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Abstract: Product models should integrate and efficiently manage all the information associated with products in the 
context of industrial enterprises or supply chains (SCs). Nowadays, it is quite common for an organization 
and even, each area within a company, to have its own product model. This situation leads to information 
duplication and its associated problems. In addition, traditional product models do not properly handle the 
high number of variants managed in today competitive markets. Therefore, there is a need for an integrated 
product model to be shared by the organizations participating in global SCs or all areas within a company. 
One way to reach an intelligent integration among product models is by means of an ontology. PRONTO 
(PRoduct ONTOlogy) is an ontology for the Product Modelling domain, able to efficiently handle product 
variants. This contribution presents a ConceptBase formalization of PRONTO, as well as an extension of it 
that allows the inference of product structural knowledge and the specification of valid products.  

1 INTRODUCTION 

Within an organization, many management and 
production functions make use of product structural 
data in different manners depending on their 
requirements. Thus, such information is represented 
in formats that best meet the needs and business 
processes of the various organizational areas. In 
addition, traditional product models do not properly 
handle the high number of variants that characterize 
today competitive markets. These situations lead to 
the presence of redundant and possibly inconsistent 
product information. Moreover, all the planning, 
coordination and support functions, required for 
carrying out manufacturing and logistic activities, 
demand accurate and reliable product information of 
different granularities in order to be efficient.  

Circumstances get worse when organizational 
units not only use product data for their own needs 
but also exchange it with other partners, e.g. during 
cooperative product development, when outsourcing 
manufacturing activities, interacting with logistics 
providers, etc. In all these cases the use of different 
product models can lead to semantic problems.  

In the last decade ontologies have been 
recognized as key elements to reach semantic 
integration, since they provide formal models that 
establish a consensual and precise meaning to the 
information communicated among different sources. 
In previous works (Giménez et al., 2008; Giménez et 
al. 2009), an ontology named PRONTO (PRoduct 
ONTOlogy) was presented. This ontology integrates 
two hierarchies to represent product information: the 
Abstraction Hierarchy (AH) and the Structural one 
(SH). However, these contributions were limited to 
the representation of explicit data at each level of the 
AH. 

This paper presents a ConceptBase (Jarke et al., 
2004) formal specification of PRONTO that focuses 
on the structural hierarchy of the ontology and in the 
way structural information can be inferred from 
explicit knowledge at each AH level. This proposal 
efficiently handles a great number of variants and 
allows representing product information with 
distinct granularity degrees, useful for planning 
activities taking place at different time horizons.  
Additionally, constraints associated with the 
specification of valid products are introduced in the 
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ontology. Section 2 briefly introduces PRONTO 
concepts, describes its formalization, presents how 
implicit knowledge can be inferred from the explicit 
one. Section 3 illustrates the use of the implemented 
ontology by means of a case study. Finally, 
conclusions are drawn. 

2 PRONTO SPECIFICATION 

Within the scope of this contribution, a product is a 
complex concept (indeed much more complex than a 
mere thing or substance produced by a natural or 
industrial process) that will be defined at different 
levels of abstraction. The term ProductAbstraction is 
used to represent such complex thing.  

In order to manage the complexities of product 
information, two model hierarchies are included in 
PRONTO: the Abstraction Hierarchy (AH) and the 
Structural Hierarchy (SH) (see Fig. 1). The first one 
represents the product concept at three abstraction 
levels: Family, VariantSet and Product. The 
Structural Hierarchy organizes the knowledge 
related to product structural information. The SH is a 
mechanism to manage the information associated 
with the multiple recipes and/or processes available 
to manufacture a given product or a group of similar 
products. Within this hierarchy, a piece of 
information that is typically handled is the Bill of 
Materials (BOM) representation. 

