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Abstract: Complexity is the biggest challenge in managing information systems today, because of the continuous 
growth in data and information. As decision experts, we are faced with the problems generated by managing 
Decision Support Systems, one of which is the efficient allocation of shared resources. In this paper, we 
propose a solution for improving the allocation of shared resources between groups of data warehouses 
within a decision support system, with the Service Levels Agreements and Quality of Service as 
performance objectives. We base our proposal on the notions of autonomic computing, by challenging the 
traditional way of autonomic systems and by taking into consideration decision support systems’ special 
characteristics such as usage discontinuity or service level specifications. To this end, we propose the usage 
of specific heuristics for the autonomic self-improvement and integrate aspects of semantic web and 
ontology engineering as information source for knowledge base representation, while providing a critical 
view over the advantages and disadvantages of such a solution. 

1 INTRODUCTION 

With the fast increasing both in size and complexity 
of analytical data, improving data warehouse 
performances is becoming a major challenge in the 
management of information systems. It has been 
shown that between 70 and 90 percent of the 
enterprises consider their data warehousing efforts 
inefficient at the end of the first year (Frolick & 
Lindsey 2003). In most cases, the causes are 
elevated costs and inadequate management. Indeed, 
decisional experts spend a lot of time on low level 
tasks, such as resource configuration, at the expense 
of high-level objectives, such as reporting or 
business policy adoption. 

Autonomic Computing (AC), introduced in 2001 
by IBM (IBM 2001), seems a promising way to 
overcome such difficulties. The initial objective was 
to introduce self-configuration, self-optimization, 
self-healing and self-protection in IT systems. The 
operationalization in the IBM model is supported by 
a so-called Autonomic Computing Manager (ACM), 

which is based on a closed four phase loop (monitor, 
analyze, plan and execute) around a central 
knowledge-base (MAPE-K loop). Several recent 
industrial tentative have been proposed, in the 
context of data-base management. In (Markl et al. 
2003), the authors proposed LEO as a software agent 
for improving DB2 database queries. (Mateen et al. 
2008) presented how Microsoft SQL Server’s can 
enable AC through several specific modules, but 
only objective specific ones and not for the entire 
system. In (Lightstone et al. 2002), another proposed 
approach for DB2 adoption of  AC presents how 
self-management can be used for reducing task 
complexity by several advisors: serviceability utility, 
configuration advisor, design advisor and query 
optimizer. 

It is now well-known that the efficiency of AC 
adoption is closely linked to the quality of the 
knowledge-base. With the expansion of the semantic 
Web, ontologies have become a standard to model 
complex informational systems. From the seminal 
work of (Maedche et al. 2003), introducing 
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ontologies as knowledge-base formalization for the 
autonomic manager has been proposed by different 
authors ((Nicolicin-Georgescu et al. 2009), 
(Stojanovic et al. 2004)). The semantic approach 
allows to unify different forms of information (such 
as expert knowledge, advice and practices from 
readme documents, technical forums, etc.) by 
relying on increased expressivity and the reasoning 
capabilities offered by reasoning engines such as 
those presented by (Sirin et al. 2007). 

In this paper we address a very important 
problem in Decision Support Systems (DSS) 
management: the allocation of cache memories 
between groups of Data Warehouses (DWs) sharing 
the same amount of common RAM memory. As DW 
sizes are very large (up to hundreds of TB), 
operations such as information retrieval or 
aggregation are very time consuming. To resolve 
this problem, caches are used for storing a part of the 
most frequently used data into RAM, so that it can 
be accessed faster. As the quantity of installed RAM 
is limited by either cost or, more often, platform, an 
efficient and dynamic allocation is required. Despite 
its crucial role in the performances of data 
warehouses, this low level repetitive task is 
generally done manually, which implies expert time 
wasting and human errors. And, as far as we know 
this problem remains open and it has drawn few 
attention in the DSS literature. 

