
A UNIFIED WEB-BASED FRAMEWORK FOR JAVA CODE
ANALYSIS AND EVOLUTIONARY AUTOMATIC

TEST-CASES GENERATION

Anastasis A. Sofokleous, Panagiotis Petsas
Department of Computer Science, University of Cyprus, 75 Kallipoleos Str., P.O.Box 20537, CY1678, Nicosia, Cyprus

Andreas S. Andreou
Department of Electrical Engineering and Information Technologie, Cyprus University of Technology

31 Archbishop Kyprianos Str., 3036 Lemesos, Cyprus

Keywords: Automatic test-case generation, Edge/condition coverage, k-Tuples coverage, Genetic algorithms.

Abstract: This paper describes the implementation and integration of code analysis and testing systems in a unified
web-enabled framework. The former analyses basic programs written in Java and constructs the control-
flow, data-flow and dependence graph(s), whereas the testing system collaborates with the analysis system
to automatically generate and evaluate test-cases with respect to control flow and data flow criteria. The
present work describes the design and implementation details of the framework and presents preliminary
experimental results.

1 INTRODUCTION

Most work on software testing uses control and data
flow graphs for examining the program under
testing, extracting paths of interest and retrieving
other important program information that can
improve the efficiency of the testing process.
Program models, such as control-flow graphs, can
present useful information to the experienced
programmers. Combined with automated test-case
generation tools, control flow graphs can assist in
the evaluation of testing adequacy, e.g. with the
definition and use of a code coverage criterion. Code
Analysis Systems can be used in both random and
dynamic test data generators (Bertolino 2007,
Godefroid et al 2005). Several test data generation
schemes have been proposed, the most recent of
which use genetic algorithms for exploring the huge
search spaces of input values and determine the near
to optimum solutions (Ghiduk et al 2007).

Many approaches have been proposed over time
as standalone systems, console application and tools,
presenting the core features of software testing
systems. This work integrates core software testing
subsystems into a web-enabled framework and

expands the functionality of previous studies
(Sofokleous and Andreou 2008b).

The rest of the paper is organized as follows:
Section 2 presents related work and compares
similar frameworks and tools. Section 3 describes in
detail the proposed testing framework and section 4
introduces the reader to the supporting prototype
software application and describes the evaluation
procedure and some preliminary experimental
results. Section 5 concludes the paper and proposes
future research steps.

2 RELATED WORK

The proposed framework analyzes source-code
written in Java and creates and visualizes control-
flow, dataflow and dependence graphs. Dedicated
modules of the framework generate test-cases in
relation to a variety of coverage adequacy criteria
defined on the control-flow and dataflow graphs of
the selected source-code. Most test-data generation
approaches use the source code to analyze the
program under testing and guide the test process
(Andrews et al 2006), whereas other approaches

407A. Sofokleous A., Petsas P. and S. Andreou A. (2010).
A UNIFIED WEB-BASED FRAMEWORK FOR JAVA CODE ANALYSIS AND EVOLUTIONARY AUTOMATIC TEST-CASES GENERATION.
In Proceedings of the 12th International Conference on Enterprise Information Systems - Databases and Information Systems Integration, pages
407-410
DOI: 10.5220/0002911704070410
Copyright c© SciTePress

generate test-cases using the binary code or the Java
Bytecodes, often with the assistance of the JVM
Debugger Interface. This framework extends
previous work, and specifically, it integrates
components which analyze the code and create the
control-flow, data-flow and dependence graphs
(Sofokleous and Andreou 2008b, Sofokleous and
Andreou 2008a). The proposed framework utilizes
genetic algorithms for generating test cases
according to the to edge/condition and the k-tuples
criteria (Zhu et al 1997, Ntafos 1984). Genetic
algorithms (GA) have gained their reputation in the
area of test data generation in the last ten years as
they are able to search a large search space of
possible program inputs and reach to a set of near to
optimal solutions, resulting in high code coverage.

This work studies and compares some of the
most popular software testing and analysis
frameworks currently available: Clover – CL
(Clover 2009), Java Quality Solution - JQS (Java
Quality Solution 1996), Parasoft Jtest – JT (Jtest
2007), Java Coverage Validator – JCV (Java
Coverage Validator 2002), Quilt – QU (Quilt 2001),
JCover – JC (JCover 2009), ispace – IS (ispace
2006) and Byecycle – BC (Byecycle 2008). Most of
these tools focus on test-case generation and code
coverage; ispace and Byecycle focus on creating
dependence graphs.

