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Abstract: The existence of Multi Agent System (MAS) where agents with different internal architectures interact to 
achieve their goals promotes the need for a language capable of modeling these applications. In this context 
we highlight MAS-ML, a MAS modeling language that performs a conservative extension of UML while 
incorporating agent-related concepts. Nevertheless MAS-ML was developed to support pro-active agents. 
This paper aims to extend MAS-ML to support the modelling of not only proactive but also reactive agents 
based on the architectures described in the literature. 

1 INTRODUCTION 

Nowadays, the agent technology has been widely 
applied to solve a vast set of problems. Russell and 
Norvig (2003) define an agent as an entity that can 
perceive its environment through sensors and act in 
environment through actuators. Unlike objects, agents 
are more complex entities with behavioural properties, 
such as: (i) they are autonomous and not passive, and 
(ii) able to interact through exchange of messages and 
not by explicit task invocation (Wagner, 2003). Multi-
Agent System (MAS) is the sub-area of Artificial 
Intelligence that investigates the behaviour of a set of 
autonomous agents, aiming to resolve a problem that is 
beyond the capacity of a single agent (Jennings, 1996). 

The agent-oriented development paradigm requires 
adequate techniques to explore its benefits and 
features, in order to support the construction and 
maintenance of this type of software (Zambonelli et al., 
2001). A simple agent is classified according to its 
internal architecture that determines distinct agency 
properties, attributes and mental components.  These 
features introduce additional complexity to the system 
development. A MAS may encompass multiple types 

of agents with different internal architectures (Weiss, 
1999). Thus, the existence of a language to support the 
modelling of different internal agent architectures is 
strongly desirable 

Several modelling languages have been proposed 
in the literature to model agents and their systems. One 
of them is called MAS-ML (Multi-Agent System 
Modelling Language) (Silva and Lucena, 2004) (Silva, 
Choren and Lucena, 2008a) that performs a 
conservative extension to UML based on the agent-
oriented concepts defined in the conceptual framework 
TAO (Taming Agents and Objects) (Silva and Lucena, 
2004). In particular, the following characteristics of the 
language can be highlighted: (i) the support for the 
modelling of main MAS entities: agents, organization 
and environments; (ii) the support for conventional 
objects; (iii) the support for modelling static and 
dynamic properties; (iv) the modelling of agent roles, 
that are important while defining agent societies; and 
(v) the  clear justified extension  of the UML 
metamodel to model agent-related properties based on 
TAO (Silva, Choren and Lucena, 2008a). Due to its 
characteristics, MAS-ML is known as one of the main 
adequate modelling language to model MAS.  
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MAS-ML was originally designed to support the 
modelling of only proactive agents that are goal-
oriented entities and guided by pre-established plans. 
However, not all MAS require or permit their agents 
are pro-active, as the case of simulations for an ant 
colony (Dorigo and Stützle, 2004). Create goal-based 
agents with plan in stochastic and partially observable 
environments can be a very complex task (Weiss, 
1999). Therefore, it is fundamental to extend MAS-
ML to be able to model not only proactive agents that 
have pre-defined plans but also reactive ones. In 
addition, MAS-ML should also be able to model 
proactive agents able to create new plans and that use 
utility functions to execute (Russell and Norvig, 2003). 

In this paper, we describe an extension of the 
MAS-ML in order to capture the reactive agents, 
proactive agents with planning and proactive agents 
based on utility functions. The paper is structured as 
follows. The main internal architectures for agents are 
described in Section 2. Section 3 briefly presents MAS-
ML modelling language. The extension of MAS-ML is 
then detailed in Section 4. In Section 5 the modelling  of 
the TAC-SCM (Trading Agent Competition - Supply 
Chain Management) (Sadeh et al., 2003) application is 
presented by using the extended MAS-ML. Related 
works are described in Section 6 and, finally, 
conclusions and future works are discussed in Section 7. 

2 AGENT ARCHITECTURES  

The agent internal architectures can be categorized 
based on proactive and reactive foundations.  

