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Abstract: Evolutionary algorithms work on randomly generated populations, which are converged over runs toward 
the desired optima. Randomly generated populations are of different qualities based on their average fitness 
values. In many cases switching all bits of a randomly generated binary individual to their opposite values 
might quickly produce a better individual. This technique increases diversity among individuals in the 
population and allows exploring the search space in a more rigorous way. In this research the effect of such 
operation during the initialization of the population and crossover operator has been investigated. 
Experimentation with 44 test problems in 2200 runs showed that this technique can facilitate producing 
better individuals on average in around 32% of cases. 

1 INTRODUCTION 

Evolutionary algorithms are heuristic algorithms, 
which imitate the natural evolutionary process and 
are mainly used to solve problems which are hard to 
solve in conventional ways.  In an evolutionary 
algorithm 1) problems are described by a set of 
parameters, 2) parameters are interpreted as a set of 
artificial genes, 3) genes are considered as blueprints 
of individuals and 4) evolution is applied to 
individuals (Fogel, Owens & Walsh 1966; Holland 
1975; Krink 2005).  

Evolutionary algorithms have typically five basic 
components: 1) a genetic representation of a number 
of solutions to the problem, 2) a way to create an 
initial population of solutions, 3) an evaluation 
function for rating solutions in terms of their 
“fitness”, 4) “genetic” operators that alter the genetic 
composition of offspring during reproduction, 5) 
values for the parameters, e.g. population size, 
probabilities of applying genetic operators 
(Michalewicz 1996). 

2 GENETIC ALGORITHMS 

Most often genetic algorithms (GAs) have at least 
the following elements in common: one or more 

populations of chromosomes (solution candidates, 
individuals), selection according to fitness, crossover 
to produce new offspring, and random mutation of 
offspring. A simple GA works as follows: 1) A 
population of n  l -bit strings (chromosomes) is 
randomly generated, 2) the fitness )(xf  of each 
chromosome x  in the population is calculated, 3) 
chromosomes are selected to go through crossover 
and mutation operators with cp  and mp  
probabilities respectively, 4) the old population is 
replace by the new one, 5) the process is continued 
until the termination conditions are met.  

The basic concepts of GA have evolved over 
time and many heuristic techniques have been 
utilized to customize GA for specific types of 
problems. The studies on the usage of genetic 
components have been grouped into the following 
categories in (Talaslioglu 2009): 1) genetic operators 
with adjustable parameters and representation of 
design variables, which covers a.o. representation 
techniques and different operators used in GAs, 2) 
constraint handling for evaluation of fitness values, 
which for instance covers the design of penalty 
functions and adaptive approaches for handling the 
constraints. 
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2.1 Problem Encoding 

Genetic algorithms work on the genotype space 
(coding space) and the phenotype space (solution 
space) alternatively. The genetic operators work on 
the genotype space and the evaluation and selection 
operators work on the phenotype space. The 
mapping from the genotype space to the phenotype 
space influence the performance of genetic 
algorithms significantly. Natural selection is the link 
between chromosomes and the performance of 
decoded solutions (Gen & Cheng 2000). 

The encoding methods can be divided to the 
following classes: 1) binary encoding for binary, 
integer and real numbers, 2) real number encoding 
for real numbers only, 3) integer or literal 
permutation encoding, 4) general data structure 
encoding. Binary encoding requires a decoding 
function and it might cause decoding anomalies 
(Krink 2005). The real number encoding is 
considered the best one for solving optimizations 
and constrained optimizations problems (Gen et al 
2000). 

2.2 Genetic Operators 

For any evolutionary computation technique a 
representation of object variables must be chosen 
along with the appropriate evolutionary computation 
operators. For each representation, several operators 
might be employed (Michalewicz 2000). 

The most commonly used genetic operators are 
crossover and mutation. However, the basic ideas of 
these operators have been adjusted and implemented 
in many different problem specific manners by many 
researchers. Several genetic operators have been 
presented by Moghadampour (Moghadampour 
2006); random building block operator, integer and 
decimal mutation operators, variable crossover 
operator and variable replacement operator.  In 
(Cervantes & Stephens 2008) it is argued that 
applying genetic operators with probabilities 
dependant on the fitness rank of a genotype or 
phenotype offers a robust alternative to the simple 
GA and avoids some questions of parameter tuning 
without having to introduce an explicit encoded self-
adaptation mechanism. 

