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Abstract: This paper addresses the problem of learning a Dynamic Bayesian network from timed data without prior 
knowledge to the system. One of the main problems of learning a Dynamic Bayesian network is building 
and orienting the edges of the network avoiding loops. The problem is more difficult when data are timed. 
This paper proposes an algorithm based on an adequate representation of a set of sequences of timed data 
and uses an information based measure of the relations between two edges. This algorithm is a part of the 
Timed Observation Mining for Learning (TOM4L) process that is based on the Theory of the Timed 
Observations. The paper illustrates the algorithm with an application on the Apache system of the 
Arcelor-Mittal Steel Group, a real world knowledge based system that diagnoses a galvanization bath. 

1 INTRODUCTION 

This paper describes the BJM4BN algorithm (BJ-
Measure for Bayesian Networks) that learns a 
Dynamic Bayesian networks from timed data 
without prior knowledge to the process that 
generates the timed data. Most of the contributions 
to learn a bayesian network are based on un-timed 
data. The main difficulties are orienting the edges of 
the resulting graph and building the conditional 
probability tables. These problems are more difficult 
when data are timed. 

The BJM4BN algorithm proposes an efficient 
solution to solve these problems when data are 
timed. The solution is based on a particular 
representation of the timed data called the Stochastic 
Representation. These representation is the basis of 
the theory of Timed Observations (Le Goc, 2006). 
This theory defines a learning process called Timed 
Observation Mining for Learning (TOM4L) (Le 
Goc, 2005). The TOM4L process aims at 
discovering temporal knowledge about a set of time 
functions xi(t) considered as a dynamic system 
X(t)={xi(t)} called a process. To this aim, the theory 
of Timed Observations defines an entropic measures 
called the the BJ-Measure of (Benayadi, 2008) that 
evaluates the flow of information between two nodes 
in a graph and provides so an efficient mean to 
orient the edges. 

The next section presents a very short state of the  

art about learning Dynamic Bayesian networks 
(DBN). Section 3 introduces the basis of the 
Stochastic Representation of TOM4L and the BJ-
Measure. Section 4 describes the BJM4BN 
algorithm and section 5 shows a real life application 
of the algorithm. Section 6 concludes the paper. 

2 RELATED WORKS 

A BN is a couple <G, θ> where G denotes a Direct 
Acyclic Graph in which the nodes represent the 
variables and the edges represent the dependencies 
between the variables (Pearl, 1988), and θ is the 
Conditional Probabilities Tables (CP Tables) 
defining the conditional probability between the 
values of a variable given the values of the upstream 
variables of G. BN learning algorithms aims at 
discovering the couple <G, θ> from a given data 
base. BN learning algorithms fall into two main 
categories: “search and scoring” and “dependency 
analysis” algorithms. The “search and scoring” 
learning algorithms can be used when the knowledge 
of the edge orientation between the variables of the 
system is given (Cooper, 1992), (Heckerman, 1997). 
To avoid this problem, dependency analysis 
algorithms uses conditional independence tests 
(Cheng, 1997), (Cheesseman, 1995), (Friedman 
1998), (Meyrs et al, 1999). But the number of test 
exponentially   increases    the    computation    time  
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(Chickering, 1994). 
For example, Cheng’s algorithm (Cheng, 1997) 

for learning BN is based on the d-separation concept 
of (Pearl, 1988) to infer the structure G of the 
Bayesian Network, and the mutual information I(X, 
Y) (eq. 1) to detect conditional independence 
relations. 
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The mutual information I(X, Y) is used to 
evaluate all the potential pairs of variables (X, Y) and 
to producing a list L sorted in descending order: 
pairs of higher mutual information are supposed to 
be more related than those having low mutual 
information values. The List L is then pruned given 
an arbitrary parameter ε: each pair (X, Y) so that 
I(X, Y)<ε is eliminated of L. In real world 
applications, list L should be as small as possible 
using the ε parameter. The two main limitations such 
approaches is the need of defining the ε parameter 
and the exponential amount of Conditional 
Independence tests to orient the edges of the graph. 

3 TOM4L FRAMEWORK 

The BJM4BN algorithm provides a solution to these 
two problems that is based on the Stochasxtic 
Representation of the TOM4L framework (Le Goc, 
2005), (Le Goc, 2006), (Le Goc, 2008). 