Thus, in this paper we propose an innovative 
approach, which adopts ontology-based AC over the 
specific characteristics of decision support systems. 
There are two innovative aspects. The first consists 
in the application of the two technologies (AC and 
Web Semantics) for performance improvement (self-
optimization), whereas literature has treated mostly 
the aspect of problem resolution (self-healing). The 
second is its application over DSSs that have special 
characteristics such as usage discontinuity and usage 
purpose, in comparison to the classical approaches 
of operational systems. 

The remainder of the paper is organized as 
follows. The Section 2 presents the architecture of 
the DSS, with limits of such systems and our 
objectives. It also introduces the usage of ontologies 
with a modelling based on autonomic adoption 
policies. Section 3 focuses on the adoption of the 
autonomic manager MAPE-K loop for DSS. It 
introduces two proposed heuristics with the help of 
ontology based rules, with the purpose of 
(autonomic) managing cache allocations within data 
warehouses. Section 4 introduces the experiments 
performed, describing the test protocol and the 
results obtained with this approach. Finally, in the 

Section 5 we give the conclusion and the future 
directions for our work. 

2 THE ARCHITECTURE OF THE 
DSS MANAGEMENT MODEL 

This section introduces the aspects of modeling DSS 
for AC adoption. We discuss first the limits of AC 
adoption and our objectives regarding these limits. 
Then we present the architectural modeling of a 
DSS, introducing also our proposition related to the 
mentioned objectives. 

2.1 Limits and Objectives 

AC adoption over a DSS is faced with several 
important limits, such as: discontinuity in usage 
periods, usage purpose, freedom of user and lack of 
consideration of business policies and service levels 
for self-optimization (Huebscher & McCann 2008).  

Discontinuity in usage, as presented by (Inmon 
2005), separates the utilization periods of analytical 
DWs into two main periods: use and non-use. 
(Figure 1). 

 
Figure 1: Operational and data warehouse use charge 
(Inmon 2005). 

Due to discontinuity, we are unable to predict the 
real activity or the resource needs of the DWs. 
Commonly in enterprises cache allocations are made 
accordingly to editor recommendations (e.g. allocate 
the maximum RAM memory possible into cache). In 
practice, due to the immense sizes of DWs, the 
allocation is done proportional to the DW size. And, 
once configured, cache allocations don’t change, 
though usage conditions change. This means that 
cache parameter values don’t change over time, 
from their initial settings. 

The usage purpose makes a difference between 
the moments and purposes of accessing data from 
the DW. There are two usage purpose intervals. The 
day usage, during the daily ‘work hours’ (i.e. from 
8am to 22pm), provides the users with the data for 
generating analysis reports. The night (or batch) 
usage,(i.e. from 22pm to 8am), which is ‘non-user 
stressing’, during which the data is recalculated and 
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aggregated with the new incorporated operational 
data from the day that has just passed. These 
operations are time consuming and should end 
before the start of the next operational day to avoid 
inconsistencies. Therefore, during night all unused 
system resources should be redirected to this end.  

Freedom of the user refers to the ability of any 
user to create and modify reports at will, based on 
the data from the DW. Thus, considerations for 
resource scaling (such as cache allocation) and 
prediction of the retrieved data must be rethought in 
the decisional world (Inmon 1995). In their paper 
(Saharia & Babad 2000), the authors showed  how 
the performances of data warehouse for ad-hoc 
query response times can be improved by proposing 
a mechanism for storing into cache the queries (and 
their results) that are most likely to be queried. Due 
to the fact that there is a redundancy with the data 
retrieved from the data warehouses, using cache 
memories is a common practice to store some of the 
already required information.  

Lack of consideration of service levels for self-
optimization is one of the biggest problems with AC 
adoption today. Usually the focus is on improving 
technical raw indicators (such as query response 
times) over service policies (such as query response 
times scaled with the importance and priority of the 
DW). In (Vassiliadis et al. 1999), a DW quality 
model is presented based on the goal-question-
metric, thus defining the notion of Quality of Service 
(QoS). DW must provide high QoS, translated into 
features such as coherency, accessibility and 
performance, by building a quality meta-model, and 
establishing goal metrics through quality questions. 
They emphasize that data quality is defined as the 
fraction of performance over expectancy, based on 
objective quality factors, which are computed and 
compared to users' expectations. The advantages of a 
quality-driven model result from the increase of 
service levels, and along with it, customer 
satisfaction. One of the disadvantages though is that 
performance goal metrics are more difficult to 
define. In (Codd et al. 1993), the authors elaborated 
certain rules for best practices with OLAP. Some of 
these are translated by a general rule well known by 
the experts: that 80% of the OLAP queries must be 
under a second and it can be interpreted as a 
performance goal for DWs.  

