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Abstract: Reliability analysis is often based on stochastic discrete event models like stochastic Petri nets. For complex 
dynamical systems with numerous components, analytical expressions of the steady state are tedious to 
work out because of the combinatory explosion with discrete models. For this reason, fluidification is an 
interesting alternative to estimate the asymptotic behaviour of stochastic processes with continuous Petri 
nets. Unfortunately, the asymptotic mean marking of stochastic and continuous Petri nets are mainly often 
different. This paper proposes a geometric approach that leads to a homothetic approximation of the 
stochastic steady state in specific regions of the marking space. 

1 INTRODUCTION 

Reliability analysis is a major challenge to improve 
the safety of industrial processes. For complex 
dynamical systems with numerous interdependent 
components, such studies are mainly based on 
stochastic discrete event models like Markov models 
(Rausand et al., 2004) or stochastic Petri nets (SPNs) 
(Molloy, 1982). Such models are mathematically 
well founded and lead either to analytical results or 
numerical simulations. But in case of large systems, 
the combinatory explosion limits their use. In this 
context, fluidification can be discussed as a 
relaxation method. 

This paper is about the approximation of the 
SPNs asymptotic mean markings and average 
throughputs by mean of continuous Petri nets 
(CPNs) under infinite server semantic (Vazquez et 
al., 2008; Lefebvre et al., 2009). The limits of the 
fluidification of SPNs are discussed according to the 
partition in regions of the reachability state space. A 
characterization of the regions is proposed that leads 
to a homothetic approximation of the stochastic 
steady state. The proposed results are not 
constructive but concern the existence of solutions. 
They may be helpful to investigate the properties of 
a considered SPN and they may lead for example to 
the design of observers or controllers for stochastic 
processes. 

 
 

2 FLUIDIFICATION OF SPN 

2.1 Stochastic Petri Nets 

A Petri net (PN) is defined as <P, T, WPR, WPO > 
where P = {Pi} is a set of n places and T = {Tj} is a 
set of q transitions, W = WPO – WPR  (Z)nq is the 
incidence matrix, M(t) is the PN marking vector and 
MI the PN initial marking (David et al., 1992). 
Depending on the incidence matrix, PNs may have 
P-semiflows. A P-semiflows y  (Z+)n is a non-zero 
solution of equation yT.W = 0. Let define Y = {y1,..., 
yh} as a basis of WT kernel, composed of h minimal 
P-semiflows. For simplicity, the basis Y will be 
represented as a matrix Y  (Z+)n x h that satisfies (1): 
 

YT.M(t) = YT.MI = C,   t  0 (1)

Let define, for each minimal P-semiflow yi  Y, its 
support as the subset P(yi)  P of places that belong 
to the corresponding marking invariant. For each 
P(yi) it is possible to select a single place and to 
recover the marking of this place from the marking 
of the other places in P(yi). Let define as a 
consequence the subset P2  P of h places whose 
markings may be recovered from Y, and the subset 
P1  P of n - h other places. The permutation matrix 
D defined according to P1 and P2 leads to the 
marking M’ = ((M’1)

T (M’2)
T)T = D.M . 

A stochastic Petri net (SPN) is a timed PN whose 
transitions firing periods are characterized a firing 
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rate vector µ = (µj)  (R+)q (Molloy, 1982). The 
marking and mean marking vectors of a SPN at time 
t will be referred as Ms(t) and MMs(t). The SPNs 
considered in this paper are bounded, reinitialisable, 
with infinite server semantic, race policy and 
resampling memory. As a consequence, the 
considered SPNs have a reachability graph with a 
finite number N of states and their marking process 
is mapped into a Markov model with state space 
isomorphic to the reachability graph (Bobbio et al., 
1998). The Markov model has an asymptotic state 
propability vector ss = (ss k)  [0, 1]1 x N and the 
asymptotic mean marking Mmms of SPNs depends 
from ss:  

     ݉௠௠௦ ௜ ൌ ෍ ݉௞ ௜. ,௦௦ ௞ߨ ݅ ൌ  1, . . , ݊
௞ୀଵ,…,ே

 (2)

2.2 Continuous Petri Nets and Regions 

CPNs have been developed in order to provide 
continuous approximations of the discrete 
behaviours of PNs (David et al., 1992; Silva and 
Recalde, 2004). A CPN is defined as < PN, Xmax > 
where PN is a Petri nets and Xmax = diag(xmax j)  
(R+)qxq is the diagonal matrix of maximal firing 
speeds xmax j, j = 1,…q. Mc(t) is the marking vector 
and Xc(t) = (xcj(t))  (R+)q is the firing speeds vector 
that satisfy dMc(t) / dt = W.Xc(t). For CPNs with 
infinite server semantic, Xc(t) depends continuously 
on the marking of the places according to xcj(t) = 
xmax j. min (mk(t) / w

PR
kj), for all Pk  °Tj, where °Tj 

stands for the set of Tj upstream places. A marked 
CPN has a steady state if the marking vector Mc(t) 
tends to a finite limit Mmmc in long run.  

