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Abstract: An accumulator system used for a special application of anonymous credential is extended by Liet al to a much
wider range of applications: membership proof and non-membership proof. Given a committed secret integer
and a public finite set of prime integers, two proof protocols, membership proof and non-membership proof
are proposed in the extended scheme. The former proves that the integer is in the set when it is really in, while
the latter proves that the integer is not in the set when it is really not in. Although the original accumulator
technique works well in its appointed special application, the extension is insecure and vulnerable to attacks.
Several attacks against membership proof and non-membership proof in the extended work is proposed in this
paper to show its vulnerability in security. The attacks show that an attacker can employ various methods to
give membership proof to an integer not in the set and non-membership proof to an integer in the set.

1 INTRODUCTION

An accumulator system is designed in (Camenisch
and Lysyanskaya, 2002) for application to anonymous
credential. The original design is very efficient and
achieves provable security in its special application.
In (Li et al., 2007), the technique in (Camenisch and
Lysyanskaya, 2002) is generalized and extended to
solve a much more general question: membership
proof and non-membership proof. Membership proof
proves a secret committed integer is in a finite set,
while non-membership proof proves a secret commit-
ted integer is not in a finite set. These two proofs
have a much wider range of applications than the orig-
inal special accumulator system in (Camenisch and
Lysyanskaya, 2002) and are frequently used in vari-
ous cryptographic applications.

In (Li et al., 2007) an accumulator is generated
for the set, which stands for the integers in the set in
a more brief form. For any integer in the set, a mem-
bership witness is generated, which can show mem-
bership of the integer when checked against the ac-
cumulator. When proving membership of an integer,
a prover only needs to show knowledge of the mem-
bership witness in a zero knowledge proof. For any
integer not in the set, a non-membership witness is
generated, which can show non-membership of the
integer when checked against the accumulator. When
proving non-membership of an integer, a prover only
needs to show knowledge of the non-membership wit-

ness in a zero knowledge proof.
As the original accumulator system (Camenisch

and Lysyanskaya, 2002) works in a special applica-
tion with strict limitations on parameter setting, par-
ticipants’ roles and application environment, the sim-
ple extension (Li et al., 2007) is too wide and not
secure. In this paper, the extended work is demon-
strated to be vulnerable to attacks against its sound-
ness, where soundness of membership proof and non-
membership proof are defined as follows.

Definition 1 . (Soundness of membership proof). If a
committed integer is not in the set, the probability that
the prover can pass the verification in the membership
proof protocol is negligible.

Definition 2 . (Soundness of non-membership proof).
If a committed integer is in the set, the probability
that the prover can pass the verification in the non-
membership proof protocol is negligible.

In this paper, firstly an attacking algorithm is pro-
posed to employ Euclidean algorithm and the Chi-
nese remainder theorem to extract a secret parame-
ter calledφ(n) in (Li et al., 2007). Then four attacks
are designed, two to compromise soundness of mem-
bership proof in (Li et al., 2007) and two to compro-
mise soundness of non-membership proof in (Li et al.,
2007). The attacks show that even if a prover com-
mits to an integer not in the set, he can still pass the
membership proof with a non-negligible probability.
Moreover, using the attacks, even if a prover com-
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mits to an integer in the set, he can still pass the non-
membership proof with a non-negligible probability.

It is demonstrated that membership proof and non-
membership proof in (Li et al., 2007) are vulnerable
to even more attacks. The main reason for vulnera-
bility of the membership proof and non-membership
proof in (Li et al., 2007) is that it bases a general and
wide-range solution on a very special and strictly lim-
ited technique. Actually the technique in (Camenisch
and Lysyanskaya, 2002) is not suitable for the gen-
eral applications in (Li et al., 2007). The author of
(Camenisch and Lysyanskaya, 2002) suggests that in
general membership proof, the general-purpose tech-
nique in (Camenisch et al., 2008) should be used.

2 THE NON-MEMBERSHIP
PROOF SCHEME IN (Li et al.,
2007)

In (Li et al., 2007), a non-membership proof scheme
is proposed, which shows non-membership of an in-
teger using its non-membership witness. As we state
before, besides non-membership witness it provides
membership witness, so supports membership proof
as well. Its design includes generation and update
of accumulator, generation and update of member-
ship witnesses and non-membership witnesses and
the proof protocols to use them. Firstly, the impor-
tant symbols used in (Li et al., 2007) are as follows.

• k is a system parameter andn is a composite of
lengthk. n= pq, p= 2p′+1, q= 2q′+1, p and
q have equal length andp,q, p′,q′ are all prime
integers.

• SetGf contains all the quadratic residues inZn.
Integersg and h are in Gf such that loggh is
unknown to any prover to carry out membership
proof or non-membership proof.

• Xk denotes all the primes inZ2l wherel = ⌊k/2⌋−
2.

• The setX regarding which membership proof and
non-membership proof are performed may be any
subset ofXk. Namely,X = {x1,x2, . . . ,xm} where
xi ∈ Xk for i = 1,2, . . . ,m andm is no more than
the cardinality ofXk.