Based on the limits presented, we have two main 
objectives for this paper. The first is to show that 
only improving the technical performances is a 
common mistake with DSS, and to determine how 
service improves when QoS is considered as 
performance indicator over a technical query 
response time raw indicator (QRT). The second 

objective is to propose a solution for autonomic 
adoption with DSS, with the help of semantic 
technologies. 

2.2 Architectural Model 

First we take a look at the previous work on 
modeling a DSS and on autonomic adoption. Based 
on this work, we present our modeling proposition 
with AC adoption.  

The starting point is the AC adoption cube 
(Figure. 2) presented by (Parshar & Hariri 2007), 
and developed from the IBM AC specifications 
(IBM 2001). The cube contains three axes. OX 
describes the level of autonomic adoption, from 
manual to fully autonomic management (closed loop 
without human intervention). OY contains the 
managed resources (e.g. in our case the elements of 
the DSS). The description leads to the idea of a 
hierarchical architecture (starting from OLAP bases 
as the sub component, and ending with the entire 
managed system). Last, OZ contains the service 
flows, both with the proposition of new services and 
the improvement of existent ones. 

 
Figure. 2: Autonomic Computing adoption cube (Parshar 
& Hariri 2007). 

Starting from the adoption cube, (Stojanovic 
et al. 2004) proposed an architectural model for AC 
adoption for resolving errors related to component 
availability within a system. They based their 
approach on the correlation and inference 
capabilities of the semantic technologies, such as 
ontologies. By its latest definition, an ontology 
describes a set of representational primitives 
(classes, attributes and relationships) used to model 
a domain of knowledge or discourse (Liu & Özsu 
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2008). In (Stojanovic et al. 2004), the authors 
divided the reference model between a resource 
layer (system architecture), an event layer (error 
messages) and a rule layer (how to act when faced 
with various situations). From this approach, in 
(Nicolicin-Georgescu et al. 2009) the authors 
presented an AC adoption model for a DSS with the 
purpose of improving the performances of DWs. 
They proposed three architectural layers divided into 
two aspects. The static aspect, which contains the 
layers: system architecture and parameter/ 
performance indicators. The dynamic aspect, which 
contains layer of: advice, best practices and human 
experience (where the use of web semantics is 
reinforced).  

Our proposition develops the previous 
approaches, embracing the use of ontology for 
knowledge formalization. However, we have 
integrated the approach in a general simplified DSS 
architecture described in Figure 3.  In this 
architecture, we can distinguish the description of 
the managed elements and of the management 
policies via intelligent control loops. 

First, there are two types of managed elements: 
(i) the Physical Server and (ii) the OLAP Base. A 
physical server contains several OLAP bases, which 
describe the DW. Between the servers and the bases, 
a link of inclusion is created to describe which bases 
belong to which server. Moreover, each managed 
element has several characteristics and parameters, 
such as RAM memory, cache memory, average QRT 
etc.  

 
Figure 3: DSS Architectural model. 

Second, we treat the problem of shared RAM 
memory allocation over the OLAP bases, through 
AC adoption. This leads to the modelling of 
intelligent autonomic loops over each managed 
element along with the states and the rules that 
describe loop behaviour. With the loop description, 
we have modelled two heuristics, via the Heuristics 
class: Self-Improvement for the OLAP bases and 
Relocation for the physical servers. 

In our applicative framework, the architectural 
model is translated under the form of an OWL 
ontology, with over 150 concepts, 250 axioms and 
30 rules. An example of how an OLAP Base is 
described with the usage of OWL triplets can be 
seen in Table 1. 