PRONTO allows representing BOMs of products 
that are obtained by assembling component parts, as 
well as others that are obtained by the 
decomposition of non-atomic raw materials. Hence, 
the SH considers two types of hierarchies, one which 
relates a product with its component parts and 
another one which associates a product with its 
derivative parts. The relationships that are used to 
represent each of these types are named component 
Of and derivativeOf, respectively. As shown in Fig. 
1, both relations are a specialization of the 
SHRelation class, which links a ProductAbstraction 
instance (whole) with zero or more 
ProductAbstraction instances (part), which are 
defined at the same abstraction level. 

The Abstraction Hierarchy (AH) shown in Fig. 1, 
is oriented towards managing the complexity that 
results from the huge number of products that are 
manufactured by current industrial facilities. It 
includes the following abstraction levels: 

 
Figure 1: Abstraction and Structural hierarchies. 

 Family: It is the highest level of abstraction and 
represents a set of similar products. They can 
share one or more common structures. Such 
structures can be specialized in the following 
abstraction level of the hierarchy.  

 VariantSet: It is the second level and models a 
subset of Family members that share the same 
structure and/or similar characteristics; i.e. a 
subfamily. The structure of a VariantSet can 
include modifications in the structure of the 
family of which it is associated. 

 Product: It corresponds to the lowest level in the 
AH. It represents individual items (real products) 
that are members of a particular VariantSet. 
Therefore, each product has the structure that is 
associated with the VariantSet of which it is a 
member. 
The proposed ontology has been formally 

specified in the O-Telos language, which combines 
object-oriented principles with first order logic 
properties. It has been implemented in ConceptBase 
(Jarke et al., 2004), a deductive object-oriented data 
base manager. ConceptBase integrates techniques 
from deductive and object oriented databases in the 
logical framework of the O-Telos data model, a 
dialect of Telos. 

Fig. 2 shows how the ProductAbstraction class 
and its subclasses are expressed in ConceptBase. 
The specification also presents the constraints that 
the memberOf relationship (attribute memberOf, in 
Fig. 2) has to satisfy. This constraint establishes that 
entities belonging to the two lower levels of the AH 
are related to just one entity defined at their 
immediate upper level through the memberOf 
relationship (memberOf_necessary constraint) and 
such relation is unique for each instance of the lower 
level (memberOf_single constraint).  
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Figure 2: ProductAbstraction class and its subclasses.  

Fig. 3 presents the complete conceptual model of 
the ontology with the main concepts of each 
abstraction level. 

The Abstraction Hierarchy is related to the 
Structural one by means of the SHRelation. As it 
was previously mentioned, the componentOf and 
derivativeOf relations define the two possible 
structural associations among entities belonging to 
the same abstraction level (Fig. 2). Both relations, 
which define the SH, are not explicitly represented 
in the conceptual model of Fig. 3, but they can be 
inferred from the explicit information that is 
recorded at each level of the AH. 

 

Figure 3: PRONTO concepts. 

Fig. 4 illustrates, by means of an example, the 
SH that can be computed at each abstraction 
hierarchy level. The first part of this figure shows 
the abstraction hierarchies of three product families: 
A (having 4 members: Avs1, Avs2, Avs3 and Avs4), 
B (having 2 members) and C (having 3 members). 
Fig. 4 also shows that the variant set Avs1 has 

products Avs11 and Avs12 as members. Part 2 of this 
figure presents the structural hierarchy of family A, 
which has families B and C as its components. 
Finally, parts 3 and 4 of Fig. 4 show a partial view 
of the structural hierarchies that can be inferred at 
the variant set and product levels, respectively. 

2.1 Family Level Concepts 

PRONTO prescribes that a family (Family) may be 
composite (CFamily) or simple (SFamily), 
depending on whether it represents a product having 
or not a structure. A product has a structure when it 
is made out of other products or other products can 
be derived from it. In order to be a CFamily, it is 
necessary to define a structureOf relation between 
such family and at least one structure (this constraint 
is specified at the beginning of Fig. 5).  If more than 
one structure is defined for a given CFamily, the 
alternative structures of such family are linked by 
the alternativeStructure relationship. As Fig. 5 
shows, the values of the alternativeStructure 
attributes are computed by the AltStrRule deductive 
rule of the Structure class.  

