
THE IEEE STANDARDS COMMITTEE P1788 FOR INTERVAL
ARITHMETIC REQUIRES AN EXACT DOT PRODUCT

Ulrich Kulisch
Institut für Angewandte und Numerische Mathematik, Universität Karlsruhe, D-76128 Karlsruhe, Germany

Keywords: High speed computing, Computing with guarantees, Vector processing, Interval arithmetic, Exact dot product.

Abstract: Computing with guarantees is based on two arithmetical features. One is fixed (double) precision interval
arithmetic. The other one is dynamic precision interval arithmetic, here also called long interval arithmetic.
The basic tool to achieve high speed dynamic precision arithmetic for real and interval data is an exact mul-
tiply and accumulate operation and with it an exact dot product. Actually the simplest and fastest way for
computing a dot product is to compute it exactly. Pipelining allows to compute it at the same high speed
as vector operations on conventional vector processors. Long interval arithmetic fully benefits from such
high speed. Exactitude brings very high accuracy, and thereby stability into computation. This document is
intended to provide some background information, to increase the awareness, and to informally specify the
implementation of an exact dot product.

1 INTRODUCTION

It is well known that evaluation of a real arithmetic
expression (a sequence of arithmetic operations) for
an intervalx leads to a superset of the range of the
expression over the intervalx. The distance between
this superset and the range decreases with the width
of the intervalx and it tends to zero with the width
of x. This simple observation is the basis for many
successful and simple applications of long interval
arithmetic. Practically this means that results of real
arithmetic expressions can always be guaranteed to
a number of correct digits by using variable preci-
sion interval arithmetic. Variable length interval arith-
metic can be made very fast by an exact dot product
and complete arithmetic (Kulisch, 2008; Kulisch and
Snyder, 2009). There is no way to compute a dot
product faster than the exact result. By pipelining,
it can be computed in the time the processor needs
to read the data, i.e., it comes with utmost speed.
Variable length interval arithmetic fully benefits from
such high speed. No software simulation can go as
fast. By operator overloading variable length inter-
val arithmetic is very easy to use. It allows evalu-
ation of real arithmetic expressions with guaranteed
bounds (naive interval arithmetic). This has the po-
tential of greatly increasing the acceptance of interval
arithmetic in the scientific computing community.

In a letter to the IEEE 754 revision group (IFIP

WG - IEEE 754R letter) (Sept. 4, 2007) the IFIP
Working Group on Numerical Software requested that
a future arithmetic standard should consider and spec-
ify the exact dot product as basic ingredient of vari-
able precision real and interval arithmetic.

In another letter to IEEE P1788 (IFIP WG - IEEE
P1788 letter) (Sept. 9, 2009) the IFIP Working Group
strongly supports inclusion of an exact dot product in
the IEEE standard P1788 for interval arihtmetic.The
exact dot product is essential for fast long real and
long interval arithmetic, as well as for assessing and
managing uncertainty in computer arithmetic. It is a
fundamental tool for computing with guarantees and
can be implemented with very high speed.In Numer-
ical Analysis the dot product is ubiquitous.

On Nov. 18, 2009 the IEEE standards commit-
tee P1788 on interval arithmetic accepted a proposal
(Kulisch and Snyder, 2009) for including the exact dot
product into the future interval arithmetic standard.

2 INFORMAL DESCRIPTION
FOR REALIZING AN EXACT
DOT PRODUCT

Actually the simplest and fastest way for computing a
dot product is to compute it exactly. Take a chest of
drawers with 67 numbered drawers. Each one holds

475Kulisch U. (2010).
THE IEEE STANDARDS COMMITTEE P1788 FOR INTERVAL ARITHMETIC REQUIRES AN EXACT DOT PRODUCT.
In Proceedings of the 12th International Conference on Enterprise Information Systems - Information Systems Analysis and Specification, pages
475-478
DOI: 10.5220/0002906204750478
Copyright c© SciTePress



64 bits. The exponent of the summand (the product)
consists of 12 bits. The leading 6 bits give the ad-
dress of the three consecutive drawers to which the
summand of 106 bits is added. The low end 6 bits
of the exponent are used for the correct positioning
of the summand within the selected drawers. The ad-
dition affects at most 170 bits of these drawers, i.e.,
an adder of 170 bits could execute the addition in a
single add cycle.

