)
(www.eclipse.org/tptp) provides partial support for
the testing process including test execution, test re-
porting and test monitoring (in Section 3 we will
present how to use TPTP in the context of OSS
projects). According to our analysis, we could not
identify any project that utilizes a tool supported ap-
proach for managing the whole testing process and
only 6 projects explicitly use testing frameworks and
tools (such as JUnit (www.junit.org) or Apache Test
Framework (http://httpd.apache.org/test/)) for their
testing activities.

As for this testing aspect, we are not able to pro-
vide a comparison with Zhao and Elbaum work, be-
cause of the lack of this aspect in their survey.

2.4 Final Remarks

The results we obtained in our survey are in line with
the outputs provided by Zhao and Elbaum ten years
ago. It seems that larger projects tend to spend less
time in their testing phase compared with smaller
projects; more than 40% of OSS products do not have
a testing activity in their development process; 67%
of the 33 investigated projects does not have any test
planning document; 36% provides some (often pre-
liminary) information on the test strategy and the test
approach; the preferred activity is unit testing; 42%
has testing documentation (often incomplete and out-
of-date); 18% exploits available testing tools but none
of the projects uses a testing framework to support the
whole testing process.

The evolution of testing tools, the availability of
new testing methods and the increasing necessity of
software systems with stringent quality requirements
did not change the way OSS developers test their

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

26

products, in ten years. This is probably due to at
least three mutually related reasons: (1) most of the
available testing techniques have been defined with
closed-source software characteristics in mind, thus
they are not directly applicable to OSS systems, so a
good deal of effort and cost is required for designing
new testing solutions that are created ad-hoc for OSS
systems; (2) the planning and the monitoring of the
testing process of an OSS system hardly ever follow
the guidelines used for CSS systems, so it is neces-
sary to redefine some methods that are at the basis
of the testing process; (3) OSS system development
hardly ever follows the classic software engineering
paradigms found in textbooks, so testing activities are
less structured than for CSS.

3 HOW TO REVERSE THIS
NEGATIVE TREND?

One of the main challenges with OSS is the absence
of comprehensive testing concepts. Most of the OSS
is developed with little attention paid to testing and
therefore allowing only limited potential for verifi-
cation. The results presented in this survey showed
that for 21 (out of 33) analyzed OSS projects there is
no clearly defined testing strategies and approaches.
Common testing approaches that are applicable to a
wide range of OSS can considerably facilitate OSS
testing and verification.

3.1 Framework Support: TPTP

Nowadays, the wide diffusion of testing tools
and frameworks that support different testing tech-
niques is evident. A quick look to the portal
[www.opensourcetesting.org] can confirm this thesis.
The open source community contributed to this by
providing plenty of testing tools that are widely ac-
cepted within the software testing community. Most
testing tools (Open source as well as Closed source)
are built to support proprietary data models without
giving any consideration for tool integration. Fur-
thermore, most testing tools provide a Graphical User
Interface (GUI) that is specifically designed for that
tool. This may confuse users dealing with differ-
ent tools. For the above-mentioned reasons (among
many others), the Eclipse foundation started the OSS
project TPTP (Test and Performance Testing Tools,
previously named Hyades). The main objective of
the TPTP project is to build a generic, extensible,
standards-based platform for test and performance
tracing tools. In this paper, we investigate version
4.4.1 of the TPTP platform and we describe how to

apply the framework for testing OSS products. The
TPTP is basically a plug-in collection for Eclipse that
provides a platform for Quality Assurance (QA) tools.
This platform consists of a set of tools and data mod-
els for testing purposes, profiling/tracing, logging and
monitoring. It also includes an infrastructure for de-
ployment and execution of tests, agents or the like
on remote machines and for the collection of infor-
mation gathered by agents on those machines, like
test results, traces, etc... In their initial proposal the
TPTP group already outlined a comprehensive con-
cept for widely automated execution of tasks in the
quality assurance process, which subsumed the well-
known methods of automated test development and
execution, under the term Automated Software Qual-
ity (ASQ).