A CFamily represents a set of similar products 
and, as already mentioned, such products could be 
obtained by the assembly of others or by the 
disaggregation or decomposition of non-atomic raw 
materials. Therefore, the Structure class has been 
specialized to represent these different types of 
structures by means of the CStructure and 
DStructure subclasses which, in turn are related to 
the components or the derivatives of a family by 
means of the CRelation and DRelation classes, 
respectively.  Both classes are specializations of the 
Relation one. Each of them contains, at least, 
information about: (i)  the quantity/number of a 
given component needed to manufacture a unit of 
product (CRelation) or the quantity/number of 
intermediate units obtained from the decomposition 
of a unit of non-atomic raw material (DRelation); 
and (ii) the proportion that a given component 
represents in one unit of the product in whose 
structure such component participates (CRelation) or 
the yield that a given intermediate product renders 
from the decomposition of a unit of a non-atomic 
raw material (DRelation); (iii) minimum and 
maximum allowed quantities and the quantities’ unit 
of measure; as well as (iv) the relation type.  

Besides, different kinds of relations are specified 
to capture the rules needed to incorporate a certain 
component (derivative) in a particular product 
structure: (i) Mandatory: the component  
(derivative) MUST be present in the structure of all  
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Figure 4: Inferred structural hierarchies at each level of the AH. 

the family members; (ii) Optional: the component 
(derivative) CAN PARTICIPATE OR NOT in a 
particular product structure; and (iii) Selective: the 
component (derivative) should be selected from a set 
of components, but ONLY ONE member of such set 
(see selectedSet attribute and selSetRule rule of the 
SelectiveRel class in Fig. 5) must be part of the 
structure. Fig. 3 shows that such classification is 
represented in the model with the isClassifiedAs 
relation, the RelationType class and its subclasses 
(OptionalRel, MandaroryRel and SelectiveRel). The 
formal specification of these concepts is shown in 
Fig. 5.  

Due to the fact that the structure is explicitly 
defined at the Family level, it is straightforward to 
infer the SHRelations among the entities belonging 
to this level. The composition relations (CRelation) 
identify the components of a composite structure 
CStructure, while the decomposition relations 
(DRelation) do the same with the derivatives of a 
DStructure. The definition of the deductive rule 
(compRule) that infers the values of the component 
attribute of a CFamily is specified in Part 1 of Fig.6. 
In turn, the specifications of compRule 
corresponding to the other two levels, CVariantSet 
and CProduct, are shown in Parts 2 and 3 of Fig. 6. 

 

 
Figure 5: Formalization of Family level concepts. 
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Figure 6: Examples of deductive rules that compute the components of the structural hierarchies at different AH levels. 

2.2 Variant Set Level Concepts 

At the Variant Set level, the structural hierarchy of 
an entity depends on the structure of the family from 
which such entity is a memberof. A VariantSet may 
have the same structure of its family or may 
introduce some modifications on it. CFamily 
members having a similar structure are clustered 
within the composite variant set concept 
(CVariantSet in Fig.3). In the ontology model, a 
CVariantSet instance is linked with one and only 
one of the structures of its family by means of the 
“has” relation. Fig. 7 presents a partial view of the 
specification of the variant set level concepts. 

The ChangeSet class groups all the changes that 
are applied to the family structure in order to obtain 
the particular structure of a composite variant set. 
Each specified change (Change class) affects only 
one relation of such structure, which is pointed out 
by the affectedRelation association of the Change 
class, presented in Fig. 7. The Change class is 
specialized into the QuantityChange, Family 
Removal and FamilySpecification subclasses to 
represent the different types of modifications 
considered in the model. They represent (i) a value 
change of the quantity per unit (quantity PerUnitCh) 
or production factor (productionFactorCh) 
attributes; (ii) the  elimination of a component; or 
(iii) the choice of one association that belongs to the 
set of the SelectiveRelations of the modified 
structure.  