In this framework, a message timed at tk 
contained in a database is an occurrence Ci(k) of an 
observation class Ci={(xi, δi)} which is an arbitrary 
set of couples (xi, δi) where δi is one of the discrete 
value of a variable xi. An observation class is often a 
singleton because in that case, two classes Ci = {(xi, 
δi)} and Cj = {(xj, δj)} are only linked with the 
variables xi and xj when the constants δi and δj are 

dependent (Le Goc, 2006). in
The Stochastic Representation of a sequence 

ω=(…, Ci(k), …) of m occurrences Ci(k) defining a 
set Cl={ Ci } of n timed observations is a set of 
matrix (Le Goc, 2005), (Bouché, 2005) from which 
the BJ-Measure is computed (Benayadi, 2008). This 
measure is based on the Kullback-Leibler distance 
D(P(Y|X=Ci)||P(Y)) that evaluates the relation 
between the distribution of the conditional 
probability of Y knowing that X = Ci and the prior 
probability distribution of Y. The BJ-measure 
decomposes the Kullback-Leibler distance in two 
terms around the independence point 
P(Y|X=Ci)=P(Y) (i.e. D(P(Y|X=Ci)||P(Y)) = 0). 

The BJL-measure BJL(Ci→Cj) of binary relation  

r(Ci→Cj) is the right part of the Kullback-Leibler 
distance D(P(Y|X=Ci)||P(Y)) so that: 
• P(Y=Cj|X=Ci)<P(Y=Cj) ⇒ BJL(Ci, Cj)=0 
• P(Y=Cj|X=Ci)≥P(Y=Cj) ⇒  

BJL(Ci→Cj)= D(P(Y|X=Ci)||P(Y)) 
The BJL(Ci→Cj) is not null when the observation 

Ci(k) provides some information about the 
observation Cj(k). Symmetrically, when 
BJL(Ci→Cj)<0, the observation Ci(k) provides some 
information about ¬Cj(k). The BJL-measure 
BJL(Ci→¬Cj) of a binary relation r(Ci→¬Cj) is then 
the left part of the Kullback-Leibler distance: 
• P(Y=Cj|X=Ci)<P(Y=Cj) ⇒  

BJL(Ci→¬Cj)=D(P(Y|X=Ci)||P(Y)) 
• P(Y=Cj|X=Ci)≥P(Y=Cj) ⇒ BJL(Ci→¬Cj)= 0 

Consequently: 

D(P(Y|X=Ci)||P(Y))=BJL(Ci→Cj)+BJL(Ci→¬Cj) (2)

Similarly, the BJW-measure evaluates the 
information distribution between the predecessors 
(Ci(k) or ¬Ci(k)) of an observation Cj(k+1) at time 
tk+1: 

D(P(X|Y=Cj)||P(X))=BJW(Ci→Cj)+BJW(Ci→¬Cj) (3) 

Because (P(Cj|Ci)<P(Cj))⇔P(Ci|Cj)<P(Ci)), the 
two measures are null at the same independence 
point and can be combined in a single measure 
called the BJM-measure which is the norm vector of 
BJL(Ci→Cj) and BJW(Ci→Cj): 

M(Ci→Cj)= 22 ),(),( jiji CCBJWCCBJL +  – 
22 ),(),( jiji CCBJWCCBJL ¬+¬  

(4) 

The BJ-Measure is no more justifiable when the θi,j 
= ni/nj is greater of 4 or less than ¼ (Benayadi, 
2008). This property is called the θ  property. 

When a BJ-measure M(Ci→Cj) is positive, the 
timed observation distribution of the Ci class bring 
information about the timed observation distribution 
of the Cj class. So, considering the positive values 
only, the BJ-measure M(Ci→Cj) satisfies the three 
following properties: 
1. Dissymmetry:  

M(Ci→Cj)≠M(Cj→Ci) (generally) 
2. Positivity: ∀ Ci, Cj, M(Ci→Cj) ≥ 0  
3. Independence:  

M(Ci→Cj)=0 ⇔ Ci and Cj are independant (i.e. 
P(Cj|Ci)=P(Cj)) 

4. Triangular inequality:  
M(Ci→Cj) < M(Ci→Ck) + M(Ck→Cj) 

This latter property can be used to reason with 
the BJ-measure to deduce the structure of a dynamic 
Bayesian network. 
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4 LEARNING PRINCIPLES 

Let us consider a set R={…, r(Ci→Cj), …} of n 
binary relations. The operation that remove a binary 
relation r(Ci→Cj) from the set R is denoted 
Remove(r(Ci→Cj)): R ← R – { r(Ci→Cj) }. 

