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Abstract: Robotic SLAM is attempting to learn robots what human beings do nearly effortlessly: to navigate in an 
unknown environment and to map it in the same time. In spite of huge advance in this area, nowadays 
SLAM solutions are not yet ready to enter the real world. In this paper, we observe the state of the art in ex-
isting SLAM techniques and identify semantic SLAM as one of prospective directions in robotic mapping 
research. We position our initial research into this field and propose a human inspired concept of SLAM 
based on understanding of the scene via its semantic analysis. First simulation results, using a virtual hu-
manoid robot are presented to illustrate our approach. 

1 INTRODUCTION 

In mobile robotics, the ability of self-localization is 
crucial. In fact, knowing precisely where the robot is 
and what kind of objects surround it in a given mo-
ment enables it to navigate autonomously. An in-
formal definition of the Simultaneous Localisation 
And Mapping (SLAM) says it as a process, in which 
a mobile robot explores an unknown environment, 
creates a map of it and uses it simultaneously to 
infer its own position. The real environment is usu-
ally complex and dynamic and it is not easy to inter-
pret. This complexity makes SLAM a challenging 
task. A comprehensive list of nowadays most com-
mon SLAM techniques can be found in (Durrant-
Whyte, et al., 2006a), (Durrant-Whyte, et al., 2006b) 
or (Muhammad, et al., 2009). Although from its 
beginning a significant advance has been achieved 
(Thrun, et al., 2008), SLAM is not yet a solved prob-
lem. Performing SLAM in dynamic environment 
(Hahnel, et al., 2003) or understanding the mapped 
environment by including semantics into maps 
(Nüchter, et al., 2008) are the actual challenges. 

In this paper, the state of the art in SLAM is in-
vestigated. A relatively new field of research is iden-
tified, which is attempts to perform SLAM with the 
aid of semantic information extracted from sensors. 
As one of the research interests of our laboratory 
(LISSI) is autonomous robotics notably in relation to 
humanoid robots, we are convinced that the research 
on semantic SLAM will bring a useful contribution. 

We position our initial research into this field, draw-
ing our inspiration from the human way of naviga-
tion. Contrary the precise and “global” approach to 
most current SLAM techniques, the human way of 
doing is based on very fuzzy description of the 
world and it gives preference to local surroundings 
of the navigation backdrop. A simulation using a 
humanoid robot Nao is presented to demonstrate 
some of the proposed ideas. The real Nao will be 
used in our further work.  

The paper is organized in the following way: sec-
tion 2 focuses on the state of the art in semantic 
SLAM. In the third section, our approach to image 
segmentation and scene interpretation is discussed. 
Section 4 gives an overview of our robotic human-
oid platform. The fifth section presents our initial 
results and the paper concludes with section 6. 

2 SEMANTIC SLAM 

One of the latest research directions on the field of 
SLAM is the so-called semantic SLAM. The con-
cept may be perceived as being very important for 
future mobile robots, especially the humanoid ones, 
which will interact with humans and perform tasks 
in human-made environment. In fact, it is this inter-
action, which is one of important motives for em-
ploying semantics in robotic SLAM as humanoids 
are particularly expected to share the living space 
with humans and to communicate with them. 

360
Maximilián Ramík D., Sabourin C. and Madani K. (2010).
TOWARDS HUMAN INSPIRED SEMANTIC SLAM.
In Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics, pages 360-363
DOI: 10.5220/0002912303600363
Copyright c
 SciTePress



 One way of adding semantics to SLAM may be 
the introduction of human spatial concepts into 
maps. Humans usually do not use metrics to locate 
themselves but rather object-centric concepts (“I am 
near the sink” and not “I am on [12, 59]”) and they 
fluently switch between reference points rather than 
using global coordinates. Moreover, the presence of 
certain objects is often an important clue to recog-
nize a place. This problem is addressed in 
(Vasudevan, et al., 2007). Here, the world is repre-
sented topologically; place recognition is performed 
based on probability of presence of objects in an 
indoor environment. The work shows a study aimed 
to understand human concepts of place recognition. 
It proposes that humans understand places by pres-
ence or absence of significant objects. Place classifi-
cation by presence of objects has been used by 
(Galindo, et al., 2005), where low-level spatial in-
formation is linked to high-level semantics. Their 
robot has interfaced with humans and performed 
tasks based on high-level commands involving ro-
bots “understanding” of the meaning of place names 
for path planning. However, object recognition is 
black-boxed here. In (Persson, et al., 2007) a system 
is developed to map an outdoor area, generating a 
semantic map with buildings and non-buildings 
labelled. In (Nüchter, et al., 2008), a more general 
system is presented with a robot equipped by a 3D 
laser scanner evolving in an indoor environment and 
constructing a 3D semantic map. The processing is 
based on Prolog clauses enveloping pre-designed 
prior knowledge about the environment enabling the 
robot to reason about the environment. In (Ekvall, et 
al., 2006), object recognition is performed by a robot 
equipped by a laser range finder and a camera. A 
semantic structure is extracted from the environment 
and integrated to robots map. Another semantic 
mapping technique is shown in (Meger, et al., 2008) 
including an attention system. 