Applying the different types of modifications to 
a structure depends on the type of the affected 
relation. The first type of change is acceptable for all 
relation types. However, removing a relation from a 
structure requires such relation to be an optional one, 
while the last type of change is only valid for 
relations being of selective type. 

 
Figure 7: Formalization of some Variant Set level 
concepts. 

As it was previously mentioned, Fig. 3, Part 3, 
presents all the structural hierarchies that can be 
computed for Avs1, which is one of the variant set 
members of A. The total number of SHs of Avs1 is 
obtained by multiplying the number of B members 
(#B) by the number of C members (#C). Sometimes, 
not all the SHs of a variant set are valid. Let us 
assume, for example, that for commercial reasons 
the products that are members of Avs1 must be 
manufactured by using only products that are 
members of the Bvs1 variant set. In such a case, only 
three of the SHs that are shown in Fig. 3 Part 3 are 
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valid (those that have Bvs1 as a component). In 
order to represent this restriction, the model resorts 
to the AllowableVariantSet class, which links a 
variant set with the variant sets that are compulsory 
to be used in its associated structural hierarchies. In 
the case of the aforementioned example, an instance 
of AllowableVariantSet has to be defined indicating 
that Bvs1 is the allowable variant set of Avs1. 

Part 2 of Fig 6 shows the deductive rule that was 
defined to infer the components of a variant set. A 
variant set vs2 is a component of another variant set 
vs1 if: 
 There exists an instance of the Allowable 

VariantSet a1 in vs1 that has vs2 as  a restricted 
Set (compRule); or 

 vs2 is a memberOf a family f2, which is 
component of a family f1 from which vs1 is a 
member of. Besides, no restriction applies to the 
members of f2 defined in vs1 (restrictsMember 
property) and the relation that specifies f2 as a 
component is not eliminated from the structure 
of vs1 (compRrule2). 

2.3 Product Level Concepts 

The most concrete level of the proposed Abstraction 
Hierarchy represents real products that are members 
of a VariantSet. Such membership relation is 
represented by the memberOf link between the 
VariantSet and the Product classes (specified in Fig. 
2). A Product can be simple (SProduct) or 
composite (CProduct) depending on whether it is a 
member of SVariantSet or CVariantSet, respectively. 
The instances of the CProduct subclass are members 
of the corresponding CVariantSet instances and 
represent non-atomic products; that is, products 
having a structure. The variant set to which a 
product belongs determines and restricts its SH. In 
order to identify which product member is the one 
that participates in the structural hierarchy of a 
specific product, the chosenProduct relation is 
employed (Fig. 3).  

At the variant set level, all the components 
(derivatives) included in the structural hierarchies 
are instances of the VariantSet class. At the product 
level, the entities included in a SH must be products 
that are memberOf components (derivatives) 
participating in the corresponding SH defined at the 
variant set level. The deductive rule (compRule) that 
is shown in Part 3 of Fig. 6 establishes that a product 
p2 is a component of a product p1 if it is member of 
a variant set cv2 that, in turn, is a component of the 
variant set from which p1 is a member of. 

Structural hierarchies at the product level can be 
computed for each SH defined at the variant set 
level. It should be noted that the model does not 
explicitly represent all the potential SHs at the 
product level. It is possible to calculate the explicit 
product structural hierarchies that are required at a 
given time; e.g., when receiving a production order 
from a customer.  

2.4 Material Requirements Inference 

Product structural information is necessary to build 
the Production Master Plan, which determines the 
amounts of raw materials and intermediate products 
that need to be purchased or manufactured in order 
to fulfill a given final product demand. Therefore, as 
important as the inferred information about 
components and derivatives of a final product are 
the quantities of materials that are required to 
manufacture a certain amount of it. 