The positivity property leads to remove the 
r(Ci→Cj) relations having a negative value of the 
BJ-measure: 
• Rule 1 (“Positivity rule”):  

∀r(Ci→Cj)∈R, M(Ci→Cj)≤0 ⇒  
Remove(r(Ci→Cj)) 

The dissymmetry property allows deducing the 
orientation of a hypothetical relation between two 
timed observation classes Ci and Cj: 
• Rule 2 (Orientation rule):   

∀r(Ci→Cj), r(Cj→Ci)∈R,  
M(Ci→Cj)>M(Cj→Ci) ⇒ Remove(r(Cj→Ci)) 

Ci+1Ci

BJM(Ci→Ci+1)
Cj

BJM(Ci+1→Ci+2)

BJM(Cj→Ci)

Ci+2 Ci+n

BJM(Ci+n→Cj)
…Ci+1Ci

BJM(Ci→Ci+1)
Cj

BJM(Ci+1→Ci+2)

BJM(Cj→Ci)

Ci+2 Ci+n

BJM(Ci+n→Cj)
…

 
Figure 1: Loops. 

Now, let us consider a set R={r(Ci→Ci+1), 
r(Ci+1→Ci+2), ..., r(Ci+n→Cj), r(Cj→Ci)} of n+2 
binary relations defining a loop (Figure 2) where: 
• ∀r(Cx→Cy) ∈ R, M(Cx→Cy) > 0 

The problem of the set R is that computing the 
distribution of a class Cx requires knowing its 
distribution: loops must then be avoided. In other 
words, a relation r(Ci→Cj) must be removed from R 
to break the loop. To solve this problem, the idea is 
to used the monotonous property of the BJ-measure: 
finding two of class Ci and Cj so that the BJ-measure 
of the relation r(Ci→Cj) is the lowest of the loop: 
• Rule 3 (Loop Rule):  

∀r(Cx→Cy)∈R, ∃r(Ci→Cj)∈R, x≠i, y≠j,  
M(Cx→Cy)>M(Ci→Cj) ⇒ Remove(r(Ci→Cj)) 

When M(Cx→Cy)=M(Ci→Cj)), any of the 
relations can be removed. The extreme case of loop 
is can be find in a set R containing a reflexive 
relation r(Ci→Ci) where M(Ci→Ci)>0. Rule 3 must 
then be adapted to this extreme (but frequent) case: 
• Rule 4 (Reflexivity rule): 

∀r(Ci→Ci) ∈ R, M(Ci→Ci) > 0 ⇒  
Remove( r(Ci→Ci) ) 

Finally, to build naïve Bayesian Networks, the 
algorithm must avoid the multiple paths leading to a 
same Ci class (Figure 3). To avoid this problem, the 
idea is to use the monotonous property of the BJ-
measure: finding two of class Ci and Cj so that the 

BJ-measure of the relation r(Ci→Cj) is the lowest of 
the paths. To use this idea, all the paths leading to a 
particular Ci class must be find in R. Let us suppose 
that R contains n paths R1⊆R, R2⊆R, …, Rn⊆R 
leading to the Ci class (i.e. each Ri is of the form 
Ri={r(Ci→Ck-n), r(Ck-n→Ck-n+1), ..., r(Ck→Cj), 
r(Ci→Cl-n), r(Cl-n→Cl-n+1), r(Cl→Cj)}. The algorithm 
must find the r(Ci→Cj) relation with the lowest BJ-
measure to remove it in R (“Transitivity rule”): 
• Rule 5 (Transitivity rule):  

∀r(Cx→Cy)∈R1∪R2∪…∪Rn,   
∃r(Ci→Cj) ∈ R1∪R2∪…∪Rn, x≠i, y≠j,  
M(Cx→Cy)>M(Ci→Cj)⇒Remove(r(Ci→Cj)) 

Ck-n

Ci Cj
Ck-n-1 Ck…

Cl-m Cl-m-1 Cl…

Ck-n

Ci Cj
Ck-n-1 Ck…

Cl-m Cl-m-1 Cl…  
Figure 2: Multiple Paths. 