Table 1: OWL base example. 

Subject Predicate Object 
?base rdf:type Base 
?server rdf:type PhysicalServer 
?server contains ?base 
?base hasAvgQRT ‘1,2’^^xsd;double 
?base hasCacheValue ‘500’^^xsd:double 
?base hasUtilPurpose ‘Day’^^xsd:string 

The intelligent loop and AC adoption has been 
modelled by the use of a State class, which contains 
a list of states corresponding to the loop phases. Its 
elements are exemplified in Figure 4, containing a 
screen capture from the Protégé open source 
knowledge modelling framework (Stanford Center 
for Biomedical Research 2010) which we user for 
building ontologies. Despite the fact that it scales 
poorly with big ontologies (not our case), it has the 
advantages of simplicity, integrations with reasoners 
and a large supporting community.  

 
Figure 4: The States used for the intelligent loop. 

3 THE MAPE-K LOOP 

In the DSS model proposition we have used the term 
of ‘intelligent control loop’ to describe how AC 
adoption is implemented. In this section we detail 
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this specific aspect, along with the two proposed 
loop heuristics: self-improvement and reallocation. 

Returning to IBM’s blueprint, the AC adoption 
model indicates a self-X factor for reaching 
autonomy: self-configuration, self-optimization, 
self-healing and self-protection, implemented by an 
ACM. The ACM describes an intelligent control 
loop in four phases: Monitor, Analyze, Plan and 
Execute. The loop revolves around a Knowledge 
Base that provides the information needed for its 
execution. This is why the loop is also known under 
the name of the MAPE-K loop.  

One drawback, so far, with AC adoption is the 
lack of standardization. In (Vassev & Hinchey 2009) 
the authors present the advantages and 
disadvantages of AC adoption, and they propose a 
software description model language for systems 
implementing AC. The survey of (Huebscher & 
McCann 2008) presents, among other things, this 
particular aspect and underlines the fact that 
autonomic system are less able to deal with discrete 
behaviours. They show the drawbacks of 
implementing reinforcement-learning or feedback 
self-improvement techniques with the ACM loop. 
The time to converge increases (with the learning 
curve) and the implementations are not easily 
scalable (with a higher number of states). Also, the 
authors highlight that there is a lack of Service Level 
Agreements (SLA) implementations with ACM 
loops, as most of the time the followed performance 
indicators are technical (e.g. QRT) and not service 
oriented (e.g. QoS). In (Ganek & Corbi 2003), an 
SLA is defined as a contract between a customer or 
consumer and a provider of an IT service; it 
specifies the levels of availability, serviceability, 
performance (and tracking/reporting), problem 
management, security, operation, or other attributes 
of the service, often established via negotiation.  

In our approach, the MAPE-K loop adoption is 
based on the proposed architectural model and on 
the limits presented earlier. Figure 5 describes the 
autonomic manager implementation over the 
managed elements, under a form of a tree. There are 
two particular aspects  with this adoption. 

First, each of the managed element has its own 
independent ACM. The ACM that has the same 
behaviour for each tree level (same behaviour for all 
OLAP bases, same behaviour form all Physical 
Servers). In our case the managers will be 
responsible for the adoption of the two heuristics for 
self-imprvement and RAM reallocation . The ACMs 
presented in the figure are part of the lowest levels 
of IBMs AC adoption architecture.  

 
Figure 5: MAPE-K loop adoption over the DSS model. 

Second, the communication between managers 
from different levels is done via the common upper 
level. If the manager of Base 1 wants to 
communicate with the manager of Base k it must 
communicate first with the manager of the common 
physical server. This choice is based on the 
hierarchical characteristics of a DSS as indicators 
aggregate over upper levels, such that expression of 
a problem to a higher level (e.g. Physical Server) can 
then be divided and tracked down to lowers levels 
(e.g.. OLAP Base). 

From the presented model we thus have two 
ACM implementations, one for the Physical Server 
and one for the OLAP Bases. Each of the ACM 
implementations corresponds in turn to one the two 
heuristics, described further on.  

