
ONTOLOGY-BASED AUTONOMIC COMPUTING FOR
RESOURCE SHARING BETWEEN DATA WAREHOUSES

IN DECISION SUPPORT SYSTEMS

Vlad Nicolicin-Georgescu*, Vincent Benatier
SP2 Solutions, 85000 La Roche sur Yon, France

Remi Lehn, Henri Briand
*LINA CNRS 6241, COD Team, Ecole Polytechnique de l’Unviersité de Nantes, Nantes, France

Keywords: Autonomic Computing, Decision Support System, Data Warehouse, Ontology.

Abstract: Complexity is the biggest challenge in managing information systems today, because of the continuous
growth in data and information. As decision experts, we are faced with the problems generated by managing
Decision Support Systems, one of which is the efficient allocation of shared resources. In this paper, we
propose a solution for improving the allocation of shared resources between groups of data warehouses
within a decision support system, with the Service Levels Agreements and Quality of Service as
performance objectives. We base our proposal on the notions of autonomic computing, by challenging the
traditional way of autonomic systems and by taking into consideration decision support systems’ special
characteristics such as usage discontinuity or service level specifications. To this end, we propose the usage
of specific heuristics for the autonomic self-improvement and integrate aspects of semantic web and
ontology engineering as information source for knowledge base representation, while providing a critical
view over the advantages and disadvantages of such a solution.

1 INTRODUCTION

With the fast increasing both in size and complexity
of analytical data, improving data warehouse
performances is becoming a major challenge in the
management of information systems. It has been
shown that between 70 and 90 percent of the
enterprises consider their data warehousing efforts
inefficient at the end of the first year (Frolick &
Lindsey 2003). In most cases, the causes are
elevated costs and inadequate management. Indeed,
decisional experts spend a lot of time on low level
tasks, such as resource configuration, at the expense
of high-level objectives, such as reporting or
business policy adoption.

Autonomic Computing (AC), introduced in 2001
by IBM (IBM 2001), seems a promising way to
overcome such difficulties. The initial objective was
to introduce self-configuration, self-optimization,
self-healing and self-protection in IT systems. The
operationalization in the IBM model is supported by
a so-called Autonomic Computing Manager (ACM),

which is based on a closed four phase loop (monitor,
analyze, plan and execute) around a central
knowledge-base (MAPE-K loop). Several recent
industrial tentative have been proposed, in the
context of data-base management. In (Markl et al.
2003), the authors proposed LEO as a software agent
for improving DB2 database queries. (Mateen et al.
2008) presented how Microsoft SQL Server’s can
enable AC through several specific modules, but
only objective specific ones and not for the entire
system. In (Lightstone et al. 2002), another proposed
approach for DB2 adoption of AC presents how
self-management can be used for reducing task
complexity by several advisors: serviceability utility,
configuration advisor, design advisor and query
optimizer.

It is now well-known that the efficiency of AC
adoption is closely linked to the quality of the
knowledge-base. With the expansion of the semantic
Web, ontologies have become a standard to model
complex informational systems. From the seminal
work of (Maedche et al. 2003), introducing

199Nicolicin-Georgescu V., Benatier V., Lehn R. and Briand H. (2010).
ONTOLOGY-BASED AUTONOMIC COMPUTING FOR RESOURCE SHARING BETWEEN DATA WAREHOUSES IN DECISION SUPPORT SYSTEMS.
In Proceedings of the 12th International Conference on Enterprise Information Systems - Information Systems Analysis and Specification, pages
199-206
DOI: 10.5220/0002895501990206
Copyright c© SciTePress

ontologies as knowledge-base formalization for the
autonomic manager has been proposed by different
authors ((Nicolicin-Georgescu et al. 2009),
(Stojanovic et al. 2004)). The semantic approach
allows to unify different forms of information (such
as expert knowledge, advice and practices from
readme documents, technical forums, etc.) by
relying on increased expressivity and the reasoning
capabilities offered by reasoning engines such as
those presented by (Sirin et al. 2007).