The procedure starts by traces gathered for anal-
ysis from an application during runtime. Collected
traces serve as templates for the development of test
cases and scenarios in test models. The effort of
this task can be reduced by automated transforma-
tion of traces into test descriptions. According to
the principle of Model Driven Software Development,
the transformation of a test model into executable
code can be automated too. The next activity is the
deployment of tests on remote machines. Finally,
the test is executed where new information on run-
time behaviour of the system under test is monitored
(”trace”), which might be used for comparison with
the original trace achieved in the first activity.

The TPTP project is comprised of four subpro-
jects: (1) the TPTP Platform provides the common
infrastructure for the other subprojects; (2) the Test-
ing Tools framework extends the platform with testing
capabilities. The subproject provides reference imple-
mentations for: JUnit, manual, URL, and automated
GUI testing; (3) Tracing and Profiling Tools frame-
work extends the platform with tracing data collec-
tion capabilities; (4) Monitoring Tools are targeting
the collection, analysis, aggregation, and visualiza-
tion of the captured data.

Figure 6 presents the overall architecture of the
TPTP. The TPTP simply extends the well-known
Eclipse IDE with testing capabilities. Therefore,
TPTP makes use of Eclipse resources and features.
Here, we mainly focus on the Testing Tools sub-
project, as the other subprojects (tracing, profiling
and monitoring tools) are not directly related to test-
ing. The Testing tools subproject is an extension of
the TPTP framework that: (1) Provides a common
framework for testing tools by extending the TPTP
platform; (2) Facilitates the integration of different
types of tests by providing common nomenclature and
metaphors; (3) Allows the deployment and the execu-

HOW DEVELOPERS TEST THEIR OPEN SOURCE SOFTWARE PRODUCTS - A Survey of Well-known OSS Projects

27

be automated too. The next activity is the deployment
of tests on remote machines. Finally, the test is
executed where new information on runtime behaviour
of the system under test is monitored (“trace”), which
might be used for comparison with the original trace
achieved in the first activity.

The TPTP project is comprised of four subprojects:
- TPTP Platform provides the common

infrastructure for the other subprojects. [4].
- Testing Tools framework extends the platform

with testing capabilities. The subproject provides
reference implementations for: JUnit, manual,
URL, and automated GUI testing [5].

- Tracing and Profiling Tools framework extends
the platform with tracing data collection
capabilities. [6]

- Monitoring Tools are targeting the collection,
analysis, aggregation, and visualization of the
data captured [7]

Figure 2: Architecture of the TPTP (adapted
from Error! Reference source not found.)

Figure 2 presents the overall architecture of the
TPTP. The TPTP simply extends the well-known
Eclipse IDE with testing capabilities. Therefore, TPTP
makes use of Eclipse resources and features.

Here, we mainly focus on the Testing Tools
subproject, as the other subprojects (tracing, profiling
and monitoring tools) are not directly related to testing.
The Testing tools subproject is an extension of the
TPTP framework that [2] [8] that:

- Provides a common framework for testing tools
by extending the TPTP platform.

- Facilitates the integration of different types of
tests by providing common nomenclature and
metaphors

- Allows the deployment and execution of tests on
distributed systems.

- Provides common perspective and views.
Author names and affiliations are to be centered

beneath the title and printed in Times 12-point, non-
boldface type. Multiple authors may be shown in a two-
or three-column format, with their affiliations italicized
and centered below their respective names. Include e-
mail addresses if possible. Author information should
be followed by two 12-point blank lines.

To demonstrate the potential of the TPTP testing
tools framework, TPTP provides exemplary integration
of some important testing environments:

- Assisted Manual Testing
- JUnit testing framework Error! Reference

source not found.
- Web (URL) Testing
- Automated GUI Testing (Recording/Playback).

O
f
s
c
i
A
b
s
t
r
a
c
t
i
n
g

F
i
g
u
r
e

t
o

r
e
p
r
e
s
e
n
t

Figure 6: Architecture of the TPTP platform.

tion of tests on distributed systems; (4) Provides com-
mon perspective and views.