These five rules are necessary (but no sufficient) 
to design an algorithm, but its efficiency depends 
mainly of the number of relation in the initial set R. 
The TOM4L framework provides the mathematical 
tools to remove the relations that can not play a 
significant role in the building of a naïve Bayesian 
Network. Given the set R={…, r(Ci→Cj), …} of n 
binary relations that can be build from a sequence ω 
of timed observation Ci(k) defining a set C={Cx} of 
N(C) classes Cx. The size of the Stochastic 
Representation matrix of the TOM4L framework is 
then N(C)⋅N(C)=N(C)2. This provides two ways to 
eliminate a relation r(Ci→Cj) having no interest for 
building a naïve Bayesian Network: 
• Test 1: P(Cj|Ci)⋅P(Ci, Cj)≤1/N(C)3   

⇒ Remove(r(Ci→Cj)) 
This first test compares bij≡P(Cj|Ci)⋅P(Ci, Cj) 

with the hazard of having an occurrence Ci(k) of the 
Ci class at time tk knowing that there is an 
occurrence Cj(k+1) of the Cj class occurring at time 
tk+1. Because ω defines N(C) classes, the a priori 
probability of having an occurrence Ci(k) of a Ci 
class followed by an occurrence Cj(k+1) of the Cj 
class is P(Cj|Ci)=1/N(C) and the probability of 
reading a couple (Ci(k), Cj(k+1)) in ω is P(Ci, Cj)= 
1 / N(C)2. So each bij value  can  be  compared with  
the “absolute” hazard 1 / (N(C) N(C)2). 
• Test 2: P(Cj|Ci)⋅P(Ci, Cj)≤(1/(N(C)⋅P(Ci)⋅P(Cj)) 

 ⇒ Remove(r(Ci→Cj)) 
This second test defines the hazard when 

supposing that Ci and Cj classes are independent. In 
that case, the probability P((Cj(k), Ci(k+1)) in ω of 
having a couple (Ci(k), Cj(k+1)) in ω is P(Ci)⋅P(Cj) 
and having an occurrence Ci(k) of a Ci class, the 
hazard is to read any occurrence Cj(k+1) of the Cj 
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class: P(Cj|Ci)=1/N(C). So each bij value can be 
compared with the “relative” hazard 
1/(N(C)⋅P(Ci)⋅P(Cj)). 

The θ property of the BJ-measure complete these 
two tests to eliminate the relation having no meaning 
according to the BJ-measure: 
• Test 3: θi,j>4 ∨ θi,j<1/4 ⇒ Remove(r(Ci→Cj)) 

Within the TOM4L framework, these tree tests 
are implemented in the F0/1=[fij] matrix: 
• (bij>1/N(C)3) ∧ (bij>(1/(N(C)⋅P(Ci)⋅P(Cj)) ∧ (1/4

≤θi,j≤ 4) ⇔ fij = 1 
So this lead to the rule number 6: 

• Rule 6: ∀r(Ci→Cj)∈R,   
fij = 0 ⇒ Remove( r(Ci→Cj) ) 

These six rules are used by the BJM4BN 
algorithm to build a naïve Bayesian Network. 

5 THE BJM4BN ALGORITHM 

The BJM4BN algorithm takes as inputs a sequence 
ω of m timed observation Ci(k) defining a set 
Cl={Cx} of N(Cl) classes Cx and an output Cj class 
that is the class for which the DBN is computed. It 
produces a set G={…, r(Ci→Cj), …} of n binary 
relations that form the structure of a naïve Bayesian 
Network (G, Θ). 

The “BJM4BN” algorithm contains 5 stages. The 
first stage computes the Stochastic Representation of 
Θ to produce the initial M=[mij] matrix containing 
the BJ-measure values of the N(Cl)2 binary relations 
r(Ci→Cj)) defined by ・ (line 1). 
// Stage 1 
1. Compute the M=[mij] matrix 
2. ∀i=0…N(Cl), ∀j=0…N(Cl), fij=0  
3. ∀i=0…N(Cl), ∀j=0…N(Cl),   