2.1 Simple Reflex Agents 

A simple reflex (or reactive) agent (Russell and 
Norvig, 2003), is considered the most simple internal 
architecture. Condition-action rules are used to select 
the actions based on the current perception. These 
rules follow the form: “if condition then action”, and 
determine the action to be executed if the perception 
occurs. This architecture assumes that at any time the 
agent receives information from the environment 
though sensors. These perceptions consist of the 
representation of state aspects that are used by the 
agent for making decision. A subsystem is the one 
responsible for the making decisions, i.e., responsible 
for processing the perception sequence and selecting 
a sequence of actions from the set of possible actions 
for the agent. The agent performs the selected action 
upon an environment through actuators. 
 
 

2.2 Model-based Reflex Agents 

The structure of this kind of agent is similar to the 
simple reactive agent presented before since it deals 
with the information by using condition-action rules. 
In order to handle partially observable environment 
and to reach a more rational performance, the agent is 
able to store its current state in an internal model.  

According to Weiss (1999), reflex agents with 
internal states select actions by using the information 
in its internal states. A function called next function is 
introduced to map the perceptions and the current 
internal state into a new internal state used to select the 
next action. Such state describes aspects of the world 
(called model) that cannot be seen in the current 
moment, but it was perceived previously or has come 
out by inferences (Russell and Norvig, 2003).  

2.3 Goal-based Agents 

Sometimes, the knowledge about the current state of 
the environment is not enough to determine the next 
action and additional information about desirable 
situations is required. Goal-based agents are model-
based agents that set a specific goal and select the 
actions that lead to that goal. This allows the agent to 
choose a goal state among multiple possibilities.  

Planning activity is devoted to find the sequence 
of actions that are able to achieve the agent's goals 
(Russell and Norvig, 2003). The sequence of actions 
previously established leads the agent to reach a goal 
is termed plan (Silva, and Lucena, 2004) (Silva, 
Choren and Lucena, 2008a). Thus, the goal-based 
agent with planning involves the next function 
component and also includes the following elements: 
• Formulate Goal Function, which receives the state 

and returns the formulated goal. 
• Formulate Problem Function, which receives the 

state and the goal and returns the problem. 
• Planning, that receives the problem and uses search 

and/or logic approach to find a sequence of actions 
to achieve a goal. 

• Action that is represented with its pre-conditions 
and post-conditions. 

2.4 Utility-based Agents 

Considering the existence of multiple goal states, it is 
possible to define a measure of how desirable a 
particular state is. In this case, aiming to optimize the 
agent performance, the utility function is responsible 
for mapping a possible state (or group of states) to a 
measure of utility associated, according to the current 
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goals (Russell and Norvig, 2003).  Thus, the utility 
function is incorporated into the architecture.  

In addition, the utility-based agent preserves the 
same elements that a goal-based agent:  Next function, 
formulate goal function, formulate problem function, 
planning and action.   

3 MAS-ML 

MAS-ML was originally designed to support the 
modelling of proactive agents that are goal-based and 
guide by pre-established plans.  

MAS-ML model all structural and dynamic aspects 
defined in TAO metamodel by extending the UML 
metamodel. The structural diagrams defined by MAS-
ML are Role Diagram, Class Diagram and Organization 
diagram (Silva, Choren and Lucena, 2004). Using the 
three static diagrams is possible model all structural 
aspects of entities defined in TAO. The main element 
of the agent-oriented modelling is the agent itself. 
Figure 1 shows the diagram element used in static 
diagrams of MAS-ML to represents agents. 

  
Figure 1: An instance of AgentClass metaclasse.  

The dynamic diagrams defined in MAS-ML are 
extended versions of the UML Sequence Diagram and 
Activities Diagram (Silva, Lucena and Choren, 2008b). 

4 MAS-ML EXTENSIONS 

This section presents the extension to MAS-ML in 
order to support the modelling of agents by using 
diverse internal architectures: Simple reflex, Model-
based reflex, Goal-based and Utility-based. The new 
version of MAS-ML is named of MAS-ML 2.0. 