A carry is absorbed by the next more significant
drawer in which not all bits are 1. For fast detection
of this word a flag is attached to each drawer. It is
set 1 if all bits of the word are 1. This means that a
carry will propagate through the entire word. As soon
as the exponent of the summand is available the flags
allow selecting and incrementing the carry word. This
can be done simultaneously with adding the summand
into the selected drawers. If the addition produces a
carry the incremented word is written into the carry
word. Otherwise it is left as it was. A zero flag may
serve the same purpose in case of subtraction.

There is indeed no simpler way of accumulating
a dot product. Any method that just computes an ap-
proximation also has to consider the relative values
of the summands. This results in a more complicated
method.

The fascinating property of the exact dot product
is the fact that it can be computed with extreme speed,
ideally in the time the processor needs to read the
data. No special cases have to be dealt with. The
technique of adding a medium sized bit string to a
very long one may have applications in other areas of
computing as well.

Ideally on the computer the chest of drawers
would consist of register memory. This leads to the
fastest solution. To add a product to the register mem-
ory only two memory words (the two factors of the
product) must be read. The result of the accumulation
of the product appears in the register memory.

The basic idea discussed here was realized on
IBM, SIEMENS, and Hitachi computers about 25
years ago (IBM System/370 RPQ, 1984; ACRITH-
XSC). These computers did not provide enough reg-
ister space. So here the chest of drawers was placed in
the user memory. The disadvantage of this solution is
that for each accumulation step, four memory words
(the three words to which the product is added and
the word which absorbs the carry) must be read and
written in addition to the two operand loads. So the
scalar product computation is slower than by use of
register memory. However, in practice today the nec-
essary memory space would probably be in cache. So
the loss in speed would be marginal. Anyway, com-
pared with any (even fast) software solution the gain

in speed would still be tremendous. Generally, real-
ization of an exact dot product may be architecture
dependent. For more details see (Kulisch, 2008).

All conventional vector processors provide amul-
tiply and accumulateoperation (the dot product) to
achieve high speed. In a pipeline the arithmetic (the
multiplication and the accumulation) is done in the
time the processor needs to read the data. Very effec-
tive vectorizing compilers have been developed that
use thismultiply and accumulateoperation within a
user’s program as often as possible, since this greatly
speeds up program execution. However, the accumu-
lation is done in floating-point arithmetic. The so-
calledpartial sum techniquealters the sequence of the
summands and causes errors in addition to the usual
floating-point errors. The exact dot product avoids all
numerical errors and at the same speed. The hardware
needed for it is comparable to that for a fast multiplier
by an adder tree (also called Wallace tree), accepted
years ago and now standard technology in every mod-
ern processor. The exact dot product brings the same
speed up for accumulations at comparable costs. In
speed a hardware implementation of the exact dot
product exceeds computing an accurately rounded dot
product in software by several orders of magnitudes.

3 A FEW SAMPLE
APPLICATIONS

A very impressive application is considered in
(Blomquist et al., 2009), an iteration with the logis-
tic equation (dynamical system)

xn+1 := 3.75·xn · (1− xn), n≥ 0.

For the initial valuex0 = 0.5 the system shows chaotic
behavior.

Double precision floaint-point or interval arith-
metic totally fail (no correct digit) after 30 iterations
while long interval arithmetic after 2790 iterations
still computes correct digits of a guaranteed enclo-
sure.

In numerical analysis the scalar or dot product is
ubiquitous. It is not merely a fundamental operation
in all vector and matrix spaces. The process of resid-
ual or defect correction, or of iterative refinement, is
composed of scalar products. There are well known
limitations to these processes in floating-point arith-
metic. The question of how many digits of a defect
can be guaranteed in single, double or extended preci-
sion arithmetic has been carefully investigated. With
an exact scalar product the defect can always be com-
puted to full accuracy. It is the exact scalar product
which makes residual correction effective. This has a

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

476



direct and positive influence on all iterative solvers of
systems equations.

A simple example may illustrate the advantages of
what has been said: Solving a system of linear equa-
tions Ax = b is the central task of numerical com-
puting. Large linear systems can only be solved it-
eratively. Iterative system solvers repeatedly com-
pute the defectd (sometimes called the residual)d :=
b−Ax̃of an approximation ˜x. It is well known that the
erroreof the approximation ˜x is a solution of the same
system with the defect as the right hand side:Ae= d.
If x̃ is already a good approximation of the solution,
the computation of the defect suffers from cancella-
tion in floating-point arithmetic, and if the defect is
not computed correctly the computation of the error
does not make sense. In the computation of the defect
it is essential that, although ˜x is just an approximation
of the solutionx∗, x̃ is assumed to be an exact input
and that the entire expression for the defectb−Ax̃ is
computed as a single exact scalar product. This pro-
cedure delivers the defect to full accuracy and by that
also to multiple precision accuracy. Thus the defect
can be read to two or three or four fold precision as
necessary in the formd = d1+d2+d3+d4 as a long
real variable. The computation can then be contin-
ued with this quantity. This often has positive influ-
ence on the convergence speed of the linear system
solver. It is essential to understand that apart from the
exact scalar product, all operations are performed in
double precision arithmetic and thus are very fast. If
the exact scalar product is supported by hardware it is
faster than a conventional scalar product in floating-
point arithmetic1.