(bij>1/N(C)3)∧(bij>(1/(N(C)⋅P(Ci)⋅P(Cj))
∧(1/4≤θi,j≤ 4) ⇒ fij=1 

4. M=M⋅F0/1  
5. ∀i=0…N(Cl), ∀j=0…N(Cl),  

5.1. mij≤0 ⇒ mij=0 // rule 1 
5.2. i=j ⇒ mij=0 // rule 4 

Next, the F0/1=[fij] matrix is computed using 
test 4 (line 3) so that the new values mij=mij⋅fij of 
matrix M=[mij] with rule 6 (line 4). Finally, the M 
matrix is normalized using rules 1 (line 5.1) and 4 
(line 5.2). 
// Stage 2 
6. L={φ} 
7. ∀i=0…N(Cl), ∀j=0…N(Cl), mii>0,⇒ 

L=L+{(r(Ci→Cj), mii)}  
Stage 2 computes the list L from the normalized 

matrix M. The list L={(r(Ci→Cj), mii)} contains 
couples of the form (r(Ci→Cj), mii) where mii is 

the BJ-measure value of the associated r(Ci→Cj) 
binary relation. This list will be used to find the 
relation r(Cx→Cy) so that mxy is the minimal value 
of the BJ-measures contained in L. 
// Stage 3 
8. Cx=Cj, G={φ}  
9. ∀r(Cy→Cx))∈L ⇒ G=G+{r(Cy→Cx)} 
10. Build(G, Cx){  

∀r(Cy→Cx))∈G, ∀r(Cz→Cy))∈L,   
G=G+{r(Cz→Cy)}  
Build(G, Cy)  
}// End Build Function 

Stage 3 builds recursively the initial G graph 
from the Cj class. This stage uses a recursive 
function called “Build(G, Cx)” where Cx is the class 
the graph of which is to build.  
// Stage 4 
11. R={φ} 
12. ∀Ri⊆G, Ri≡{r(Ci→Ci+1), r(Ci+1→Ci+2), ..., 

r(Ci+n→Cj), r(Cj→Ci)} ⇒ R=R+{Ri}  
13. ∀Ri∈R, ∀r(Cx→Cy)∈Ri, r(Cx→Cy)∉L1 ⇒ 

L1=L1+{(r(Cx→Cy), mxy)}  
 

14. While R≠{φ} repeat  
. ∃r(Cx→Cy)∈L1, mxy = Min(mij, L1)  
   ∀Ri∈R, ∃r(Cx→Cy)∈Ri ⇒  
    R=R-{Ri}  
    G=G–{r(Cx→Cy)}  
    L1=L1-{(r(Cx→Cy), mxy)}  

Stage 4 finds and removes the loops in G with 
Rule 3. This stage finds all the loops Ri in G of the 
form Ri≡{r(Ci→Ci+1), r(Ci+1→Ci+2), ..., r(Ci+n→Cj), 
r(Cj→Ci)} and put them in a set R (line 12). Next, a 
new list L1 is build containing all the relation 
r(Cx→Cy) in R with its associated mxy BJ-measure 
value (line 13). Every loops Ri in R are then removed 
using Rule 3 and the resulting G graph is updated 
(line 14). At the end of this stage, G contains no 
more loops. It is to note that the L1 list being global 
(i.e. containing all the relations r(Cx→Cy) 
participating in a loop), it is guaranty that the set of 
removed relation r(Cx→Cy) is optimal: it is minimal 
and the removed relations are the smallest of the G 
graph. 

 

//Stage 5 
15. R={φ} 
16. ∀Ri⊆G,   

Ri≡{r(Ci→Ck-n), r(Ck-n→Ck-n+1), ..., 
r(Ck→Cj), r(Ci→Cl-n), r(Cl-n→Cl-n+1), ..., 
r(Cl→Cj)} ⇒ R=R+{Ri}    

17. ∀Ri∈R,   
∀r(Cx→Cy)∈Ri, r(Cx→Cy)∉L1 ⇒ 
L1=L1+{(r(Cx→Cy), mxy)}  

18. While R≠{φ} repeat  
∃r(Cx→Cy)∈L1, mxy = Min(mij, L1)  
  ∀Ri∈R, ∃r(Cx→Cy)∈Ri ⇒   
   R=R-{Ri}  
   G=G–{r(Cx→Cy)}  
   L1=L1-{(r(Cx→Cy), mxy)}  
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Stage 5 removes the multiple paths in the G 
graph with Rule 5. This stage proceeds as the stage 
4, but the R set contains only paths Ri of the form 
Ri≡{r(Ci→Ck-n), r(Ck-n→Ck-n+1), ..., r(Ck→Cj), 
r(Ci→Cl-n), r(Cl-n→Cl-n+1), ..., r(Cl→Cj)} (line 16). 
At the end of this stage, G contains no more multiple 
paths and it is guaranty that the set of removed 
relation r(Cx→Cy) is optimal. 