In this paper we address a very important
problem in Decision Support Systems (DSS)
management: the allocation of cache memories
between groups of Data Warehouses (DWs) sharing
the same amount of common RAM memory. As DW
sizes are very large (up to hundreds of TB),
operations such as information retrieval or
aggregation are very time consuming. To resolve
this problem, caches are used for storing a part of the
most frequently used data into RAM, so that it can
be accessed faster. As the quantity of installed RAM
is limited by either cost or, more often, platform, an
efficient and dynamic allocation is required. Despite
its crucial role in the performances of data
warehouses, this low level repetitive task is
generally done manually, which implies expert time
wasting and human errors. And, as far as we know
this problem remains open and it has drawn few
attention in the DSS literature.

Thus, in this paper we propose an innovative
approach, which adopts ontology-based AC over the
specific characteristics of decision support systems.
There are two innovative aspects. The first consists
in the application of the two technologies (AC and
Web Semantics) for performance improvement (self-
optimization), whereas literature has treated mostly
the aspect of problem resolution (self-healing). The
second is its application over DSSs that have special
characteristics such as usage discontinuity and usage
purpose, in comparison to the classical approaches
of operational systems.

The remainder of the paper is organized as
follows. The Section 2 presents the architecture of
the DSS, with limits of such systems and our
objectives. It also introduces the usage of ontologies
with a modelling based on autonomic adoption
policies. Section 3 focuses on the adoption of the
autonomic manager MAPE-K loop for DSS. It
introduces two proposed heuristics with the help of
ontology based rules, with the purpose of
(autonomic) managing cache allocations within data
warehouses. Section 4 introduces the experiments
performed, describing the test protocol and the
results obtained with this approach. Finally, in the

Section 5 we give the conclusion and the future
directions for our work.

2 THE ARCHITECTURE OF THE
DSS MANAGEMENT MODEL

This section introduces the aspects of modeling DSS
for AC adoption. We discuss first the limits of AC
adoption and our objectives regarding these limits.
Then we present the architectural modeling of a
DSS, introducing also our proposition related to the
mentioned objectives.

2.1 Limits and Objectives

AC adoption over a DSS is faced with several
important limits, such as: discontinuity in usage
periods, usage purpose, freedom of user and lack of
consideration of business policies and service levels
for self-optimization (Huebscher & McCann 2008).

Discontinuity in usage, as presented by (Inmon
2005), separates the utilization periods of analytical
DWs into two main periods: use and non-use.
(Figure 1).

Figure 1: Operational and data warehouse use charge
(Inmon 2005).

Due to discontinuity, we are unable to predict the
real activity or the resource needs of the DWs.
Commonly in enterprises cache allocations are made
accordingly to editor recommendations (e.g. allocate
the maximum RAM memory possible into cache). In
practice, due to the immense sizes of DWs, the
allocation is done proportional to the DW size. And,
once configured, cache allocations don’t change,
though usage conditions change. This means that
cache parameter values don’t change over time,
from their initial settings.

The usage purpose makes a difference between
the moments and purposes of accessing data from
the DW. There are two usage purpose intervals. The
day usage, during the daily ‘work hours’ (i.e. from
8am to 22pm), provides the users with the data for
generating analysis reports. The night (or batch)
usage,(i.e. from 22pm to 8am), which is ‘non-user
stressing’, during which the data is recalculated and

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

200

aggregated with the new incorporated operational
data from the day that has just passed. These
operations are time consuming and should end
before the start of the next operational day to avoid
inconsistencies. Therefore, during night all unused
system resources should be redirected to this end.

Freedom of the user refers to the ability of any
user to create and modify reports at will, based on
the data from the DW. Thus, considerations for
resource scaling (such as cache allocation) and
prediction of the retrieved data must be rethought in
the decisional world (Inmon 1995). In their paper
(Saharia & Babad 2000), the authors showed how
the performances of data warehouse for ad-hoc
query response times can be improved by proposing
a mechanism for storing into cache the queries (and
their results) that are most likely to be queried. Due
to the fact that there is a redundancy with the data
retrieved from the data warehouses, using cache
memories is a common practice to store some of the
already required information.