To demonstrate the potential of the TPTP testing
tools framework, TPTP provides exemplary integra-
tion of some important testing environments such as:
(1) Assisted Manual Testing; (2) JUnit testing frame-
work; (3) Web (URL) Testing; (4) Automated GUI
Testing (Recording/Playback). One of the strengths
of the TPTP Testing tools framework is the extensibil-
ity of the framework to support any third-party testing
tool (including commercial testing tools). Third-party
tools can be integrated into the platform at differ-
ent levels: (1) Communications and data collection:
The framework provides an agent based framework
that supports distributed system communications and
communicates the data collected to the data model;
(2) Data model: The framework data models are pop-
ulated by the data collected through the agents. A
common data model facilitates the integration of the
different tools at data level; (3) Data analysis: The
data fed into the data model are analyzed by set of ex-
emplary analyzers. Additional third-party analyzers
can be plugged-in into the framework; (4) User in-
terface: Includes test editors, viewers, navigators and
wizards. This stack structure tolerates the hook up of
any third-party tool at any level. At the same time, the
tool plugged-in can still make use of the capabilities
of the other levels in the stack.

3.1.1 Using Eclipse TPTP for Testing OSS

Although the eclipse IDE and the TPTP are basically
targeting Java applications, the eclipse plug-in CDT
(Eclipse C/C++ Development Tooling) provide na-
tive support for C/C++ application. Java and C/C++
based OSS projects form around 88% of the sur-
veyed projects in this paper. The eclipse-based TPTP
platform can assist establishing testing activities for
OSS and tackling some issues raised by the survey
like Testing Levels, Testing Documentation and Tools
Support. The TPTP platform covers almost all test-
ing levels including unit, integration and system test.
The TPTP JUnit Testing Framework primarily targets
unit testing level. It can however cover other levels
like integration and system testing. Integration test-
ing is usually focusing on ensuring that distinct and
individually developed subsystems interface and in-
teract together in a correct and coherent manner. Test-
ing individual subsystems at their interfaces can be
done using the API testing technique where the sub-
systems are tested directly through their APIs and not
through their GUIs (if available). The TPTP JUnit
Testing Framework can be used to test the subsys-
tems through their APIs. The only difference to the
traditional unit testing is that the artefact under test is
not an atomic unit of code (e.g., a class), but an en-
tire subsystem. The same technique mentioned above
for integration testing can also be applied at system
testing level. The artefact under test is here the entire
system. For C/C++ applications, the eclipse free and
open source plug-ins CUTE and ECUT provide simi-

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

28

lar functionality to that provided by JUnit for Java ap-
plications. Following the argumentation used above
for JUnit, CUTE and ECUT can be used not only for
unit testing C/C++ applications, but also for integra-
tion and system testing. The three unit testing tools
JUnit, CUTE and ECUT provide basic support for test
case documentation test execution and test result re-
porting. The TPTP Assisted Manual Testing can be
used for system testing where no test automation is
possible. As the name implies, it provides some as-
sistance for creating, editing and running manual tests
and for the analysis of test results.

3.2 AOP-based Approach for collecting
Dynamic Quality Metrics

Software metrics provide methods of determining
software quality through quantifying different aspects
of software quality. Metrics mostly are defined and
collected based on static code analysis. However, the
complex dynamic behavior of many applications (e.g.
through the usage of OO paradigms like inheritance
and polymorphism) only allows a poor predictive ac-
curacy of quality models when using static measure-
ment. Therefore, in addition to static metrics, dy-
namic ones need to be investigated to evaluate pro-
grams according to their dynamic behaviour. Some
approaches only consider requirements, like Yacoub
et al. (Yacoub et al., 1998) who describe a suite that
consists of metrics for dynamic complexity and object
coupling based on execution scenarios. The proposed
measures are obtained from executable design mod-
els.