Clover (Clover 2009), Jtest (Jtest 2007) and Java
Coverage Validator (Java Coverage Validator 2002)
frameworks execute on the bytecode-level unlike
our framework which uses directly the source code.
Analyzing the source-code is more difficult
compared to bytecode-based analysis, which is
neither programming language-specific, nor is
associated with a certain programming style. Source
code based analysis, however, allows better
comprehension and maintenance of the program
under testing, as it is closer to the programmer’s
logic and the business level (e.g. requirements).
Many compilers offer graphs constructed on
intermediate, bytecode or low code. The framework
presented here works on the source code to create
the code graphs necessary for its operations.

Java Quality Solution (Java Quality Solution
1996) and Quilt (Quilt 2001) are capable of creating
data-flow and control-flow graphs, respectively. In
terms of testing coverage, most of the tools use
statement testing coverage; JCover and JTest use up
to branch coverage. The majority of these
frameworks present the coverage results in reports,
e.g. exercised code, in terms of LOC, and the
selected test cases. Some tools, such as Clover, JTest
and JCover produce reports in HTML/XML and/or

charts and diagrams. Our framework presents the
results using both reports and graphs created during
execution. Some of the presented frameworks utilize
built-in rules to minimize design mistakes,
regression testing, thread integrity testing, etc.

Byecycle (Byecycle 2008) is an Eclipse (Eclipse
2009) plug-in and can create a dependence graph
illustrating the dependencies between packages,
classes and interfaces. ispace (ispace 2006) creates
dependence graphs as well, but these graphs show
dependencies not only in an inter-package and inter-
class level but also in more depth, and specifically
between methods of a class. The proposed
framework offers an even more analytic dependence
graph; it can explore in more depth the methods of a
class and can how the dependencies among
statements, methods, inputs of methods,
constructors, classes, control structures and outputs.

3 THE FRAMEWORK

The framework uses a program analyzer that creates
and visualizes Control Flow Graphs (CFG), Data
Flow Graphs (DFG) and Program Dependence
Graphs (PDG) at the class level. The testing system
uses genetic algorithms in order to generate test
cases according to control flow or/and data flow
criteria. The test data generation uses a set of
adequacy criteria, e.g. the branch/condition coverage
criterion and the k-tuples data flow criterion.

The program analysis and test data generation
systems of the framework work closely together so
as to satisfy the coverage criterion selected as
follows:
The user invokes the Load Wizard (User Level,
Figure 1) to select the source code and the type of
graph(s) The Testing System Level of Figure 1
describes the testing layer. The option of testing is
enabled after the analysis of the source code and the
creation of the graph(s). Depending on the graph
created, different types of coverage criteria can be
used; the DF test-case Generation and the CF test-
case Generation Systems are currently supported.
The main difference between these two systems is
the form of the fitness function that evaluates the
generated test data, which, of course, as adapted to
reflect each time the criterion used.
The two systems search for the near to optimum test
cases and present the results to the user; apart from
the optimum set of test cases, the user may view the
coverage percentage, the evolutions and time needed
and the coverage achieved with direct mapping of
execution on the graphs . A test case/path may be

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

408

Figure 1: The prototype software application: a) Load Wizard: Step 1 (Source Code selection), b)Viewing test-cases and
code coverage (Covered Paths), c) Viewing Graph and java syntax-highlighted editor.

highlighted on the graph through an interactive user
interface.

4 PROTOTYPE SOFTWARE
APPLICATION AND
EVALUATION

The framework can run over the internet (online
BPAS 2009). Using the Load Wizard (see figure 1),
the user can select the JAVA source code for testing
and the settings of the analysis, such as the type of
graph to produce. The framework allows the user to
select a program from a list of JAVA files; the
source code of the selected program is downloaded
over the internet and the framework utilizes the
analysis modules and creates and visualizes the
selected graphs. The graph is displayed in an
interactive graph panel. Then the user may
customize settings related to the testing process.
When the test-case generation is over, the results are
presented to the user. The results include
information regarding the GA’s execution and
details of all of the successful test-cases produced in
the chromosomes. This section presents the
preliminary results of experiments carried out with
the framework on a pool of standard and randomly
generated JAVA programs. Each experiment cycle
reported in this section assumes the following

phases: sample source code downloading, parsing,
graph construction and presentation of the graph in
the Graph Panel. Note that this framework is able to
parse large programs in terms of LOC, construct and
graphically represent graphs of source code
consisting of thousands of LOC (our experiments
tested source code of up to 2000 LOC - see Table 1).

Table 1: Experiments on a selection of sample java
programs with varying LOC.