• n1 is a special RSA modulus of lengthk1.

• h1 is a random value inQRn1, the subset contain-
ing all the quadratic residues inZn1. g1 is a ran-
dom value in the group generated byh1.

• A secret integers is committed inc1 = gs
1hr

1 mod
n1 wherer is randomly chosen formZn1.

For each integerx∈ X, there is a membership wit-
nesscx such thatcx

x = c modn wherec is a public in-
teger called the accumulator value in (Camenisch and
Lysyanskaya, 2002). To prove that the integer com-
mitted inc1 is in X, a prover has to prove knowledge
of secret integersx, r andcx such that

c1 = gx
1hr

1 modn1 (1)

cx
x = c modn (2)

x∈ Z2l (3)

The accumulator valuec is equal tog∏m
i=1xi modn,

which is public information onceX is published. Dif-
ferent parties may have different methods to calculate

cx, which should be equal tog∏
xi 6=x
1≤i≤mxi modn. For

example, onceX is published, a prover can calculate

cx = g∏
xi 6=x
1≤i≤mxi modn.

For each integerx /∈ X but in Xk, there is a non-
membership witness(a,d) such thatca = dxg modn.
To prove that the integer committed inc1 is not inX,
a prover has to prove knowledge of secret integersx,
r, a andd such that

c1 = gx
1hr

1 modn1 (4)

ca = dxg modn (5)

x∈ Z2l (6)

a∈ Z2l (7)

The method to generatea and d for x in (Li et al.,
2007) is as follows whereu′ = u modφ(n) andu =
∏m

i=1xi .

• If gcd(x,u′) = 1, integersa andb are calculated
such thatau′+bx= 1, andd = g−b modn.

• If gcd(x,u′) 6= 1, integersa andb are calculated
such thatau+bx= 1. Thenb′ = b modφ(n) and
d = g−b′ modn.

3 ATTACKS TO COMPROMISE
SOUNDNESS OF MEMBERSHIP
PROOF AND
NON-MEMBERSHIP PROOF

Firstly, an attacking algorithm is proposed to extract
a multiple ofφ(n). Then Four attacks are designed
to compromise soundness of membership proof and
non-membership proof in (Li et al., 2007). Finally,
less important attacks easier to prevent are mentioned.

3.1 An Attacking Algorithm

With a non-negligible probability, an attacker can cal-
culate a multiple ofφ(n) in polynomial time using
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some non-membership witnesses. Firstly, using the
following attacking algorithm, the attacker can cal-
culate the remainder ofn modulo an integer when
gcd(x,u′) = 1.

1. If gcd(x,u′) = 1, the non-membership witness for
x is a andd such that

au′+bx= 1 (8)

andd = g−b modn.

2. Obviously,gcd(a,x) = 1, otherwiseau′+bxcan-
not be 1 but will be a multiple ofgcd(a,x). So
using Euclidean algorithm, the attack can calcu-
late in polynomial time integersµ andβ such that

aµ+βx= 1. (9)

3. (8)-(9) yields

a(u′−µ) = x(β−b)

As gcd(a,x) = 1, x must be a factor ofu′ − µ.
Namely

u′ = µ modx

The attacking algorithm shows that althoughb
is not revealed in the non-membership witness Eu-
clidean algorithm can be employed to calculate
u′ modx from a andx. Repeating the attacking algo-
rithm using multiple different instances ofx in Xk such
that the product of the multiple instances ofx is larger
thanφ(n), the attacker can calculateu′ in polynomial
time using the Chinese remainder theorem. Note that
u′ = u modφ(n). So the prover obtains a multiple of
φ(n) using polynomial calculation:u− u′. As n is a
composite of lengthk, Xk denotes all the primes inZ2l

where l = ⌊k/2⌋− 2 andx,x1,x2, . . . ,xm are chosen
from Xk, with a non-negligible probability

• u> φ(n) and thusu−u′ 6= 0;

• the product of a small number of integers inXk
is larger thanφ(n) and thus a small number of
non-membership witnesses are enough to apply
the Chinese remainder theorem.

So, the an attacker can obtain a multiple ofφ(n) in
the fromu− u′ using polynomial calculation with a
non-negligible probability.

3.2 Four Concrete Attacks

With knowledge of a multiple ofφ(n), various attacks
can be launched. For example, a prover can commit to
an integer not inX in c′ but still pass the membership
proof as follows.

Algorithm 1 . The first attack against membership
proof.

1. The prover commits to x= u−u′+xI in gx
1hr

1 mod
n1 where1≤ I ≤m and r is randomly chosen from
Zn1.

2. The prover calculates cx = g∏I−1
i=1 xi ∏m

i=I+1xi modn.
3. The prover proves his knowledge of x, r and cx

to satisfy (1), (2) and (3). As the order of Gf is
φ(n)/4, u−u′ is a multiple of the order of g. So

cx
x = (g∏I−1

i=1 xi ∏m
i=I+1xi )u−u′+xI

= g(∏
I−1
i=1 xi)(u−u′+xI )∏m

i=I+1xi = g(∏
I−1
i=1 xi )xI ∏m

i=I+1xi

= g∏m
i=1xi = c modn.