2.2.1 Crossover 

Crossover is the main distinguishing feature of a 
GA. In single-point crossover a single crossover 
position is chosen randomly and the parts of the two 
parents divided by the crossover position are 

exchanged to form two new individuals (offspring). 
It recombines building blocks (schemas) on different 
strings, but, it is “positional biased”: the location of 
the bits in the chromosome determines the schemas 
that can be created or destroyed by crossover 
(Eshelman, Caruana & Schaffer 1989; Mitchell 
1998).  

In two-point crossover, two positions are chosen 
at random and the segments between them are 
exchanged. Two-point crossover reduces positional 
bias and endpoint effect, it is less likely to disrupt 
schemas with large defining lengths, and it can 
combine more schemas than single-point crossover 
(Mitchell 1998). Two-point crossover cannot 
combine all schemas.  

Multipoint-crossover has also been implemented, 
e.g. in one method, the number of crossover points 
for each parent is chosen from a Poisson distribution 
whose mean is a function of the length of the 
chromosome.  

Parameterized uniform crossover (Spears & De 
Jong 1991; Mitchell 1998) is also a multipoint-
crossover in which each bit is exchanged with 
probability p  ( 8.05.0 ≤≤ p ) and any schemas 
contained at different positions in the parents can 
potentially be recombined in the offspring. Hence, 
there is no positional bias. This implies that uniform 
crossover can be highly disruptive of any schema 
and may prevent co-adapted alleles from ever 
forming in the population. (Mitchell 1998). 

2.2.2 Mutation 

The common mutation operator used in canonical 
genetic algorithms to manipulate binary strings 

}1,0{),...( 1 =∈= Iaaa  of fixed length  was 
originally introduced by Holland (1975) for general 
finite individual spaces AAI ...1 ×= , where 

},...,{
1 ikiiiA αα= . By this definition, the mutation 

operator proceeds by: 
i. determining the position }),...,1{(,...,1 liii jh ∈  
to undergo mutation by a uniform random choice, 
where each position has the same small 
probability mp  of undergoing mutation, 
independently of what happens at other positions. 
ii. forming the new vector 

),...,,,...,,,,...,( 11111111 aaaaaaaaa
hihihiiiii +−+− ′′=′ , 

where ii Aa ∈′  is drawn uniformly at random from 
the set of admissible values at position  i . 
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The original value ia  at a position undergoing 
mutation is not excluded from the random choice of 

ii Aa ∈′ . This implies that although the position is 
chosen for mutation, the corresponding value might 
not change at all (Bäck, Fogel, Whitley & Angeline 
2000). 

Crossover is commonly viewed as the major 
instrument of variation and innovation in GAs, with 
mutation, playing a background role, insuring the 
population against permanent fixation at any 
particular locus (Mitchell 1998; Bäck, Fogel, 
Whitley & Angeline 2000). Mutation and crossover 
have the same ability for “disruption” of existing 
schemas, but crossover is a more robust constructor 
of new schemas (Spears 1993; Mitchell 1998).  

While recombination involves more than one 
parent, mutation generally refers to the creation of a 
new solution form one and only one parent. Most 
mutation operators for permutations are related to 
operators, which have also been used in 
neighbourhood local search strategies. (Whitley 
2000). 

2.2.3 Other Operators and Mating 
Strategies 

Examples of other operators used in Gas are: 
inversion, gene doubling and several operators for 
preserving diversity in the population. For instance, 
a “crowding” operator has been used in (De Jong 
1975; Mitchell 1998) to prevent too many similar 
individuals (“crowds”) from being in the population 
at the same time. This operator replaces an existing 
individual by a newly formed and most similar 
offspring. In (Mengshoel & Goldberg 2008) a 
probabilistic crowding niching algorithm, in which 
subpopulations are maintained reliably, is presented. 
It is argued that like the closely related deterministic 
crowding approach, probabilistic crowding is fast, 
simple, and requires no parameters beyond those of 
classical genetic algorithms. 

The same result can be accomplished by using an 
explicit “fitness sharing” function (Goldberg & 
Smith 1987; Mitchell 1998) whose idea is to 
decrease each individual’s fitness by an explicit 
increasing function of the presence of other similar 
population members. In some cases, this operator 
induces appropriate “speciation”, allowing the 
population members to converge on several peaks in 
the fitness landscape (Goldberg et al. 1987; Mitchell 
1998). However, the same effect could be obtained 
without the presence of an explicit sharing function 
(Smith, Forrest & Perelson 1993; Mitchell 1998). 