According to UML (2009), tagged values, 
stereotypes and constraints are extension mechanisms. 
Additionally, adaptation of existing metaclasses and 
definition of new metaclasses can also be used. 
Stereotypes and definition of new metaclasses was 
used to represent Simple reflex agents, Model-based 
reflex agents, Goal-based agents with planning and 
Utility-based agents. Following the architecture 
definitions presented in Section 2, the characteristics that 
need to be defined are Perception, Next-function, 
Formulate-goal-function, Formulate-problem-function, 

Planning and Utility-function. The Figure 2 illustrates 
the MAS-ML metamodel extensions. 

 
Figure 2: MAS-ML metamodel extension. 

The Perception collects information about the 
environment and/or other agents, without modify 
them. Since there is not any metaclasse in MAS-ML 
that can be used to represent such concept, the 
AgentPerceptionFunction metaclass was created to 
represent the agent perception. 

The agent perceptions can be also represented on 
the environment, since it represents the elements that 
the agent can perceives and as far as the sensors of 
the agent will perceives (partially or fully, for 
example). Once  the environment influences the 
perception of the therein agents, an association was 
established between the metaclasses 
AgentPerceptionFunction and EnvironmentClass. 

The Planning task results in a sequence of actions 
in order to achieve a goal (Russell and Norvig, 2003). 
In addition, the following properties are observed: (i) 
unlike a plan (represented by AgentPlan in the original 
MAS-ML metamodel), the sequence of actions is 
created at runtime; and (ii) unlike a simple  action 
(represented by AgentAction in the MAS-ML 
metamodel), the action of planning has a goal 
associated. Thus, the new metaclass 
AgentPlanningStrategy was created to represent the 
planning. An association relationship between 
AgentPlanningStrategy and AgentPlan was defined to 
represent that the action of planning can create plans. 

The metaclasses AgentPerceptionFunction and 
AgentPlanningStrategy extends the BehavioralFeature 
metaclass. The AgentPerceptionFunction has a 
Constraint that is used to restrict the information that 
can be perceived through the agent sensors.  

The Next-function, Formulate-goal-function, 
Formulate-problem-function and Utility-function are 
special agent actions that depend on the agent internal 
architecture. The <<next-function>>, <<formulate-
goal-function>>, <<formulate-problem-function>> and 
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<<utility-function>> stereotypes was thus created and 
related to AgentAction metaclass.  

Finally, the condition action rules of reactive 
agents, can be represented by using the agent's action 
representation (Silva, Choren and Lucena, 2008a), 
which may have a pre-condition attached.  

4.1 Static Representation of AgentClass 

The new structural and behavioural features in the 
modelling of the different types of agents influence the 
AgentClass metaclass representation in static diagrams.  

4.1.1 Simple Reflex Agent Structure 

The representation for a Simple Reflex Agent (Figure 
13) does not include any structural element since 
neither goals nor beliefs are inherent to this 
architecture. In the lower compartment the perceptions 
and actions, driven by condition-action rules and not 
by a specific plan, are represented.  

4.1.2 Model-based Reflex Agent Structure 

The model-based reflex agents represent an upgrade 
over the simple reflex agents. Thus, the definition for 
the action element is kept the same. In addition, beliefs 
representing the state and the next function are 
included. Figure 12 presents the graphical representation 
of AgentClass for a Model-based reflex agent. 

4.1.3 Goal-based Agent with Plan Structure 

The goal-based agents with plan have the same structure 
proposed initially by Silva and Lucena (2004) including 
goals, beliefs, actions and plan. Figure 1 and Figure 
11 show the graphical representation of this agent. 

4.1.4 Goal-based Agent with Planning 
Structure 

The goal-based agents with planning incorporate 
additional complexity to the agent representation. 
Firstly, goals are considered in order to guide the agent 
behaviour. Thus, this element is included as a 
structural component denoted with the <<goal>> 
stereotype. In order to manipulate consistently goals 
and states, the agent behaviour is enhanced with 
<<perceives>>, <<formulate-goal-function>> and 
<<formulate-problem-function>> elements. The already 
existent <<next-function>> element is keep up.  This 
function receives the current perception and the beliefs 
that must be updated (state). 