Lack of consideration of service levels for self-
optimization is one of the biggest problems with AC
adoption today. Usually the focus is on improving
technical raw indicators (such as query response
times) over service policies (such as query response
times scaled with the importance and priority of the
DW). In (Vassiliadis et al. 1999), a DW quality
model is presented based on the goal-question-
metric, thus defining the notion of Quality of Service
(QoS). DW must provide high QoS, translated into
features such as coherency, accessibility and
performance, by building a quality meta-model, and
establishing goal metrics through quality questions.
They emphasize that data quality is defined as the
fraction of performance over expectancy, based on
objective quality factors, which are computed and
compared to users' expectations. The advantages of a
quality-driven model result from the increase of
service levels, and along with it, customer
satisfaction. One of the disadvantages though is that
performance goal metrics are more difficult to
define. In (Codd et al. 1993), the authors elaborated
certain rules for best practices with OLAP. Some of
these are translated by a general rule well known by
the experts: that 80% of the OLAP queries must be
under a second and it can be interpreted as a
performance goal for DWs.

Based on the limits presented, we have two main
objectives for this paper. The first is to show that
only improving the technical performances is a
common mistake with DSS, and to determine how
service improves when QoS is considered as
performance indicator over a technical query
response time raw indicator (QRT). The second

objective is to propose a solution for autonomic
adoption with DSS, with the help of semantic
technologies.

2.2 Architectural Model

First we take a look at the previous work on
modeling a DSS and on autonomic adoption. Based
on this work, we present our modeling proposition
with AC adoption.

The starting point is the AC adoption cube
(Figure. 2) presented by (Parshar & Hariri 2007),
and developed from the IBM AC specifications
(IBM 2001). The cube contains three axes. OX
describes the level of autonomic adoption, from
manual to fully autonomic management (closed loop
without human intervention). OY contains the
managed resources (e.g. in our case the elements of
the DSS). The description leads to the idea of a
hierarchical architecture (starting from OLAP bases
as the sub component, and ending with the entire
managed system). Last, OZ contains the service
flows, both with the proposition of new services and
the improvement of existent ones.

Figure. 2: Autonomic Computing adoption cube (Parshar
& Hariri 2007).

Starting from the adoption cube, (Stojanovic
et al. 2004) proposed an architectural model for AC
adoption for resolving errors related to component
availability within a system. They based their
approach on the correlation and inference
capabilities of the semantic technologies, such as
ontologies. By its latest definition, an ontology
describes a set of representational primitives
(classes, attributes and relationships) used to model
a domain of knowledge or discourse (Liu & Özsu

ONTOLOGY-BASED AUTONOMIC COMPUTING FOR RESOURCE SHARING BETWEEN DATA WAREHOUSES
IN DECISION SUPPORT SYSTEMS

201

2008). In (Stojanovic et al. 2004), the authors
divided the reference model between a resource
layer (system architecture), an event layer (error
messages) and a rule layer (how to act when faced
with various situations). From this approach, in
(Nicolicin-Georgescu et al. 2009) the authors
presented an AC adoption model for a DSS with the
purpose of improving the performances of DWs.
They proposed three architectural layers divided into
two aspects. The static aspect, which contains the
layers: system architecture and parameter/
performance indicators. The dynamic aspect, which
contains layer of: advice, best practices and human
experience (where the use of web semantics is
reinforced).

Our proposition develops the previous
approaches, embracing the use of ontology for
knowledge formalization. However, we have
integrated the approach in a general simplified DSS
architecture described in Figure 3. In this
architecture, we can distinguish the description of
the managed elements and of the management
policies via intelligent control loops.

First, there are two types of managed elements:
(i) the Physical Server and (ii) the OLAP Base. A
physical server contains several OLAP bases, which
describe the DW. Between the servers and the bases,
a link of inclusion is created to describe which bases
belong to which server. Moreover, each managed
element has several characteristics and parameters,
such as RAM memory, cache memory, average QRT
etc.

Figure 3: DSS Architectural model.