Other approaches focus on system perfor-
mance, like Cavarero (Cavarero and Cuaresma,
2004), Wiese’s FastAOP (Wiese and Meunier,
2008), Box’s Glassbox Inspector (https://glassbox-
inspector.dev.java.net/). A set of architecture-
independent dynamic metrics can be defined and used
to categorize programs according to their dynamic
behaviour in five areas: size, data structures, mem-
ory use, polymorphism and concurrency. Mitchel
and Power (Mitchell and Power, 2005) define a num-
ber of Java based object-oriented metrics for dynami-
cally measuring coupling and cohesion at class level.
The defined metrics parallel the suite of static object-
oriented metrics proposed by Chidamber and Ke-
merer (Chidamber and Kemerer, 2003) from where
two of six metrics, namely coupling and cohesion,
were picked because they were thought to be the most
useful in providing information about the external
quality attributes of a design.

Measuring dynamic metrics is in general more ex-
pensive and can be considered more complex than

collecting static ones. Many of the approaches ap-
ply instrumentation techniques or use debug or pro-
filing interfaces to intercept and gather information
(Mitchell and Power, 2005), (Arisholm et al., 2004).
The drawback of these approaches is that they tend
to be tedious and error prone. As measuring dynamic
metrics of an application at runtime is a system-wide
crosscutting concern, it seems to be an ideal area
of application for aspect oriented programming. In
this area, some approaches have already been im-
plemented for Java related applications: FastAOP
(http://sourceforge.net/projects/fastaop/) and Glass-
box Inspector to measure performance and AOP Hid-
denMetrics (Cazzola and Marchetto, 2008) to dynam-
ically collect OO metrics.

We developed our own approach for collecting dy-
namic metrics using AOP and we realized a simple
show case. The approach can be summarized in the
two following points:

1. AOP Pointcuts are used to identify locations in the
program flow where metrics data can be collected;

2. AOP Advices are used to analyze the data col-
lected and provide the metric information.

To test the suitability of the AOP approach, we
compiled a show case where we picked an OO metric
and collected it dynamically for one of the Java OSS
projects considered for the analysis.

3.2.1 Selected Metric

Measuring metrics dynamically is necessary to eval-
uate programs according to their dynamic behaviour.
Coupling and cohesion metrics can serve as key in-
dicators for evaluating the complexity of an applica-
tion and thus can be used to gain insights when as-
sessing quality factors. For our show case, we picked
the Coupling on Method Call (CMC) metric (Cazzola
and Marchetto, 2008) to measure coupling on method
calls. As we want to perform measurements dynami-
cally, we would like to find out at runtime how many
classes a class A is coupled to.

3.2.2 Project Identification

We applied this metric to Apache JMeter
(http://jakarta.apache.org/jmeter/), a desktop ap-
plication designed to load test functional behavior
and measure performance. It can be used to simulate
a heavy load on a server, network or object to test
its strength or to analyze overall performance under
different load types. We used the JMeter version
2.3.2, the one analyzed in our survey of Section 2.

HOW DEVELOPERS TEST THEIR OPEN SOURCE SOFTWARE PRODUCTS - A Survey of Well-known OSS Projects

29

3.2.3 CMC Aspect Definition

The metric measurement has been implemented using
AspectJ [www.eclipse.org/aspectj/] by defining join
points on method calls and executions (to catch the
inheritance hierarchy, too) and defining join points
for excluded packages like java.* or org.aspectj.* (see
Listing 1).

Advices are then used to analyze the infor-
mation at the join points. By means of reflec-
tion (thisJoinPoint, thisJoinPointStaticPart,
thisEnclosingJoinPointStaticPart) the neces-
sary data (caller, callee) are extracted and stored if
calls from one class to another are concerned. The
gained information is held in a hashtable and at the
end of the program execution sorted for final output
(see Listing 2).

3.2.4 Experimental Setup

One practical drawback in using dynamic analysis is
that one has to ensure that the code is sufficiently ex-
ercised to reflect program execution in a complete or
at least a typical manner. For our show case, we set up
a JMeter test plan for a typical stress testing scenario
according to the step-by-step user manual of JMeter,
where a stress test can be generated out of the record-
ing of visited websites. After that the access to the
target websites is recorded by JMeter, the user has to
configure the test parameters like number of threads
and loop count to complete the test plan. For our show
case, we start the JMeter test from a Java program
using org.apache.jmeter.NewDriver.main(...)
and the created test plan as parameter.