Stage 6 computes the conditional probabilities 
tables for G and finalizes the algorithm. The 
computing of the Conditional Probabilities Tables 
(CP Tables) is based on the numbering table N=[nij] 
of the Stochastic Representation of the ω sequence: 
• P(Y=Co | X=Ci) + P(Y=¬Co | X=Ci) = 1. 

The computing of the CP tables uses this 
property (for simplicity, P(Cy|Cx) is rewritten P(y|x)). 
For a root node Cx: 
• P(x)=(Σjnxj) / ΣiΣjnij  
For a single relation r(Cx→Cy):  
• P(y|x) = nxy / (Σjnyj) 
• P(y|¬x) = (Σiniy)-nxy) / (ΣiΣjnij–(Σjnxj))  

For a set R={r(Cx→jy), r(Cz→Cy)} of two 
relations converging to the same Cy class:  
• P(y|x,z) = (nxy+nzy) / (Σjnxj+Σjnzj)  
• P(y|¬x,z) = (Σiniy-nxy) / (ΣiΣjnij-Σjnxj)  
• P(y|x,¬z) = (Σiniy-nzy) / (ΣiΣjnij-Σjnzj)  
• P(y |¬x,¬z) = (Σiniy-nxy-nzy) / (ΣiΣjnij-Σjnxj-Σjnzj)  

The next section illustrates the computation of 
the CP tables with a real world process. 

6 REAL WORLD APPLICATION 

The Apache system is a clone Sachem, the 
knowledge based systems that The Arcelor Group, 
one of the most important steal companies in the 
world, has developed to monitor and diagnose its 
production tools (Le Goc, 2004). Apache aims at 
controlling a zinc bath, a hot bath containing a liquid 
mixture of aluminum and zinc continuously fed with 
aluminum and zinc ingots in which a hot steel strip 
is immerged. Apache monitors and diagnoses around 
11 variables and is able to detect around 24 types of 
alarms. The analyzed sequence ω contains 687 
events of 13 classes for 11 discrete variables. The 
counting matrix N contains then 156 cells nij (Table 
1). The corresponding M matrix is provided in Table 
2, the F0/1 matrix in Table 3 and the normalized M 
matrix in Table 4. These matrixes are computed in 
the first stage of the “BJM4BN” algorithm. 

The stage 2 computes the L list of Table 5. The 
node of interest being 1006, the initial G graph 

resulting of stage 3 of the “BJM4BN” algorithm is 
given in Figure 4. This stage uses the normalized M 
matrix and start with the 1006 column to add the 
relations r(1001, 1006) and r(1001, 1006) in the 
initial G. graph. Next, the Build(G, 1006) function is 
executed to add the relation r(1004, 1001) in G 
before calling Build(G, 1001) function and so on. 

Table 1: Counting matrix N of ω. 
N 1001 1002 1004 1006 1014 1020 1022 1024 1025 1026 1029 1031 1037 TOTAL

1001 6 2 0 15 0 1 0 0 6 0 4 5 0 3
1002 4 1 1 4 10 0 0 0 0 0 2 4 0 2
1004 2 4 0 2 0 2 0 0 3 0 1 3 1 1
1006 10 5 7 35 1 15 1 6 20 4 21 23 0 148
1014 0 1 0 4 0 0 0 0 1 4 0 0 0 1
1020 1 2 2 18 0 5 0 1 6 2 5 10 0 5
1022 0 0 0 1 0 0 0 1 0 0 2 0 0
1024 1 0 2 3 0 3 0 0 2 1 6 7 0 2
1025 2 4 3 22 0 7 2 6 26 3 34 12 1 12
1026 0 0 0 8 0 4 0 1 2 0 0 2 0 1
1029 4 1 2 15 0 7 0 3 39 3 14 13 0 10
1031 9 6 2 21 0 6 1 7 19 1 11 36 2 12
1037 0 0 0 0 0 1 0 0 0 0 2 1 0