Diversity in the population can also be promoted 
by putting restrictions on mating. For instance, 
distinct “species” tend to be formed if only 
sufficiently similar individuals are allowed to mate 
(Deb & Goldberg 1989; Mitchell 1998). Another 
attempt to keep the entire population as diverse as 
possible is disallowing mating between too similar 
individuals, “incest” (Eshelman 1991; Eshelman & 
Schaffer 1991; Mitchell 1998). Another solution is 
to use a “sexual selection” procedure; allowing 
mating only between individuals having the same 
“mating tags” (parts of the chromosome that identify 
prospective mates to one another). These tags, in 
principle, would also evolve to implement 
appropriate restrictions on new prospective mates 
(Holland 1975; Mitchell 1998). 

Another solution is to restrict mating spatially. 
The population evolves on a spatial lattice, and 
individuals are likely to mate only with individuals 
in their spatial neighbourhoods. Such a scheme 
would help preserve diversity by maintaining 
spatially isolated species, with innovations largely 
occurring at the boundaries between species (Hillis 
1992; Mitchell 1998).   

3 APPLYING MALE-FEMALE 
PATTERN 

In this research bit string 2c  is considered to be the 
female of bit string 1c  if the value of each locus in 

2c  has the opposite value of the equivalent locus in 
1c . The same idea can be expressed in the following 

way: 

212211 ^1: llclcl =∈∀∧∈∀  (1) 

The male-female concepts were applied during 
population initialization at the beginning of the 
algorithm and during each crossover operator. In the 
following we go through each procedure in detail. 

3.1 Initialization of the Population 

Binary initialization of individuals was performed to 
assure the real random initialization of the 
population.  This was simply done by randomly 
initializing each locus of gene in each chromosome 
with 0 or 1. During initialization, for each individual 
a mate of the opposite sex was created. This was 
done simply by inverting each gene in the individual 
to its opposite value.  

The motivation for this operation was the 
observation that flipping all bits in a string could 

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

222



 

lead to rapid fitness improvement. Moreover, 
crossover with two bit strings of opposite values 
increases the chance of producing better offspring. 
For each individual, both male and female 
chromosomes were evaluated. Of these 
chromosomes, the fitter one was set to be the male 
chromosome and the other one was set to be the 
female chromosome. It’s clear that the order of male 
and female chromosomes could have been well vice 
versa.  

This process was repeated until all members of 
the population were created. Therefore, each 
individual was actually presented by two 
chromosomes: a male chromosome and a female 
chromosome. However, operations were aimed at 
the male chromosomes by default.  

After each evaluation of the population, 
individuals were sorted in ascending order according 
to their fitness values. This helped dividing the 
population to three separate parts: 25th percentile 
(lower quartile), 75th percentile (higher quartile) and 
interquartile range (above the lower quartile and 
below the higher quartile). This division was 
necessary in order to recognize the most critical 
areas in the distribution of the population and focus 
genetic operators on most promising individuals. 
This also helped implementing genetic operators 
more precisely and avoiding precious processing 
time. 

It is assumed that as a result, genetic operators 
will be more efficient and improve the population 
more rapidly. This division will also help 
maintaining diversity in the population while for 
instance individuals in the higher quartile will go 
through continuous evolution process and improve 
more. Furthermore, the division of the population 
helps focusing evolutionary operators intentionally 
on certain individuals instead of hoping that a 
random process would take care of the process and 
select fitter individuals for different operators. 

3.2 The Higher Quartile Crossover 
Operator 

The higher quartile crossover (HQC) operator 
implements the idea of the well-known one-point 
crossover. However, parents are selected for 
breeding in a new way. For this operator, two 
different parents, 1p  and 2p  and a crossover point 
cp  were randomly selected. Then, the male 
chromosome of parent 1p  was crossed over with the 
male and female chromosomes of parent 2p . As a 
result, four new offspring were created. These new 

offspring then went through the survivor selection 
procedure for possible replacement.  