According to the function “min(.)”, the marking 
space of CPNs is divided into K regions Ak 
(eventually empty) with K = |°T1| x… x |°Tq|. Each 
region Ak is defined by its PT-set (Julvez et al. 
2005) defined according to (3): 
 

PT-set(Ak) = {(Pi, Tj) s.t.  Mc(t)  Ak, 
            xcj(t) = xmax j(t).mci(t)/w

PR
ij} (3)

 

The place Pi such that i = argmin (mk(t) / w
PR

kj) 
for all Pk  °Tj is the critical place for transition Tj at 
time t. A constraint matrix Ak = (ak

ij)  (R+)q x n, k = 
1,…,K, i = 1,..., q and j = 1,..., n is defined for each 
region Ak according to the corresponding PT-set: ak

ij 
= 1/wPR

ji if (Pi, Tj)  PT-set(Ak) and ak
ij = 0 

elsewhere. For each region Ak, equation (4) holds: 
 

 Mc(t)  Ak, dMc(t) / dt = W. Xmax.Ak.Mc(t) (4)

Definition: A region Ak is critical if there exists two 
transitions Tj and Tk that have the same critical place 
Pi in region Ak.  
Proposition 1: Marking Mc  Ak iff Mc satisfies (5): 

  

൮

െܫ୬
ሺ݇ሻܣ
்ܻ

െ்ܻ

൲ ௖ܯ.  ቌ

0
0
C
െC

ቍ  (5)

with In and the identity matrix of size n and: 
 

ሺ݇ሻܣ ൌ ൭ … ൱ሺܼାሻ௤.ሺ௄ିଵሻ୶ ௡ (6)
 

Proof: Equation (5) results from the definition of 
PT-sets and P-semiflows of the PN. The equation  
-In.Mc  0 stands for the positivity of the marking. 
The equation A(k).Mc = 0 defines the region borders 
according to the “min” functions. Finally, the 
equation YT.MC  C and -YT.MC  -C result from the 
P-semiflows.� 

2.3 Continuous Approximation of 
SPNs 

Numerous structural and behavioural properties are 
not preserved with fluidification (Silva and Recalde 
2004). The average throughput and mean marking of 
a CPN are mainly not identical to the ones of a 
discrete PN (Julvez et al., 2005, Lefebvre et al., 
2009). Concerning SPNs, the steady state is mainly 
often different from the one of a CPN with same 
parameters (xmaxj = j j = 1,...,q). The asymptotic 
mean markings of SPNs can be approximated with 
the steady state of CPNs if all transitions remain 
enabled with degree at least 1 in long run and the 
marking vector does not leave the region of initial 
marking in long run (Vasquez et al, 2008). These 
conditions limit strongly the interest of 
fluidification. In our preceding works, we have 
investigated the limit of fluidification for the 
approximation of SPNs. CPNs with a modified set of 
maximal firing speed can be used to approximate the 
mean marking in non critical regions (Lefebvre and 
Leclercq 2010). In the next section, we continue this 
investigation for critical regions. 

3 HOMOTHETIC ESTIMATION 

Let consider the problem to reach Mmms when 
Mmms  Ai (eventually critical) and MI  Ak (non 
critical) with Ai  Ak. The proposition 2 provides 
conditions to work out admissible but partial 
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homothetic transformations of ratio  such that 
(.(M’mms1)T (M”mms2)

T)T  Ak. Then a CPN with 
modified constant maximal firing speeds (xmaxj  j j 
= 1,...,q) is worked out with proposition 3. This CPN 
approximates .M’mms1.  
 
Proposition 2: Let define M’mms = D.Mmms and 
M”mms2 such that the YT.(.(M’mms1)

T (M”mms2)
T)T = 

C. The condition (.(M’mms1)
T (M”mms2)

T)T  Ak 
holds if  satisfies (7): 

൮

െܫ୬ି୦
ሺ݇ሻܣ
YT

െYT

൲ . Dିଵ. ൬
. Ԣ௠௠௦ଵܯ
௠௠௦ଶ"ܯ

൰  ቌ

0
0
ܥ
െܥ

ቍ (7)

 

Proof: Proposition 2 results from proposition 1 by 
replacing Mc by D-1.D.Mc and by considering the 
partial homothetic transformations of ratio . 
Proposition 2 characterises the intersection of the 
region Ak and the direction Mmms. 
 