But also direct solvers of systems of linear equa-
tions profit from computing the defect to full accu-
racy. The step of verifying the correctness of an ap-
proximate solution is based on an accurate computa-
tion of the defect. If a first verification attempt fails,
a good enough approximation can be computed with
the exact scalar product.

The so calledKrawczyk-operatorwhich is used
to verify the correctness of an approximate solution
is able to solve the problem only in relatively stable
situations. Matrices from the so called Matrix Mar-
ket usually are very ill conditioned. In such cases
the Krawczyk-operator almost never finds a verified
answer. Similarly, for instance, in the case of a
Hilbert matrix of dimension greater than eleven the
Krawczyk-operator always fails to find a verified so-
lution. In all these cases, however, the Krawczyk-
operator recognizes that it cannot solve the problem

1An iterative method which converges to the solution in
infinite precision arithmetic often converges more slowly or
even diverges in finite precision arithmetic.

and then automatically calls a more powerful opera-
tor, the so calledRump-operatorwhich then in almost
all cases, even for extemely ill conditioned problems
solves the problem satisfactorily (Klatte et al., 1993).

The Krawczyk-operator first computes an approx-
imate inverseR of the matrix A and then iterates
with the matrix I −RA, whereI is the identity ma-
trix. The Rump-operator inverts the productRA in
floating-point arithmetic again and then multiplies its
approximate inverse byRA. This product is com-
puted with the exact scalar product and from that
it can be read to two or three or four fold preci-
sion as necessary as a long-real matrix, for instance
(RA)−1RA≈ I1 + I2 + I3 + I4 in case of a four fold
precision. The iteration then is continued with the ma-
trix I − (I1+ I2+ I3+ I4). It is essential to understand
that even in theRump-algorithmall arithmetic opera-
tions except for the (very fast) exact scalar product are
performed in double precision arithmetic and thus are
very fast. This linear system solver is an essential in-
gredient of many other problem solving routines with
automatic result verification.

To be more successful conventional floating-point
and interval arithmetic have to be complemented by
some easy way to use multiple or variable precision
arithmetic. This enables the use of higher precision
operations in numerically critical parts of a computa-
tion. The fast and exact scalar product is the tool to
provide this very easily.

If one runs out of precision in a certain problem
class, one often runs out of quadruple precision very
soon as well. It is preferable and simpler, therefore, to
provide a high speed basis for enlarging the precision
rather than to provide any fixed higher precision or to
simulate higher precision in software. A hardware im-
plementation of a full quadruple precision arithmetic
is more costly than an implementation of the exact
scalar product. The latter only requires fixed-point
accumulation of the products. On the computer, there
is only one standardised floating-point format that is
double precision.

For many applications it is necessary to compute
the value of the derivative of a function. Newton’s
method in one or several variables is a typical exam-
ple of this. Modern numerical analysis solves this
problem by automatic or algorithmic differentiation.
The so called reverse mode is a very fast method of
automatic differentiation. It computes the gradient,
for instance, with at most five times the number of
operations needed to compute the function value. The
memory overhead and the spatial complexity of the
reverse mode can be significantly reduced by the ex-
act scalar product if this is considered as a single, al-
ways correct, basic arithmetic operation in the vector

THE IEEE STANDARDS COMMITTEE P1788 FOR INTERVAL ARITHMETIC REQUIRES AN EXACT DOT
PRODUCT

477



spaces (Shiriaev, 1993). The very powerful methods
of global optimization are impressive applications of
these techniques.

Many other applications require that rigorous
mathematics can be done with the computer using
floating-point arithmetic. As an example, this is es-
sential in simulation runs (eigenfrequencies of a large
generator, fusion reactor, simulation of nuclear explo-
sions) or mathematical modelling where the user has
to distinguish between computational artifacts and
genuine reactions of the model. The model can only
be developed systematically if errors resulting from
the computation can be excluded.