Therefore, the prover can successfully prove
knowledge of secret integers x= u−u′+xI , r and
cx such that

c1 = gx
1hr

1 modn1

cx
x = c modn.

As the probability that x∈ Z2l is non-negligible
in the given parameter setting, especially when xI
is the smallest integer in X, the probability that
this attack can satisfy (1), (2) and (3) is non-
negligible.

As u− u′ is not a multiple of the order ofg1,
u−u′ + xI andxI are completely different messages
in the commitment algorithm, and so soundness of
membership proof in (Li et al., 2007) is compromised.
Similarly, a prover can commit to an integer chosen
from X in c′ but still pass the non-membership proof
as follows.

Algorithm 2 . The first attack against non-
membership proof.

1. The prover commits to xI in gx
1hr

1 modn1 where
1≤ I ≤ m and r is randomly chosen form Zn1.

2. The prover employs Euclidean algorithm to cal-
culate integers a and b such that

a(∏I−1
i=1 xi)(u−u′+ xI )∏m

i=I+1xi +bx= 1.

As

gcd(x,(∏I−1
i=1 xi)(u−u′+ xI)∏m

i=I+1xi)

= gcd(xI ,(∏I−1
i=1 xi)(u−u′+ xI )∏m

i=I+1xi) = 1

except for a negligible probability, the prover can
calculate a and b to satisfy (10) except for a
negligible probability. He then calculate d=
g−b modn.

3. The prover proves his knowledge of x, r, a and d
to satisfy (4), (5), (6) and (7). More precisely, he
proves x, r and the integers he obtains, a and d, to
satisfy

c1 = gx
1hr

1 modn1

ca = dxg modn

VULNERABILITY OF A NON-MEMBERSHIP PROOF SCHEME

421



Note that

dxg= (g−b)xg= g1−bx = ga(∏I−1
i=1 xi)(u−u′+xI )∏m

i=I+1 xi

As the order of Gf is φ(n)/4, u−u′ is a multiple
of the order of g. So (10) implies

dxg= ga(∏I−1
i=1 xi )xI ∏m

i=I+1 xi = (g∏m
i=1 xi )a = ca modn.

So the prover can satisfy (4) and (5). Moreover,
x ∈ Z2l and as shown in (Li et al., 2007) with a
non-negligible probability a calculated as above
is in Z2l . So the prover can satisfy (4), (5), (6) and
(7) with a non-negligible probability.

As u−u′ is not a multiple of the order ofg1, u−
u′ + xI and xI are completely different messages in
the commitment algorithm, and so soundness of non-
membership proof in (Li et al., 2007) is compromised.

The two attacks above are not always successful,
but only succeed with a non-negligible probability.
Moreover, the attack against membership proof can-
not work with anyx in Xk but need to specially choose
x as the sum of an integer inX and a multiple ofu−u′.
To overcome these two limitations, two more pow-
erful attacks are proposed in the following, attacking
membership proof and non-membership proof respec-
tively.

Algorithm 3 . The second attack against membership
proof.

1. A prover randomly chooses x in Xk but not in X
and publishes c1 = gx

1hr
1 modn1 where r is ran-

domly chosen form Zn1.

2. The prover calculates z= x−1 modu− u′ and
cx = cz modn. Note that gcd(x,u−u′) = 1 except
for a negligible probability so cx can be success-
fully calculated except for a negligible probability.

3. The prover proves his knowledge of x, r and cx to
satisfy (1), (2) and (3). As

cx
x = czx= c1+v(u−u′) modn

where v is an integer and the order of c isφ(n)/4,
a factor of u−u′,

cx
x = c modn

is satisfied. As x∈ Xk ⊂ Z2l , (1), (2) and (3) are
satisfied. Namely, the attack is successful.

Algorithm 4 . The second attack against non-
membership proof.

1. A prover randomly chooses x in X and publishes
c1 = gx

1hr
1 modn1 where r is randomly chosen

form Zn1.
2. The prover randomly chooses a in Z2l and cal-

culates z= x−1 modu−u′. Note that gcd(x,u−
u′) = 1 except for a negligible probability so z can
be successfully calculated except for a negligible
probability.

3. The prover calculates d= (ca/g)z modn.
4. The prover proves his knowledge of x, r, a and d

to satisfy (4), (5), (6) and (7). As

dxg= (ca/g)xzg= (ca/g)1+v(u−u′)g modn

where v is an integer and the order of c isφ(n)/4,
a factor of u−u′,

dxg= ca modn

is satisfied. As x∈ X ⊂ Z2l and a∈ Z2l , (4), (5),
(6) and (7) are satisfied. Namely, the attack is suc-
cessful.

The last two attacks compromise soundness of
membership proof and non-membershipproof respec-
tively. They are more effective and harmful than the
first two attacks.

4 CONCLUSIONS

The non-membership proof scheme in (Li et al., 2007)
is insecure and vulnerable to various attacks. Its
soundness is unreliable and its applications must be
very cautious.
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