9
6
8

0
2
4
5
2
7
1
1

39 26 19 148 11 51 4 25 124 18 102 116 4 68
4
7  

Table 2: The M matrix of ω. 
M 1001 1002 1004 1006 1014 1020 1022 1024 1025 1026 1029 1031 1037

1001 0.0731 0.0104 -0.6851 0.0193 -0.7048 -0.1189 -0.7478 -0.6877 -0.0023 -0.6860 -0.0138 -0.0073 -0.7478
1002 0.0901 0.0000 0.0136 -0.0137 0.4975 -0.8044 -0.5332 -0.5741 -1.4754 -0.5351 -0.0572 -0.0010 -0.5332
1004 0.0540 0.2722 -0.4630 -0.0678 -0.4035 0.0203 -0.3894 -0.5242 -0.0008 -0.4539 -0.1494 0.0000 0.7084
1006 0.0022 -0.0014 0.0279 0.0002 -0.1357 0.0053 0.0039 0.0012 -0.0032 0.0001 -0.0001 -0.0002 -2.0168
1014 -0.7094 0.1322 -0.4136 0.0476 -0.3017 -0.8745 -0.2377 -0.5036 -0.0625 0.5957 -1.4682 -1.6083 -0.2377
1020 -0.1232 0.0000 0.0135 0.0107 -0.8802 0.0054 -0.9419 -0.0496 -0.0170 0.0185 -0.0164 0.0011 -0.9419
1022 -0.7478 -0.5332 -0.4079 0.0039 -0.2569 -0.9276 -0.1304 0.5404 -1.7875 -0.3894 0.2021 -1.7067 -0.1304
1024 -0.0146 -0.5741 0.1290 -0.0457 -0.5041 0.0244 -0.5157 -0.5667 -0.0925 0.0226 0.0211 0.0225 -0.5157
1025 -0.1857 -0.0024 -0.0018 -0.0011 -1.6506 -0.0053 0.1506 0.0088 0.0008 -0.0005 0.0095 -0.0152 0.0204
1026 -0.6874 -0.5312 -0.4549 0.0557 -0.3895 0.1293 -0.3708 0.0294 -0.0276 -0.4451 -1.3792 -0.0194 -0.3708
1029 -0.0131 -0.2437 -0.0158 -0.0065 -1.4442 -0.0004 -1.5483 -0.0050 0.0124 0.0020 -0.0002 -0.0037 -1.5483
1031 0.0053 0.0070 -0.0390 -0.0017 -1.6411 -0.0138 0.0214 0.0191 -0.0007 -0.2127 -0.0132 0.0073 0.1528
1037 -0.7478 -0.5332 -0.4079 -2.0168 -0.2569 0.2355 -0.1304 -0.5157 -1.7875 -0.3894 0.2021 0.0268 -0.1304  

Table 3: The F0/1 matrix of ω. 
F0/1 1001 1002 1004 1006 1014 1020 1022 1024 1025 1026 1029 1031 1037

1001 1 1
1002 1 1
1004 1 1 1
1006 1 1 1
1014 1 1
1020 1 1 1
1022
1024 1 1
1025 1 1
1026 1 1
1029 1
1031 1 1
1037  

Table 4: The normalized M matrix. 
Normed M 1001 1002 1004 1006 1014 1020 1022 1024 1025 1026 1029 1031 1037

1001 0.0193
1002 0.0901 0.4975
1004 0.0540 0.2722 0.0203
1006 0.0022 0.0053
1014 0.1322 0.5957
1020 0.0107 0.0011
1022
1024 0.1290 0.0244
1025 0.0095
1026 0.1293 0.0294
1029 0.0124
1031 0.0053
1037  

Table 5: The L list of Stage 2. 
M (i , j )

1014 1026 0.5957
1002 1014 0.4975
1004 1002 0.2722
1024 1004 0.1290
1002 1001 0.0901
1004 1001 0.0540
1026 1024 0.0294
1024 1020 0.0244
1004 1020 0.0203
1001 1006 0.0193
1020 1006 0.0107
1031 1001 0.0053
1020 1031 0.0011

r (i , j )

 

The G graph of Figure 3 having no loops, the 
stage 4 modify noting and stage 5 is executed with 
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