The new idea here is that the crossover operator 
is repeated with the same parent indexes and on the 
same crossover point as long as a better offspring is 
created. It is important to notice that the same parent 
indexes do not necessarily mean the same parents 
since a better offspring might have replaced the 
parent during the previous survivor selection. 
Crossover points were selected so that they were at 
least two loci far from the end points of the binary 
representations of the chromosomes. This was to 
make sure that the operator was really crossover and 
not mutation.  

4 EXPERIMENTATION 

The male and female chromosome pattern was 
applied as part of a genetic algorithm to solve the 
following minimization problems: 1) the Ackley 
function, 2) the Colville function, 3) the De Jong 
function F1, 4) the De Jong function F2, 5) the De 
Jong function F3, 6) the De Jong function F4, 7) the 
De Jong function F5, 8) the Griewank function F1, 
9) the Rastrigin function, 10) the Rosenbrock 
function, 11) the Schaffer function F6, and 12) the 
Schaffer function F7. 

During test runs the population size was set to 
12, but no other fixed parameter value was used. 
During each phase operators were repeated as long 
as they managed to produce better offspring. 

For multidimensional problems with optional 
number of dimensions ( n ), the algorithm was tested 
for =n 1, 2, 3, 4, 5, 10, 20, 50 and 100. These 
problems formed 44 cases and each one was tested 
in 50 runs. The efficiency of utilizing so called 
female chromosome in generating better individuals 
and improving the population fitness values was 
studied during the test runs. Table 1 summarizes the 
survival statistics of male and female chromosomes 
for the test functions. 

The statistics indicate that using the female 
chromosome has resulted in generating better 
offspring in many cases. On average the female 
chromosomes resulted in generating better offspring 
in around 32% of test cases. Therefore it can easily 
be concluded that utilizing the female chromosome 
could help genetic algorithm in producing better 
individuals and accelerate the process of finding the 
optimal solution. 
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Table 1: Comparison of survival of male and female chromosomes in test runs. To save space, for multidimensional 
problems only cases with the number of variables equals to 2 and 100 are reported. 

Function Variables Survival Rate in 
Selection (%) 

Survival Rate in Crossover 
(%) 

    Worst Run Best Run 
  Male Female Male Female Male Female 

Ackley 
2 50 50 60 39 72 27 

100 50 50 52 47 100 0 

Griewank 
2 50 49 92 7 100 0 

100 0 100 81 18 0 100 

Rosenbrock F1 
2 50 49 100 0 100 0 

100 50 50 100 0 100 0 

Rastrigin F1 
2 77 22 80 20 92 8 

100 50 50 57 42 66 33 
Colville 4 50 49 75 25 33 66 
De Jong F1 3 50 50 - - - - 
De Jong F2 2 52 47 - - - - 
De Jong F3 5 50 49 - - - - 
De Jong F4 30 68 31 33 66 46 53 
De Jong F5 2 49 50 78 21 33 66 
Schaffer F6 2 50 50 77 22 66 33 
Schaffer F7 2 50 50 44 55 33 66 

 

5 CONCLUSIONS 

In this paper male and female chromosome concepts 
were presented and techniques for generating and 
applying these patterns in practice were proposed. In 
addition, individuals were organized and selected for 
further processing in a new way. The population was 
ordered based on individuals’ fitness values and the 
ones in the higher quartile of the population 
distribution were selected to go through the 
crossover operator. 

Experimentation showed that the male female 
pattern can be useful in many cases and result in 
generating better individuals during the evolutionary 
process of genetic algorithm. However, 
experimentation suggests that the output of applying 
this technique to some extent depends on the nature 
of the search space and the function to be optimized.  
For symmetrical search spaces, i.e. the ones, which 
divide equally on the both sides of zero (like 

4.54.5 ≤≤− x ) creating so called female 
chromosome out of a male chromosome will result 
in creating the additive inverse of the equivalent 
floating-point value of the male chromosome.  

This obviously will then provide an easy and fast 
way to explore the opposite areas of the search 
space. For asymmetrical search spaces creating 
female chromosomes will in many cases result in 
creating floating-point values of different 

magnitude, which also help exploring the search 
space more efficiently. Another observation with 
using female chromosomes was that in many cases 
even though the female chromosome itself didn’t 
yield a better fitness value than its male mate, they 
produced better offspring than their male mates after 
going through genetic operators.   

5.1 Future Research 

The proposed pattern can be applied to new 
problems and its efficiency in helping the search 
process can be further evaluated. The pattern can 
also be refined and adjusted to match other types of 
problems. 
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