In addition, instead of representing pre-established 
plans, the planning activity is incorporated. This 

activity involves a goal and uses the available actions 
to create a sequence of actions. Figure 14 illustrates the  
AgentClass for a goal-based agent using planning. 

4.1.5 Utility-based Agent Structure 

The representation for the utility-based agent consists 
in a specialization of the goal-based agent with 
planning. However, the <<utility-function>> element 
is added to represent the function responsible for the 
optimization of the gent performance. The graphical 
representation of AgentClass for a pro-active agent 
based on utility is illustrated in Figure 15. 

Along the planning, the agents may be linked to 
reach more than one goal. In this case, the occurrence 
of conflicting goals or the existence of several states 
meeting the goals is possible. So the utility function is 
incorporated into the agent structure, in order to 
evaluate the usefulness degree of the associated goals. 

4.2 AgentRoleClass Static 
Representation   

An AgentRoleClass in MAS-ML is represented by a 
solid rectangle with a curve at the bottom. Similarly to 
the class representation, it has three compartments 
separated by horizontal lines. The upper compartment 
contains the agent role name unique in its namespace. 
The intermediate compartment contains a list of goals 
and beliefs associated with the role, and below, a list of 
duties, rights and protocols. 

Reactive agents have not explicit goals and, more 
particularly, the simple reflex agents do not have 
beliefs. Thus, their role representation must be adapted 
(Figure 16). In addition to the representation of the 
roles of simple reflex agents, roles for model-based 
reflex agents include beliefs in order to partially handle 
observable environments. The agent role representation 
in this case is represented in Figure 17. 

The features of agent roles in other architectures 
are inaltered since both define beliefs and goals. The 
structural changes regarding the AgentRoleClass entity 
impact the Organization and Roles diagrams.  

4.3 Dynamic representation 
of AgentClass  

Similarly to the static diagrams, the new representation 
of the AgentClass influences the representation of their 
behavioural features. In follows, the dynamic 
representation of the different agent types is illustrated 
through sequence diagrams using MAS-ML 2.0. 
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4.3.1 Reflex Agents Representation 

The agent’s perception is represented in sequence 
diagram of MAS-ML by an arrow with an open mind 
leaving the agent to the environment, together of the 
<<perceives>> stereotype, the perception name and the 
elements that agent can see (Figure 3). 

 
Figure 3: Perception of the agent in sequence diagram. 

The actions sequence of the reactive agents cannot 
be defined in the analysis phase, but it is possible to 
represent the set of actions with the condition or 
conditions associated. Figure 4 illustrates the action 
taken by a reactive agent. 

 
Figure 4: Reactive agent action in the sequence diagram. 

The next function is represented in the sequence 
diagram of MAS-ML 2.0 by a closed arrow with full 
head, which starts at the agent and ends at the agent, 
then the stereotype <<next-function>> followed by 
the name of the function. Figure 5 illustrates the next 
function in the sequence diagram. 

 
Figure 5: Sequence diagram of the next function. 

Therefore, if a simple reflex agent is modelled 
initially have their perception and then their actions 
guided by the condition-action rules. In the case of a 
Model-based reflex agent, initially we have the 
perception, then the next function and, finally, its 
actions guided by the condition-action rules. 

4.3.2 Proactive Agent Representation 

The next function is executed before the formulate goal 
function and is used by two types of pro-active agents 
in this paper. The next function element is represented 
in the sequence diagram by a arrow full head, which 
begins and ends on the agent in itself, together with the 
stereotype <<next-function>> and the function name 
as shown in Figure 5. Then we have the representation 
of the formulate problem function in the sequence 
diagram. The representation is done by an arrow full 
head, which begins in the agent and ends in itself, 
accompanied by the relevant stereotype. The figures 6 

and 7 illustrate the formulate goal function and the 
formulate problem function, respectively. 

 
Figure 6: Formulate goal function in sequence diagram. 