LOC Graph Creation Time (in milliseconds)
CFG DFG PDG

9 1279 1014 1342
12 1341 998 1294
16 1404 1092 1420
31 1545 1186 1466
35 1810 1451 1700
100 2606 24788 2512
5000 64768 61335 63578

5 CONCLUSIONS

This paper presented a web enabled framework that
integrates program analysis and testing systems.
Experiments conducted with a selection of input-
programs show the efficiency of the framework on
the unit testing.

Future work will attempt to enhance the
framework by utilizing other forms of computational

A UNIFIED WEB-BASED FRAMEWORK FOR JAVA CODE ANALYSIS AND EVOLUTIONARY AUTOMATIC
TEST-CASES GENERATION

409

intensive or/and intelligent techniques for automatic
test data production like the Particle Swarm
Optimization and Fuzzy Logic. Furthermore, future
steps will consider integration of the framework with
widely-used development tools and projects such as
NetBeans, (Eclipse 2009), JBuilder and Project
Maven.

REFERENCES

Andrews, J. H., Briand, L. ., Labiche, Y. and Namin, A.
S., 2006, Using Mutation Analysis for Assessing and
Comparing Testing Coverage Criteria, IEEE
Transactions on Software Engineering, 32(8), pp. 608-
624.

Bertolino, A., 2007, Software Testing Research:
Achievements, Challenges, Dreams, in: Proceedings
of the 29th International Conference on Software
Engineering (ICSE 2007): Future of Software
Engineering (FOSE '07), Minneapolis, MN, USA,
May 2007, (IEEE Computer Society: Los Alamitos,
CA, USA), pp 85-103.

BYECYCLE, 2008, byecycle, http://
byecycle.sourceforge.net/ [Date accessed: 2 June
2009].

CLOVER, 2009, clover, http://
www.atlassian.com/software/clover/ [Date accessed:
15 April 2009].

ECLIPSE, 2009, eclipse, http://
www.eclipse.org [Date accessed: 15 May 2009].

Ghiduk, A. S., Harrold, M. J. and Girgis, M. R., 2007,
Using Genetic Algorithms to Aid Test-Data
Generation for Data-Flow Coverage, in: Proceedings
of the 14th Asia-Pacific Software Engineering
Conference (APSEC '07), Nagoya, Japan, December,
(IEEE Computer Society: Washington, DC, USA), pp
41-48.

Godefroid, P., Klarlund, N. and Sen, K., 2005, Dart:
Directed Automated Random Testing, in: Proceedings
of the 2005 ACM SIGPLAN conference on
Programming Language Design and Implementation
(PLDI '05), Chicago, IL, USA, June 2005, (ACM
Press: New York, NY, USA), pp 213-223.

ISPACE, 2006, ISPACE, http://ispace.stribor.de/
index.php?n=Ispace.Home [Date accessed: 28 April
2009].

JAVA COVERAGE VALIDATOR, 2002, java coverage
VALIDATOR - software verification, http://
www.softwareverify.com/java/coverage/feature.html
[Date accessed: 18 April 2009].

JAVA QUALITY SOLUTION, 1996, java quality solution,
http://www.parasoft.com/jsp/solutions/java_solution.js
p [Date accessed: 5 May 2009].

JCOVER, 2009, JCOVER, http://
www.codework.com/JCover/product.html [Date
accessed: 23 May 2009].

JTEST, 2007, jtest, http://
www.parasoft.com/jsp/products/home.jsp?product=Jte
st [Date accessed: 18 April 2009].

Ntafos, S. C., 1984, On required element testing, IEEE
Transactions on Software Engineering, 10(6), pp. 795-
803.

ONLINE BPAS, 2009, online BPAS, http://
www.cs.ucy.ac.cy/~cs04pp2/dist/launch.html [Date
accessed: 15 January 2010].

QUILT, 2001, QUILT, http://quilt.sourceforge.net/ [Date
accessed: 3 May 2009].

Sofokleous, A. and Andreou, A., 2008a, Dynamic Search-
based test data generation focused on data flow paths,
in: Proceedings of the 10th International Conference
on Enterprise Information Systems (ICEIS 2006),
Barcelona, Spain, June, (INSTICC Press: Porto,
Portugal), pp 27-35.

Sofokleous, A. A. and Andreou, A. S., 2008b, Automatic,
evolutionary test data generation for dynamic
software testing, The Journal of Systems & Software,
81(11), pp. 1883-1898.

Zhu, H., Hall, P. and May, J., 1997, Software Unit Test
Coverage and Adequacy, ACM Computing Surveys,
29(4), pp. 366-427.

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

410