For the development of the show case, Eclipse ver-
sion 3.3.2 [http://www.eclipse.org/eclipse] was used
in combination with AspectJ Development Tools
(AJDT) version 1.5.1 [http://www.eclipse.org/ajdt].
The AJDT project provides Eclipse platform based
tool support for aspect oriented software development
with AspectJ and is installed as an Eclipse plug-in.
This environment was also used as runtime environ-
ment for the show case.

The CMC aspect has been implemented using
AspectJ. We applied it to the JMeter test execution
scenario through load time weaving. This can be
achieved within Eclipse through the run dialog where
the ”AspectJ Load-time Weaving” configuration has
to be chosen. In the LTW Aspectpath tab the project
containing the aspect has to be added. Additionally,
it is required to set the working directory (arguments
tab) to /bin of the JMeter installation folder as JMe-
ter is hard coded to look up jmeter.properties in this
folder. After the setup is completed, the test can be
started and the CMC aspect will be woven into the

/∗ ∗
∗ J o i n p o i n t s on e x c l u d e d methods .
∗ /

p o i n t c u t e x c l u d e d () :
c f low (c a l l (∗ j a v a . . ∗ (. .))) | |
c f low (c a l l (j a v a . . ∗ . new (. .))) | |
c f low (c a l l (∗ org . a s p e c t j . . ∗ (. .))) | |
w i t h i n (CMC) ;

/∗ ∗
∗ J o i n p o i n t s on method c a l l s .
∗ /

p o i n t c u t m e t h o d c a l l s () :
(c a l l (∗ ∗ . . ∗ (. .)) | |

c a l l (∗ . . ∗ . new (. .))) &&
w i t h i n (org . apache . j m e t e r . . ∗) ;

Listing 1: Definition of join points for CMC.

/∗ ∗
∗ A dv i c e t o a n a l y z e method c a l l s .
∗ /
b e f o r e () : m e t h o d c a l l s () && ! e x c l u d e d () {

S t r i n g c a l l e r =
t h i s E n c l o s i n g J o i n P o i n t S t a t i c P a r t . g e t S i g n a t u r e () .

ge tDec la r ingTypeName () ;
S t r i n g c a l l e e =
t h i s J o i n P o i n t S t a t i c P a r t . g e t S i g n a t u r e () .

g e t D e c l a r i n g T y p e () . getName () ;

/ / up da t e h a s h t a b l e i f c a l l e r and c a l l e e r e f e r t o
d i f f e r e n t c l a s s e s

i f (! c a l l e r . e q u a l s (c a l l e e)) {
u p d a t e C o u p l e s (c a l l e r , c a l l e e) ;

}
}

Listing 2: Advice to analyze method calls.

JMeter libraries at load time. This enables us to col-
lect the metric during runtime.

3.2.5 Results

The output from our show case simply is a list of all
the classes that are coupled to other ones and the num-
ber of classes they are coupled to (see Listing 3).

The experimental setup as described above has
shown that AOP is a feasible and elegant way to sup-
port dynamic measurements in order to collect met-
rics at runtime. The AOP code for this show case
was tailored to fit exactly the JMeter test scenario. To
make use of this approach in a more general way, ab-
stract pointcuts can be introduced, for example, that
can then be extended to fit a particular application
that should be measured. Moreover, the measuring
support can easily be extended for other metrics by
adding appropriate aspects respectively.

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

30

org . apache . j m e t e r . J M e t e r $ L i s t e n T o T e s t 3
org . apache . j m e t e r . NewDriver 2
org . apache . j m e t e r . c o n f i g . Arguments 4
org . apache . j m e t e r . c o n f i g . C o n f i g T e s t E l e m e n t 1
org . apache . j m e t e r . c o n t r o l . G e n e r i c C o n t r o l l e r 3
org . apache . j m e t e r . c o n t r o l . L o o p C o n t r o l l e r 3
org . apache . j m e t e r . e n g i n e . P reCompi l e r 6
org . apache . j m e t e r . e n g i n e . S t d J M e t e r E n g i n e 16
org . apache . j m e t e r . e n g i n e .