One of the main contributions of the product 
model is its ability to capture the manufacturing 
composition and decomposition structures of 
products. As shown, the ontology employs two 
different types of structures (CStructure and 
DStructure) with two types of relations (CRelation 
and DRelation) to represent this information. Also, 
each type of structure computes in a different way 
data needed about manufacturing requirements of 
raw materials and/or intermediate products. Fig. 8 
shows two families, representing final products A 
and P. The former is obtained by assembling a set of 
raw materials and intermediate products. The latter 
is a derivative of a non-atomic raw material R. 

 

 
Figure 8: Conceptual representation of the computation 
of manufacturing product requirements. 

For composition structures, the families that are 
required to manufacture the composite family A (by 
means of the S1 CStructure) match with the values 
of the component attribute of the CRelation 
associated with such structure (CR2). 

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

304



For decomposition structures, the required 
families have to be inferred in the inverse direction; 
that is, starting from family P, it is necessary to 
obtain the decomposition relation for which P is the 
value of the derivative attribute (DR1), then, find the 
decomposition structure in which this relation is part 
of (S2) and, finally, from such structure the required 
family R can be found. In order to implement these 
mechanisms, the capabilities of Concept Base views 
have been chosen. A ConceptBase view allows 
presenting information of instances of a specific 
class in a particular manner and defining attributes 
whose values can be computed by means of 
deductive rules. Such values can also be generic 
views which can be particularized by assigning 
values to parameters defined in the generic view. In 
this PRONTO implementation, specific views were 
defined in order to calculate the material 
requirements of the different types of Product 
Abstractions. In particular, the FamilyReq view 
computes requirements at the family level and the 
results of its execution are presented in Section 3. 

2.5 Product Constraints Concepts  

In this proposal, as in other approaches that are 
based on the generic structure concept of a product 
family, rules are used to properly specialize 
structures into particular ones. In general, a great 
number of possible component (derivative) 
combinations are allowed (e.g. see the partial view 
shown at the bottom of Fig. 4). However, some of 
these combinations can be invalid due to technical or 
commercial reasons. Generic product structures 
defined at the Family and VariantSet levels include 
an implicit product structure model, which provides 
additional conditions that must be satisfied by a 
valid product instance (Mänisto et al, 1998). In order 
to obtain valid particular structures from generic 
ones, it is necessary to have a methodology to: (i) 
specify constraints among components (families, 
variant sets or products) and, (ii) test the satisfaction 
of such rules when generating more specific 
(particular) structures. Based on these requirements, 
the proposed model includes mechanisms to express 
constraints which have to be fulfilled when creating 
new particular or generic structures.  

The proposal includes three types of restrictions, 
according to the three abstraction hierarchy levels. It 
is possible to define constraints among: (i) families 
(FRestriction); (ii) variant sets (VSRestriction); and 
(iii) products (PRestriction). Fig. 9 shows the classes 
that represent such concepts, which are formalized 
in Fig. 10. The specialization in FRestriction, 

VSRestriction and PRestriction subclasses limits the 
definition of constraints among entities of the same 
AH level. 

 

 
Figure 9: Product constraints concepts. 

Fig. 10 shows that the restricts attribute has 
different values in each Restriction subclass of the 
AH. Similarly, the type of the hasRestriction 
attribute is limited to have the FRestricion, 
VSRestriction and PRestriction values in the Family, 
VariantSet and Product classes, respectively 

 

 
Figure 10: ConceptBase implementation of product 
constraints concepts. 

At any AH level it is possible to identify two 
main types of restrictions among components: (i) 
Obligatory and (ii) Incompatible; both must be 
satisfied to obtain valid structures. Fig. 9 and 10 
show that a Restriction is linked with its type by the 
isClassifiedAs association and that the Mandatory 
Const and IncompatibleConst classes represent the 
constraint types defined in the model. The first type 
forces a given component (family, variant set or 
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product) to participate at any level of the SH of the 
ProductAbstraction instance that specifies the 
mandatory constraint. In contrast, incompatible 
restrictions require a given component (family, 
variant set or product) to be not present at any level 
of the SH of the ProductAbstraction instance that 
specifies such constraint. Both types of constraints 
must be fulfilled in order to obtain valid structures.   