 
Figure 7: Formulate problem function in sequence diagram. 

In case of agents that use planning, the actions 
sequence that the agent will take to achieve the goal 
cannot be advanced before its execution. In this case, 
planning is represented by a closed arrow head that 
begins and ends in the agent in itself accompanied by the 
stereotype <<planning>>. The actions that can be used 
for planning to achieve (s) objective (s) are represented 
as initially defined by Silva (2004). Optionally, the 
criterion or algorithm used to perform the planning can 
be specified by a textual note. Figure 8 illustrates the 
planning in the sequence diagram of MAS-ML 2.0. 

 
Figure 8: Planning in the sequence diagram. 

The utility function element is represented in the 
sequence diagram by an arrow with full head that 
begins in the agent and ends in itself, together with 
the stereotype <<utility-function>>. Figure 9 
illustrates the representation of the utility function in 
the sequence diagram of MAS-ML 2.0. 

 
Figure 9: Utility-function in the sequence diagram. 

The agent actions in MAS-ML 2.0 are modelled 
using the iteration element and combined fragment, 
existing in UML. This representation allows the 
modelling of any combination of actions. An example is 
shown in Figure 10. Since the sequence of actions for 
the agents with planning is generated at runtime, the 
modelling of this sequence is not required. 

The agent goal-based with plan maintains the 
representation proposed by Silva (2004), as well as 
the plan defined during the design phase. 

In the case of agent goal-based with planning, 
initially runs perception, next function, formulate goal 
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function, formulate problem function and then 
execution of its planning, which results in the 
execution of possible actions associated with the agent. 

 
Figure 10: Implementation of the actions of the agent with 
planning the sequence diagram of MAS-ML 2.0. 

Finally, the agent-based utility needs the 
perception, next function, formulate goal function, 
formulate problem function, planning, utility function 
and results in actions that are performed in that order. 

4.4 Dynamic Representation 
of AgentClass  

The features proposed by Silva, Choren and Lucena 
(2005) for the activity diagram, were maintained. Thus, 
each activity is represented by a rounded rectangle. 
The agent beliefs are represented by a square with the 
identification of the agent used by the beliefs and goals 
in the upper right corner through a textual description 
denoted with the <<Goal>> stereotype.  

4.4.1 Reflex Agent Representation 

The activity diagram of simple and model-based reflex 
agent represents the behavior from perception to 
action. The behavior of a simple reflex agent is 
represented on the activity of MAS-ML 2.0 as follows: 
the initial activity is the perception of the agent, on the 
basis of the current perception the condition action 
rules are used to select one of the possible actions. 
Finally, the selected action is performed.  

In another hand, the behavior of a model-based 
reflex agent is represented on the activity of MAS-ML 
2.0 as follows: the initial activity is the perception of 
the agent that can be used by the next function to 
update its beliefs. After that, the condition-action rules 
are responsible to select one of the possible actions. 
Finally the selected action is performed.  

4.4.2 Proactive Agent Representation 

The activity diagram of the goal-based agent with 
planning represents the agent behaviour from 

perception to action. The behavior of a goal-based 
agent is represented on the activity of MAS-ML 2.0 
as follows: the initial activity is the perception of the 
agent, after that the next function updates the beliefs 
based on current perception. The formulate goal and 
the formulate problem functions are executed. The 
planning is performed to determine the action(s) 
should be taken. Finally, the selected action(s) is 
performed.  

The behaviour of utility-based agent is represented 
on the activity of MAS-ML 2.0 as follows: the initial 
activity is the perception, then, the next function updates 
beliefs based on current perception. The formulate goal 
function and the formulate problem function are 
executed. The planning is performed to determine what 
action should be taken. The utility function helps the 
choice of action, and the selected actions are performed.  

5 CASE STUDY 

A TAC-SCM application is used to illustrate the use of 
MAS-ML 2.0 where agents with different architectures 
are elicited to model different strategies in the problem. 