3.1 Self Improvement Heuristic 

This heuristic is implemented by OLAP Base ACM, 
and has the objective of minimizing the cache 
allocations while maintaining the query response 
times at acceptable levels. The idea behind this 
heuristic is that we can afford to lose a bit in 
performances if it spears a chunk of free memory 
(and further gain of more performance after 
reallocation). With each loop, the caches decrease 
and, in function of the ratio between the current 
performance level and the previous levels, the new 
sizes are either accepted or rejected. For this 
heuristic we define two variables: a cache 
modification rate Δ and a threshold limit β. The Δ 
represents the rate (in percentage) at which the 
caches modify with each loop passage and the 
threshold β represents the maximum accepted 
impact that a cache change can have on the 
performances. Over this limit a Δ change in cache is 
no longer accepted.  

The self-improvement heuristic is described in 
Figure 6. It is composed of seven successive steps 
over the ACM loop phases. 

ONTOLOGY-BASED AUTONOMIC COMPUTING FOR RESOURCE SHARING BETWEEN DATA WAREHOUSES
IN DECISION SUPPORT SYSTEMS

203



 

 
Figure 6: Self-improvement heuristic over the ACM loop 
phases. 

An ontology rules description example of the 
analysis phase, Step 4 and 5, is shown below: 

 
RULE 1 tests for an OLAP base, whether the 

current day corresponds or not to a reallocation 
action (no reallocation over the server). If this is not 
the case, it passes the base into a decrease cache 
state allowing it to continue the analysis. Next, 
RULE 2 follows and tests if a base is in the decrease 
state (so self-improvement heuristic can be applied) 
and if the decrease is possible (the cache value 
remains over the minimum cache threshold). If the 
minimum threshold is reached then the 
DecreaseCache state is deleted from the base and the 
algorithm stops.  

The efficiency of this heuristic is measured in the 
time (number of days – loop passages) needed to 
stabilize itself (stop the algorithm), thus its 
performance is based on the time to converge. By 
successive repetitions at a certain point Step 7 is 
reached and the algorithm stops.  

3.2 The Reallocation Heuristic 

This heuristic is implemented by the Physical Server 
managed element (thus the superior tree level). Its 
objective is to reallocate periodically the freed 
memory from the self-improvement heuristic, 
towards the non performing bases, so that the 
average of QRT ratios is improved globally on the 
server. A base is considered non-performing for the 
server, if its average QRT is greater than the average 
QRT of the server (averages of the base averages 
QRT). Otherwise, the base is considered performing. 

The idea here is that in parallel with the first 
heuristic, it allows by the small sacrifice of certain 
bases to gain important performance on others. 

The reallocation heuristic is triggered either 
periodically (i.e. each x days) or whenever there is a 
change in the utilization periods. The reallocation 
heuristic is described in Figure 7. It is composed of 
four successive steps over the ACM loop phases. 

 
Figure 7: Reallocation heuristic over the ACM loop 
phases. 

Again, an example of implementation with 
ontology rules is given below for Step 3: 

 
RULE 1 adds an adjustment state to the base if 

the server does a memory reallocation (is in the 
reallocate memory state).  RULE 2 looks at the 
amount of free available memory that the server can 
redistribute and the number of non performing 
bases. It divides equally the available memory, thus 
the non-performing bases gain more cache memory. 

4 EXPERIMENTAL RESULTS 

We present further in this section the conducted 
experiments, which reflect the differences between 
our approach and the current existing situations 
throughout enterprises, when faced with the shared 
resource reallocation issue. First we describe the test 
protocol and then we present the obtained results. 

4.1 Experimental Protocol 

With our tests we wanted to prove the first benefits 
of this approach. We focused on two specific tests 
that isolate the DWs from any other factors than the 
ones presented here. On a physical server machine 
with 1GB of RAM, we have taken six Oracle 
Hyperion Essbase (Oracle 2010) bases, each of them 
with a size of 640MB. This means a requirement of 
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3.8GB of RAM memory in contrast to the only 1GB 
of RAM available. We considered the bases to be 
identical in size and data, to isolate our experiments. 
Yet the bases differ with their utilization periods, 
which are different for each of the 6 bases (over a 
period of one month). So we have days during which 
all the 6 bases are used, and others in which only 
one is. Next we have taken a pool of 10 queries, 
which are run on each base every day, in order to 
simulate the activity, thus having the same activity 
on each base every day. An example of such query, 
as an Essbase report, can be seen below. It demands 
the data of all the possible scenarios for the first 
quarter of each year, for a product from a specified 
market.  