Constraints defined in the previous paragraph are 
to be tested for any pair of components (derivatives) 
located at any SH level. Since the componentOf 
(derivativeOf) relations are just defined for adjacent 
levels, they need to be extended to consider multiple 
levels of the SH. So, the mlComponentOf and 
mlDerivativeOf attributes, and their corresponding 
deductive rules, are defined for the Family, Variant 
Set and Product classes. Such attributes allow 
identifying whether a given product abstraction 
participates at any level of the SH of another product 
abstraction. Fig. 11 shows an example of ml 
ComponentOf and its corresponding deductive rule 
for the Family class. Thus, a family f2 is a multi 
level component of f1 if f2 is direct component of f1 
or there exists another family f3, which is component 
of f1, and f2 family is mlComponentOf  f3. 

 

 
Figure 11: Attributes and constraints added to test 
restriction compliance. 

Additionally, some integrity constraints have to be 
defined in the Restriction class in order to ensure 
restriction compliance. Two of such constraints are 
presented in Fig. 11 as attributes of the Restriction 
class. The first one, named MandConst, specifies 
that the existence of a mandatory type of restriction 
between two product abstractions (pa1 and pa2) 
requires pa2 to be a multilevel component of pa1. 
The other one, named IncompConst, which 
prescribes an incompatibility restriction between pa1 

and pa2, implies pa2 not to be a multilevel 
component of pa1. 

3 CASE STUDY 

The meat industry was chosen to test the PRONTO 
implementation presented in this paper. This 
industry produces large quantities of a wide range of 
products. Each product is sold in different packages, 
depending on the market. Besides, a given cut is 
considered a distinct product depending on the 
quality of the steer from which it was obtained. 
Therefore, the number of products variants handled 
by this industry is very high. In addition, meat 
products have complex hybrid composition/ 
decomposition structures. Raw materials are non 
atomic, i.e., a sequence of decomposition operations 
is needed to obtain intermediate products which are 
later transformed into finals ones by manufacturing 
processes. In addition, decomposition operations can 
be made in different ways, so distinct products may 
be obtained from a unique intermediate product. 

The example presented in this section (due to 
lack of space, just a test case partial view) focuses 
on the representation of intermediate products, 
which, together with packaging materials, participate 
in the production of frozen cooked beef final 
products. The AH that was defined for the products 
considered in the example is shown in Table 1.  

Table 1: Abstraction Hierarchy of an example product. 

Family Variant Set Product 

Frozen 
Cooked 

Beef 

CookedBeefforDicing (CBD) 
CBD1 
CBD2 
CBD4 

SeasonedCookedBeef (SCB) SCB3 
SCB5 

GroundCookedBeef (GCB) 
GCB6 
GCB7 
GCB2 

 
Fig. 11 presents the FrozenCookedBeef family, 

its structures and the relationships of one of them. 
FrozenCookedBeefSTR is a composition structure 
(CStructure) that is defined by four composition 
relations: R12, R13, R14a and R14b. Fig. 12 also 
shows that Salt, Gelatin, CookedBeefRM3 and 
CookedBeefRM2 correspond to the values of the part 
attribute of the above relations. In the same way, 
1754KG, 15KG and 12KG are the values of the 
quantityPerUnit attribute corresponding to each 
component. 
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Fig. 12 also shows that R12 is a mandatory 
relation, while R13 is an optional one. R14a and 
R14b are selective relations, which imply that only 
one of them has to be present in the structure of a 
particular product. Thus, two structural hierarchies 
are implicit in the definition of the Frozen 
CookedBeefSTR: (i) one that comprises 12KG of 
Gelatin (R12),  15KG of Salt (R13) and 1754 KG of 
CookedBeefRM3 (R14a); (ii) and another one 
composed of  12KG of Gelatin (R12),  15KG of Salt 
(R13) and 1754KG of CookedBeefRM2 (R14b).  

 

 
Figure 12: FrozeenCookedBeef family. 