5.1 TAC-SCM  

TAC (Trading Agent Competition) (Wellman et al., 
2002) is an environment that enables the achievement 
of simultaneous auctions, test techniques, algorithms 
and heuristics to use in negotiation. There are two 
types of games in competition: TAC-Classic (Wellman 
et al., 2002) and TAC-SCM (Sadeh et al., 2003).  

The TAC-SCM is concerned in planning and 
managing the organization activities across a supply 
chain. The TAC-SCM scenario is designed to capture 
the challenges in an integrated environment for 
acquisition of raw materials, production and delivery of 
finished goods to customers. This environment is highly 
dynamic, stochastic and strategic (Arunachalam, 2004). 

The game starts when one or more agents connect 
to a server game. The server simulates suppliers and 
customers, providing a bank, manufacturing and 
service of storage of goods to individual agents. The 
game occurs along on a fixed number of simulated 
days, and in the end, the agent with largest sum of 
money in the bank is the winner (Collins et al., 2006). 

5.2 Modelling TAC-SCM 
with MAS-ML 

The internal architecture of each agent in TAC-SCM is 
elected according to the function in the game.  

The DeliveryAgent needs to satisfy the goal of 
delivery products to customers. In order to achieve this 
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goal a sequence of actions must be executed. Thus the 
representation of the DeliveryAgent is modelled by 
using a goal-based with plan architecture (Figure 11). 

 
Figure 11: A DeliveryAgent proposed to TAC-SCM. 

The SellerAgent offers computers to customers 
and gets the payment, and the BuyerAgent decides 
when to make new request for quote and realizes the 
payment. Since, reactive agents reply quickly to the 
perceptions (Weiss, 1999), the BuyerAgent and 
SellerAgent are modelled as reactive agents aiming 
the necessity of a fast reply in auction. Figure 12 and 
13 shows the BuyerAgent (Model-based reflex agent) 
and SellerAgent (Simple reflex agent), respectively. 

 
Figure 12: A BuyerAgent proposed to TAC-SCM. 

 
Figure 13: A SellerAgent proposed to TAC-SCM. 

The ProductionAgent needs to satisfy current 
demand across the assembling of computers and 
management of the stock. To objectify achieve this goal, 
it can’t use a pre-established plan because this dynamic 
scenario requires a different set of actions depending on 
the current demand. Thus the ProductionAgent is a goal-
based with planning agent detailed in Figure 14. 

 
Figure 14: A ProductionAgent proposed to TAC-SCM. 

Finally, the ManagerAgent is incumbed for manage 
all agents and the allocation resources. This agent tries 

to maximize gain and sales. Note that its goals can be 
in conflict. Thus, the most appropriate architecture in 
this case is the Utility-based architecture (Figure 15).  

 
Figure 15: A ManagerAgent proposed to TAC-SCM. 

The roles of reactive agents: SellerAgent and 
BuyerAgent are illustrated in the figures 16 and 17, 
respectively. The roles for proative agents are not 
represented since they are not affected. 

 
Figure 16: Role of SellerAgent proposed to TAC-SCM. 

 
Figure 17: Role of BuyerAgent proposed to TAC-SCM.  

Finally, Figure 18 depicts the Organization 
Diagram for TAC-SCM MAS. This diagram 
represents the TacOrganization and describes the 
agents and agent roles in the specific environment. 

 
Figure 18: Organization Diagram proposed to TAC-SCM. 

The activity diagrams in figures 19, 20, 21, 22 and 
23 describe the behavior of each agent role. 

 
Figure 19: Role of DeliveryAgent proposed. 
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Figure 20: Role of SellerAgent proposed to TAC-SCM. 

 
Figure 21: Role of BuyerAgent proposed. 

 
Figure 22: Role of ProductionAgent proposed. 

 
Figure 23: Role of ManagerAgent proposed. 

Figure 24 describes the sequence diagram of 
DeliveryAgent. Note that the actions taken by the agent 
are guided by a plan, so it is a sequence of actions. 

 
Figure 24: Sequence Diagram of DeliveryAgent. 

The sequence diagram of the SellerAgent (Figure 
25) shows their execution through its perceptions and a 
set of actions associated with a condition-action rule. 