3 IMAGE SEGMENTATION AND 
SCENE INTERPRETATION 

Section 2 showed the pertinence of semantic SLAM 
for state of the art robotic mapping. It is this field, on 
which we are focusing our research. Our motivation 
comes from the natural ability of human beings to 
navigate seamlessly in complex environments. To 
describe a place, we use often very fuzzy language 
expressions and approximation (see (Vasudevan, et 
al., 2007)) in contrast to current SLAM algorithms. 
An interesting point is that people are able to infer 

distance of an object using its apparent size and their 
experience of object’s true size. Recognition of 
objects and understanding their nature is an integral 
part of “human SLAM”. We believe that application 
of semantics and human inspired scene description 
could bring a considerable benefit in development of 
robust SLAM applications for autonomous robotics. 

For scene interpretation, the image has to be 
segmented first. Although many image segmentation 
algorithms exist (see (Lucchese, et al., 2001) for a 
reference), not all are suitable for mobile robotics 
due to need of real-time processing. We implement a 
fast algorithm that breaks the input image into parts 
containing similar colors with less attention to the 
brightness. We have chosen the YCbCr color model 
with Y channel dedicated to the luminance compo-
nent of the image and other two channels Cb and Cr 
containing respectively the blue and the red chro-
minance component. Unlike RGB, the YCbCr model 
separates the luminance and the color into different 
channels making it more practical for our purposes. 

Our algorithm works in a coarse-to-fine manner. 
First, the contrast is stretched and median filter is 
applied to the Cr and Cb components. Then the first 
available pixel not belonging to a detected compo-
nent is chosen as a seed point. Eq. 1 captures how a 
seed point is used to extract the segment of interest 
(S). P stands for all the pixels in the image, whereas 
p is the actually examined pixel. Predicate C is true 
if its arguments (p, ps) are in four-connectivity. I 
stands for the pixel’s intensity. Seed pixel is denoted 
by ps. A pixel of the image belongs to the segment S 
if the difference of intensities of the current and the 
seed pixel is smaller than a threshold and there exists 
a four-connectivity between it and the seed pixel 

∀p∈P; C(p, ps) & |I(p) – I(ps)| < ε → p ∈ S . (1)

Using this on both chroma sub-images we obtain 
segments denoted as SCr and SCb. A new segment S 
is then obtained following Eq. 2 as the intersection 
of segments found on both chroma sub-images with-
out pixels already belonging to an existing segment 

S = SCr ∩ SCb - Sall. (2)

At the end of the scan, a provisory map of de-
tected segments is available, but the image is often 
oversegmented. In the second step, all the segments 
are sorted by their area and beginning with the larg-
est one the segmentation is run again. This time the 
seed point is determined as the pixel from the skele-
ton whose distance to its closest contour pixel is 
maximal. By this step, similar segments from the 
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previous step are merged. The ultimate step is con-
struction of a luminance histogram of each segment. 
If multiple significant clusters are found in the his-
togram, the segment is broken-up accordingly to 
separate them. 

Now, the segments are labeled with linguistic 
terms describing their adjacency to each other hori-
zontal and vertical position and span on the image. 
The average color, its variance and the compactness 
(Q) of the segment is computed following Eq. 3, 
where n denotes the area of the segment and o the 
number of contour pixels. 

Q = 4πn / o2. (3)

 These features are used in a set of linguistic 
rules - the prior knowledge about the world. The aim 
is to determine the nature of segments and their 
appurtenance to an object of the perceived environ-
ment. E.g. a compact segment found in mid-height 
level surrounded by the wall is considered as a 
“window”, small compact segments adjacent to the 
floor are denoted a “box”, wide span grayish seg-
ment adjacent to the ceiling is labeled a “wall” etc. 