Nowadays computer applications are of immense
variety. Any discussion of where a dot product com-
puted in quadruple or extended precision arithmetic
can be used to substitute for the exact scalar prod-
uct is superfluous. Since the former can fail to pro-
duce a correct answer an error analysis is needed for
all applications. This can be left to the computer.
As the scalar product can always be executed exactly
with moderate technical effort it should indeed al-
ways be executed exactly. An error analysis thus be-
comes irrelevant. Furthermore, the same result is al-
ways obtained on different computer platforms. An
exact scalar product eliminates many rounding errors
in numerical computations. It stabilises these compu-
tations and speeds them up as well. It is the necessary
complement to floating-point arithmetic.2

REFERENCES

IEEE Floating-Point Arithmetic Standard 754, 2008.

TheIFIP WG - IEEE 754R letter, dated September 4, 2007.

The IFIP WG - IEEE P1788 letter, dated September 9,
2009.

U. Kulisch, V. Snyder.The Exact Dot Product as Basic Tool
for Long Interval Arithmetic, passed on Nov. 18, 2009
as official IEEE P1788 document.

U. Kulisch.Computer Arithmetic and Validity – Theory, Im-
plementation, and Applications, de Gruyter, Berlin,
New York, 2008.

U. Kulisch. Implementation and Formalization of Floating-
Point ArithmeticsIBM T. J. Watson-Research Cen-
ter, Report Nr. RC 4608, 1 - 50, 1973. Invited talk at
the Caratheodory Symposium, Sept. 1973 in Athens,

2A disappointing feature is the failure of the numerical
analysts to influence computer hardware and software in the
way they should. It is often said that the use of computers
for scientific work represents a small part of the market and
numerical analysts have resigned themselves to accepting
facilities ”designed” for other purposes and making the best
of them. J. H. Wilkinson: Turing Lecture 1970, J. ACM 18
(1971), 146.

published in: The Greek Mathematical Society, C.
Caratheodory Symposium, 328 - 369, 1973, and in
Computing 14, 323–348, 1975.

U. Kulisch. Grundlagen des Numerischen Rechnens –
Mathematische Begründung der Rechnerarithmetik.
Reihe Informatik, Band 19, Bibliographisches Insti-
tut, Mannheim/Wien/Zürich, 1976.

S. M. Rump.Kleine Fehlerschranken bei Matrixproblemen.
Dissertation, Universität Karlsruhe, 1980.

R. Lohner.Interval Arithmetic in Staggered Correction For-
mat. In: E. Adams and U. Kulisch (eds.):Scien-
tific Computing with Automatic Result Verification,
pp. 301–321. Academic Press, (1993).

F. Blomquist, W. Hofschuster, W. Krämer.A Modified Stag-
gered Correction Arithmetic with Enhanced Accuracy
and Very Wide Exponent Range.In: A. Cuyt et al.
(eds.): Numerical Validation in Current Hardware
Architectures, Lecture Notes in Computer Science
LNCS, vol. 5492, Springer-Verlag Berlin Heidelberg,
41-67, 2009.

R. Klatte, U. Kulisch, C. Lawo, M. Rauch, A. Wiethoff,
C–XSC, A C++ Class Library for Extended Scientific
Computing. Springer-Verlag, Berlin/Heidelberg/New
York, 1993. See also: http://www.math.uni-
wuppertal.de/∼xsc/ resp. http://www.xsc.de/.

D. Shiriaev.Fast Automatic Differentiation for Vector Pro-
cessors and Reduction of the Spatial Complexity in
a Source Translation Environment. Dissertation, Uni-
versität Kalrsuhe, 1993.

S. Oishi; K. Tanabe; T. Ogita; S.M. Rump.Conver-
gence of Rump’s method for inverting arbitrarily ill-
conditioned matrices. Journal of Computational and
Applied Mathematics 205, 533-544, 2007.

IBM System/370 RPQ. High Accuracy Arithmetic.SA 22-
7093-0, IBM Deutschland GmbH (Department 3282,
Schönaicher Strasse 220, D-71032 Böblingen), 1984.

ACRITH-XSC: IBM High Accuracy Arithmetic, Extended
Scientific Computation.Version 1, Release 1. IBM
Deutschland GmbH (Schönaicher Strasse 220, D-
71032 Böblingen), 1990.
1. General Information, GC33-6461-01.
2. Reference, SC33-6462-00.
3. Sample Programs, SC33-6463-00.
4. How To Use, SC33-6464-00.
5. Syntax Diagrams, SC33-6466-00.

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

478