S t d J M e t e r E n g i n e $ S t o p T e s t 1
. . .

Listing 3: The CMC metric result for JMeter.

4 CONCLUSIONS

Our survey has shown that more than 40% of OSS
products do not have a testing activity in their de-
velopment process. The availability of test suites, or
more in general the presence of testing activities, is in-
dependent from the maturity of the OSS product. This
is probably due to the recent explosion of tools that
support testing activities. Young OSS products can
exploit these tools in the same way mature products
can do. In particular, the survey points out that sys-
tematic acceptance, system, and regression testing ac-
tivities are marginally exploited in OSS. This is prob-
ably due to the wrong practice of mixing acceptance
and system tests in unit test cases. Regression testing
is probably complicated by unstructured teams that
contribute to the project with small and disaggregated
pieces of code.

All these considerations suggest the adoption of
tools that can support the whole testing process, start-
ing from the plan of the testing activities to the report
of test results. In this paper, we have deeply described
the TPTP framework and how to exploit its potential-
ities in the context of OSS projects.

Testing is mainly concerned about validating the
dynamic behaviour of the software. In this paper, we
have also introduced the idea of exploiting the poten-
tiality of AOP technology to support testing. AOP can
actually help exposing the dynamic behaviour of the
software in terms of dynamic metrics.

ACKNOWLEDGEMENTS

The research presented in this paper has been partially
funded by the IST project (http://www.qualipso.eu/),
sponsored by the EU in the 6th FP (IST-034763) and
the FIRB project ARTDECO, sponsored by the Italian
Ministry of Education and University.

REFERENCES

Arisholm, E., Briand, L., and Foyen, A. (2004). Dynamic
coupling measurement for object-oriented software.
IEEE Transactions on Software Engineering (TSE),
30(8):491–506.

Cavarero, J. and Cuaresma, M. (2004). Metrics for dy-
namics: How to improve the behaviour of an object
information system. In Proceedings of the Interna-
tional Conference on Enterprise Information Systems
(ICEIS), pages 344–349.

Cazzola, W. and Marchetto, A. (2008). Aop hiddenmetrics:
Separation, extensibility and adaptability in sw mea-
surement. Journal of Object Technology, 7(2):53–68.

Chidamber, S. and Kemerer, C. (2003). A metrics suite for
object oriented design. IEEE Transactions on Soft-
ware Engineering (TSE), 20(6):476–493.

IEEE (1998). IEEE standard for software test documenta-
tion: IEEE std. 829-1998.

Lewis, W. (2004). Software Testing and Continuous Quality
Improvement. Auerbach, second edition.

Mitchell, A. and Power, J. (2005). Using object-level run-
time metrics to study coupling between objects. In
Proceedings of the ACM Symposium on Applied Com-
puting (SAC), pages 1456–1462.

Qualipso (2009). Web published:
www.qualipso.eu/node/129. Accessed: Septem-
ber 2009.

Wiese, D. and Meunier, R. (2008). Large scale application
for aop in the healthcare domain: A case study. In Pro-
ceedings of the Aspect Oriented Software Conference
(AOSD).

Yacoub, S., Ammar, H., and Robinson, T. (1998). Dynamic
metrics for object oriented designs. In Proceedings of
the IEEE International Symposium on Software Met-
rics, pages 50–61.

Zhao, L. and Elbaum, S. (2000). A Survey on quality related
activities in OS. ACM Software Engineering Notes,
25(2):54–57.

Zhao, L. and Elbaum, S. (2003). Quality assurance un-
der the open source development model. International
Journal of Systems and Software, 66(1):65–75.

HOW DEVELOPERS TEST THEIR OPEN SOURCE SOFTWARE PRODUCTS - A Survey of Well-known OSS Projects

31