 
Figure 25: Sequence Diagram of SellerAgent. 

The sequence diagram of the BuyerAgent (Figure 
26) illustrates the agent perception, next function and a 
set of actions associated with a condition-action rule. 

 
Figure 26: Sequence Diagram of BuyerAgent. 

Figure 27 shows the sequence diagram of the 
ProductionAgent. Note that the actions taken by the 
agent are result of the perception, next function, 
formulate goal function, formulate problem function and 
planning. Moreover, its actions are represented by a set 
of possible actions. 
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Figure 27: Sequence Diagram of ProductionAgent. 

In Figure 28 is presented the sequence diagram of 
ManagerAgent. In this case, the actions of the 
ManagerAgent are guide by perception, next 
function, formulate goal function, formulate problem 
function, planning and utility function. Moreover, its 
actions are represented by a set of possible actions. 

 
Figure 28: Sequence Diagram of ManagerAgent. 

6 RELATED WORKS 

Several languages have been proposed for the 
modelling of MAS. However, it does not support the 
modelling of different internal architectures of agents 
available in Russell and Norvig (2003) and Weiss 
(1999). Besides, they have several drawbacks that have 
justified the choosing of MAS-ML to be extended in 
order to model different agent architectures. 

The work of Odell, Parunak and Bauer (2000) 
presents the AUML language. This modelling 
language aims to provide a semi-formal and intuitive 
semantics through a friendly graphical notation. 
AUML does not provide elements to represent 
perceptions and the next-function. 

Wagner (2003) proposes the AORML modelling 
language, which is based on the AOR metamodel. This 
language does not give support to modelling of the 
elements of the internal agent architectures. Therefore 
it is not possible to differentiate agents with reactive 
and proactive architectures in AORML.  

Moreover, the two languages mentioned above do 
not define the environment as an abstraction, so it is 
not possible to model the agent migration from an 
environment to another. This capability is inherent to 
mobile agents modelling (Silva. and Mendes, 2003). 

Choren and Lucena (2004) present the ANote 
modelling language, involving a set of models, called 
views. In ANote, it is not possible to differentiate 
agents with reactive architectures from the proactive 
ones. In addition, ANote does not support conventional 
objects, used to model non-autonomous entities. The 
language defines several concepts related to agents, but 
the concept of agent role is not specified. This concept 
is extremely important when modelling societies where 
agents can play different roles at the same time.  

AML (Cervenka et al., 2004) is a modelling 
language based on a metamodel that enables the 
modelling of organizational units, social relations, 
roles and role properties. AML gives adequate support 
for the modelling of reactive agents, goal-based agents 
with planning and utility-agents. It is worth mentioning 
though the semantic aspects of communication are 
modelled as specializations of existing elements in 
UML, such as methods invocation, what is not 
adequate for modelling agent communication.  

7 CONCLUSIONS  

This paper presents an extension to MAS-ML language 
in order to allow the modelling of diverse internal 
agent architectures published in the agent literature, 
such as: Simple reflex agents, Model-based reflex 
agents, Goal-based agents and Utility-based agents. 
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MAS-ML was originally designed to support the 
modelling of pro-active goal-based agents with plan. 
Thus, some issues were detected while trying to use the 
language to model reactive agents and other pro-active 
architectures. In this sense, the MAS-ML evolution 
proposed in this work involves the definition of two 
new metaclasses AgentPerceptionFunction and 
AgentPlanningStrategy in order to aggregate the 
representation of different agent behaviour. Also, new 
stereotypes to describe the behaviour of agent from 
specific architectures were defined and associated to 
AgentAction metaclass. The static structure of 
AgentClass and AgentRoleClass entities were also 
modified. Then, the class, organization, role, sequence 
and activity diagrams were changed in consistency.  

The modelling tool to support the proposed 
approach is also under development. Other case studies 
are being conducted to provide further validation to 
this work. Moreover, the possibility of MAS-ML 
extension for other internal architectures, such as the 
BDI architecture is an interesting possibility. 
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