 
The average response time for such a query, if 

the information is not stored into caches is 10 
seconds. With the data cached, it goes down to 2 
seconds.  

The test protocol is described in Figure 8 as 
follows 

 
Figure 8: Test protocol steps over the ACM loop phases. 

Over this protocol, we have carried out two 
different tests. We wanted to emphasize the 
difference between the evolutions of the levels of 
service when taking in consideration the technical 
performance indicator only (average QRT) and 
when integrating the objective QRT (QoS). 

The first test, technical, ran the heuristics while 
taking the average QRT as performance indicator for 
the heuristics. 

The second test, service, ran under the same 
conditions, but this time the performance indicator 
used in the heuristics was the goal performance 
indicator, or a service QRT. We propose a definition 
of the level of satisfaction, a QoS indicator, based on 
the objective QRT expressed by Codd for the OLAP 
bases. Thus we consider the objective performance 
QRT at 1 second, and compute the level of user 

satisfaction in rapport with this level. The further an 
average QRT is from 1 second, the lower the 
satisfaction and the level of service. Therefore we 
proposed a formalization of the levels of service and 
define the QoS = AvgQRTtarget / AvgQRTcurrent. (with 
AvgQRTtarget = 1).  

4.2 Results 

Using the two test scenario above, we present in 
Figure 9 the results obtained. The graph is done for a 
period of 21 days (one working month). The vertical 
lines indicate a utilization period change for any of 
the OLAP bases. After each such change, the 
performances greatly increase from the reallocation 
heuristic, and then slightly decrease from the self-
improvement one. 

 
Figure 9: QoS comparison between a common constant 
configuration, heuristics over technical indicators and 
heuristics over service levels. 

We analyze each of the three situations from 
Figure 9.  

In the first one, a normal situation that happens 
today in enterprises, where configurations don’t 
change and usage periods are not taken into 
consideration, thus the QoS remains the same.  

In the second situation we see the results with 
our proposal where usage periods are taken into 
consideration. Here we can see an improvement over 
the QoS, as taking into consideration usage periods 
renders the bases that are in activity more important. 
This allows them to have more resources and thus 
increased QoS. Still the heuristics performance 
indicator remains the technical QRT. 

The third situation shows the results with our 
approach where we: (a) take into consideration 
usage periods, (b) modify the query response times 
according to these usage periods, and (c) integrate 
the heuristics performance indicator as the user 
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perceived service QRT. In this case we can see even 
a higher improvement in the QoS, starting from the 
7th day. Up to this point, as there is no reallocation, 
the technical and service QRT is identical, thus the 
QoS is identical. The QoS starts improving from that 
day, when the reallocation is made in function of the 
service QRT.  

5 CONCLUSIONS  

In this paper we have presented an approach to 
managing decision support systems via data 
warehouse cache allocations by using autonomic 
computing and semantic web technologies. By 
considering the specifications and characteristics of 
DSS, we showed how AC adoption can be enabled 
with DW resource allocation. We have presented 
two heuristics for AC adoption and have based our 
approach on semantic web technologies by using 
ontologies for DSS system modeling and ontology 
based rules for heuristics and ACM loop 
implementation. 

With the results we have shown that taking into 
consideration QoS over raw technical indicators is a 
must and one important step forward with AC 
adoptions over DSS.  

In the next future we intend to extend the notions 
of SLA in order to study further how performance 
and QoS are influenced when using more SLA 
considerations. We also want to extend the influence 
factors over the activity of the DWs, by extending 
the perimeter of resource allocation (i.e. CPU 
charge, disk usage etc.) and the perimeter of 
performance measure such as calculation times. 
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