It is also possible to see in Fig. 13 that the 
CookedBeefRM2 family participates in two different 
structures: as a derivative in the decomposition 
structure of the CapOfRump family and also as a 
component of the FrozenCookedBeef one. 

 

 
Figure 13: CookedBeefRM2 participating in composition 
and decomposition structures. 

 
To exemplify the definition of a variant set, Fig. 

14 illustrates the representation of CookedBeefFor 

Dicing, which is member of FrozenCookedBeef 
family and has FrozenCookedBeefSTR as its 
structure. Also, Fig. 14 shows that the CookedBeef 
ForDicing variant set introduces three changes into 
the family structure. The figure also depicts 
elements of the variant set and product levels. The 
middle part of it illustrates how an instance of 
AllowableVariant Set relates to CookedBeefFor 
Dicing. Such instance specifies the CookedBeef 
RM2.1 variant set as one of the components of the 
possible SHs of the variant set being defined. The 
bottom part of Fig. 14 presents two members of the 
CookedBeefForDicing variant set, the CBD1 and 
CBD2 products, which by means of the 
chosenProduct relations specify the components of 
their respective structural hierarchies. 

To illustrate the use of views for inferring 
implicit knowledge from the defined concepts, Fig. 
15 presents some of the results of executing the 
FamilyReq view. In particular, this picture shows the 
material requirements of the CookedBeefRM2 
family. 

 

 
Figure 14: CookedBeefForDicing definition. 

In Fig. 15, the [CookedBeedRM2/this_par] label 
corresponds to the parameter value adopted in this 
execution of the view. Two values of the STRreq 
attribute are computed, corresponding to an 
execution of a generic view that has the family 
already mentioned as a parameter. These two values 
represent alternative material requirements 
corresponding to different structures. In particular, 
CookedBeedRM2 either requires 1 unit of CapOf 
Rump (by the CapOfRumpSTR2 structure) or 1 unit 
of RumpWC (by the RumpWCSTR3 structure). 
Similarly, Fig. 16 shows the results of executing the 
FamilyReq view for the FrozenCookedBeef family. 
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Figure 15: CookedBeefRM2 family requirements. 

 
Figure 16: FrozenCookedBeef family requirements. 

4 CONCLUSIONS 

The main contribution of this paper is the formal 
specification of PRONTO, a product information 
ontology, which integrates two hierarchies: the 
abstraction hierarchy (AH) and the structural one 
(SH), which contains BOM related information.  

The AH establishes three different abstraction 
levels for the definition of products: Family, 
VariantSet and Product. Such hierarchy allows 
representing different granularity product data and 
efficiently dealing with a high number of variants. It 
uses mechanisms to maintain consistent structural 
information between the different aggregation 
levels. The SH organizes knowledge related to the 
structural information of products. This hierarchy is 
a mechanism to properly manage product 

information associated with the multiple available 
recipes or processes to manufacture a particular 
product or a set of similar products. At each one of 
the levels of the AH, the SH defines the relations 
that exist between raw materials, intermediate and 
final products participating in a product structure.  

Another contribution of PRONTO, that is not 
included in other proposals, is its intrinsic capability 
of representing both, the structure of products that 
are obtained by the assembly of parts (typical of 
discrete manufacturing environments), as well as the 
structure of those that are decomposed to obtain 
intermediate products (characteristic of dairy, meat 
or petrochemical industries), that can participate as 
components of other products.  

The proposal also manages constraints which 
prevent the derivation of invalid product structures. 
This feature is very important in production 
environments where client specifications have a 
strong influence on the definition products to be 
manufactured/assembled. Thus, it avoids a client 
from requiring an incorrect product configuration. 

The integrated model was formalized using the 
O-Telos language and implemented in ConceptBase. 
This implementation provides a common vocabulary 
for the definition of product structures and specifies 
the semantics of each term in a non-ambiguous way 
by means of first order logics. It also allowed 
verifying the consistency of the proposed model, 
which can be easily extended by adding new 
concepts, deductive rules, queries and views. 
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