4 NAO, THE HUMANOID ROBOT 

The robotic platform we use is described in this 
section. It is based on Nao, a humanoid robot manu-
factured by Aldebaran Robotics1. The robot is about 
58cm high with weight slightly exceeding 4kg with 
25 DOF. Among others sensors it is equipped with 
two non-stereo 640x480px CMOS cameras. For 
simulations, a virtual version of Nao is available for 
the Webots simulation program developed by Cy-
berbotics2. For development purposes, we have 
chosen URBI language created by Gostai3 and aimed 
specially to robotics. It allows fast development of 
complex behaviours for robots and provides a simple 
way of managing parallel processes. LibURBI con-
nectors allow user to develop own objects using so 
called UObject architecture and to plug them into 
the language. These objects can be developed in 
C++, Matlab or Java code. For the demo simulation 
presented in the next section, we used the simulated 
robot mentioned above and we are going to use the 
real one in our further research. 

The task itself may be not perceived as being 
strictly specific for humanoid robots. However, the  

                                                           
1 http://www.aldebaran-robotics.com 
2 http://www.cyberbotics.com/ 
3 http://www.gostai.com/ 

 
Figure 1: A view of the robot’s random walking sequence. 
The left image is the original one. The right one shows 
segments detected during the segmentation phase. 

motivation to use humanoid robots comes from the 
fact, that they are specially designed with the aim to 
interact with humans and to act in a human-made 
environment. The concepts we are exploiting here 
come from human approach to navigation and orien-
tation in the space, thus embedding such human 
inspired semantic SLAM capabilities onto a huma-
noid robotic platform seems pertinent to us. 

5 RESULTS 

As a demonstration of some of the mentioned prin-
ciples, we present a simulation using Webots, where 
a virtual Nao is walking through a room with objects 
(cubes) of different colors inside it. The YCrCb 
image, acquired by Nao’s front camera is segmented 
using our fast segmentation algorithm described in 
the precedent section (see Fig. 1). The processing 
speed is several tens of ms for a 320x240 frame on a 
2GHz CPU Intel C2D. 

After having the image segmented, all segments 
are labeled and interpreted by a set of prior know-
ledge rules. Segments can be even merged using 
these rules to cope with partial occlusions. The “se-
mantic” information is used to approximate the ac-
tual distance of objects. Having an object of type 
“window”, its typical size is looked up in the memo-
ry (at this stage, the dimensions are known a-priori 
as the actual learning of object sizes is supposed to 
be addressed in the future work). The size informa-
tion is used along with the apparent size of the ob-
ject to compute its approximate distance (see Fig. 2). 
This is described by Eq. 4 (simplified for horizontal 
size only). The distance d to an object is the product 
of estimated real width wreal of the object and tan-
gent of its width in pixels wpx on the image multip-
lied by fraction of the horizontal field of view ϕ and 
the width wimg of the image in pixels 

d = wreal * tan ( wpx * ϕ / wimg ) .  (4) 
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The aim of this calculation is absolutely not to in-
fer the exact distance of an object, but rather to de-
termine whether it is “far” or “near” in the context of 
the world. This can help in further process of crea-
tion of the map of the location. Resigning to precise 
metric position of every object in the mapped world 
and replacing it only by rough metric and human 
expressions like “near to” or “beside of” is believed 
to enable us to create faster and more robust algo-
rithms for SLAM. Using “object landmarks” to 
navigate in an environment is certainly more mea-
ningful that using e.g. simple points as in case of 
classical SLAM. 

 Precise metric information of course has still its 
role here, but only in some specific cases like close 
obstacle avoidance or disclosure to grasp an object 
and notably when the robot is learning typical sizes 
of objects to enable inference of their distance when 
they are seen again. 

 
Figure 2: The same view as in case of Fig. 1 after the 
interpretation phase. Some of the detected objects are 
labeled. The opposing wall is labeled also with its approx-
imate distance with respect to the robot. 

6 CONCLUSIONS 

State of the art techniques have been discussed in 
this paper. In spite of a great advance in past years, a 
generally usable SLAM solution is still missing. We 
identify the pertinence of semantic SLAM for the 
future of mobile robotics and we present our initial 
research on this field inspired by the human way of 
navigation and place description. We show a con-
cept of a prospective semantic SLAM algorithm 
driven by object recognition and the use of human 
spatial concepts. 

 For description of a scene by semantic means, a 
fast and efficient algorithm for image segmentation 
is an important starting point. A part of our future 
work will be dedicated to further development of 
such an algorithm. Another part of our future work 

will be focused on development of algorithms of 
semantic SLAM we outlined in this paper. They will 
be consequently implanted and verified in an indoor 
environment on the real Nao robot. 
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