Proposition 3: Consider a SPN with MI  Ak (non 
critical) and Mmms  Ai (eventually critical) with Ai  
Ak. Let define the CPN with same structure and 
initial marking. Mc(t) tends asymptotically to Mmmc 

such that M’mmc1 = .M’mms1 if there exist Xmax such 
that Mc(t) satisfies the proposition 1 for all t  0 and 
equation (8) holds: 

W.X୫ୟ୶. A୩. Dିଵ. ൬
. Ԣ௠௠௦ଵܯ
௠௠௦ଶ"ܯ

൰ ൌ  0 (8)
 

Proof: Proposition 3 results from the steady state 
solution of equation (4) and from the partial 
homothetic transformations of ratio .. 
 

The propositions 2 and 3 lead to a 4-stages 
algorithm for estimating Mmms in critical regions. 

Work out the transformation matrix D. 
List the conditions to be satisfied by , so that 

the partial homothetic transformation of Mmms and 
MI are in the same non critical region. 

Work out the modified constant firing speeds 
that drive Mc(t) to Mmmc st M’mmc1 = .M’mms1. 

Recover the asymptotic stochastic mean marking 
Mmms with (1). 

4 EXAMPLE 

Consider for example the marked SPN described in 
fig.1 (Julvez et al. 2005). This PN has 2 P-
semiflows: Y = ((0 0 0 1 1)T (1 1 2 1 0)T)T and C = (4 
5)T. The subsets of places P1 = {P1, P2, P3} and P2 = 
{P4, P5} are defined according to Y and lead to the 
trivial transformation matrix D = I5 (i.e. M’ = M). 

The fig. 2 illustrates stochastic mean markings that 
are reached from MI = (5 0 0 0 4)T according to va- 
rious transitions firing rate vectors   [0 : 10]4.  

 

Figure 1: An example of SPN with MI = (5 0 0 0 4)T. 

If the PN of fig. 1 is considered as a CPN, 4 regions 
A1 to A4 exist. The regions are defined by the 
constraint matrices A1 to A4. 
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The regions are also depicted in figures 2 to 4 
according to the full lines (reachable area limits) and 
dotted lines (regions intersections). 

 

Figure 2: Projection in plan (m1, m2 + 2.m3) of Mmms for 
the SPN of fig. 1 with various vectors   [0 : 10]4. 

The CPN as a single critical region A1 and MI  
A2. The fig. 3 illustrates the asymptotic continuous 
mean markings that are reached from MI and 
according to various maximal firing speeds xmax j  
[0.1 : 10], j = 1,…,4. Some areas in the critical 
region A1 are reachable with SPNs and not with 
CPNs. For examples, the asymptotic mean markings 
Mmms() = (0.6 0.2 1.3 1.6 2.4)T obtained with  = (6 
2 3 0.5)T is in critical region A1 and is not reachable 
with CPN (figs. 2 and 3): Xmax = diag(6 2 3 0.5)T 
leads to Mmmc(Xmax) = (0.1 0.1 0.4 3.9 0.1)T and any 
other maximal firing speeds also fail. 
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Figure 3: Projection in plan (m1, m2+2.m3) of Mmmc for the 
CPN of fig. 1 with various xmax j  [0.1 : 10], j=1,…,4. 

The propositions 2 and 3 are used to work out the 
admissible ratio  and the maximal firing speeds 
that lead to homothetic approximations of 
Mmms1(SPN) . In the region A2, (7) leads to (10): 
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(9)

and then to the admissible interval   [5/(2.mmms1+ 
mmms2+2.mmms3) : 5/(mmms1+mmms2+2.mmms3)]. For the 
considered example   [1.26: 1.48]. The figure 4 
illustrates various homothetic marking trajectories 
for SPN obtained for some values of parameter  in 
admissible interval in order to reach .M’mms1(μ). 

 

Figure 4: Projection in plan (m1, m2+2.m3) of the 
homothetic convergence to .M’mms(μ). 

The proposition 3 is used to work out the set of the 
admissible maximal firing speeds that depend on the 
parameter  such that the CPN with same structure 
and initial marking tends to Mmms: 
xmax1  = 2.xmax4.mmms3 / mmms1  
xmax2  = .xmax4. mmms3 / (5-.(mmms1+mmms2+2.mmms3)) 
xmax3  = xmax4 mmms3 / mmms2 (10) 

where xmax4 is a dof. For example, consider the 
particular homothetic ratio  = 4/3. The trajectory 
(dotted line in figure 4), obtained for Xmax =(4.25, 
3.41, 6, 1) results in asymptotic marking m’mmc1 = 
0.80, m’mmc2 = 0.28, m’mmc3 = 1.71. From this 
approximation, it is easy to recover the asymptotic 
stochastic mean marking Mmms(). 

5 CONCLUSIONS 

This paper has proposed partial homothetic 
transformations of the SPN mean marking to 
approximate. The proposed results concern the 
existence of solutions but are not constructive in the 
sense that the asymptotic stochastic mean markings 
to estimate by CPNs must a priori be known. The 
selection of the best projectors and ratios will be 
investigated in our further works. Our future work is 
also to investigate continuous approximations 
directly derived from the SPNs transition firing 
rates.  
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