Second, we treat the problem of shared RAM
memory allocation over the OLAP bases, through
AC adoption. This leads to the modelling of
intelligent autonomic loops over each managed
element along with the states and the rules that
describe loop behaviour. With the loop description,
we have modelled two heuristics, via the Heuristics
class: Self-Improvement for the OLAP bases and
Relocation for the physical servers.

In our applicative framework, the architectural
model is translated under the form of an OWL
ontology, with over 150 concepts, 250 axioms and
30 rules. An example of how an OLAP Base is
described with the usage of OWL triplets can be
seen in Table 1.

Table 1: OWL base example.

Subject Predicate Object
?base rdf:type Base
?server rdf:type PhysicalServer
?server contains ?base
?base hasAvgQRT ‘1,2’^^xsd;double
?base hasCacheValue ‘500’^^xsd:double
?base hasUtilPurpose ‘Day’^^xsd:string

The intelligent loop and AC adoption has been
modelled by the use of a State class, which contains
a list of states corresponding to the loop phases. Its
elements are exemplified in Figure 4, containing a
screen capture from the Protégé open source
knowledge modelling framework (Stanford Center
for Biomedical Research 2010) which we user for
building ontologies. Despite the fact that it scales
poorly with big ontologies (not our case), it has the
advantages of simplicity, integrations with reasoners
and a large supporting community.

Figure 4: The States used for the intelligent loop.

3 THE MAPE-K LOOP

In the DSS model proposition we have used the term
of ‘intelligent control loop’ to describe how AC
adoption is implemented. In this section we detail

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

202

this specific aspect, along with the two proposed
loop heuristics: self-improvement and reallocation.

Returning to IBM’s blueprint, the AC adoption
model indicates a self-X factor for reaching
autonomy: self-configuration, self-optimization,
self-healing and self-protection, implemented by an
ACM. The ACM describes an intelligent control
loop in four phases: Monitor, Analyze, Plan and
Execute. The loop revolves around a Knowledge
Base that provides the information needed for its
execution. This is why the loop is also known under
the name of the MAPE-K loop.

One drawback, so far, with AC adoption is the
lack of standardization. In (Vassev & Hinchey 2009)
the authors present the advantages and
disadvantages of AC adoption, and they propose a
software description model language for systems
implementing AC. The survey of (Huebscher &
McCann 2008) presents, among other things, this
particular aspect and underlines the fact that
autonomic system are less able to deal with discrete
behaviours. They show the drawbacks of
implementing reinforcement-learning or feedback
self-improvement techniques with the ACM loop.
The time to converge increases (with the learning
curve) and the implementations are not easily
scalable (with a higher number of states). Also, the
authors highlight that there is a lack of Service Level
Agreements (SLA) implementations with ACM
loops, as most of the time the followed performance
indicators are technical (e.g. QRT) and not service
oriented (e.g. QoS). In (Ganek & Corbi 2003), an
SLA is defined as a contract between a customer or
consumer and a provider of an IT service; it
specifies the levels of availability, serviceability,
performance (and tracking/reporting), problem
management, security, operation, or other attributes
of the service, often established via negotiation.

In our approach, the MAPE-K loop adoption is
based on the proposed architectural model and on
the limits presented earlier. Figure 5 describes the
autonomic manager implementation over the
managed elements, under a form of a tree. There are
two particular aspects with this adoption.

First, each of the managed element has its own
independent ACM. The ACM that has the same
behaviour for each tree level (same behaviour for all
OLAP bases, same behaviour form all Physical
Servers). In our case the managers will be
responsible for the adoption of the two heuristics for
self-imprvement and RAM reallocation . The ACMs
presented in the figure are part of the lowest levels
of IBMs AC adoption architecture.

Figure 5: MAPE-K loop adoption over the DSS model.

Second, the communication between managers
from different levels is done via the common upper
level. If the manager of Base 1 wants to
communicate with the manager of Base k it must
communicate first with the manager of the common
physical server. This choice is based on the
hierarchical characteristics of a DSS as indicators
aggregate over upper levels, such that expression of
a problem to a higher level (e.g. Physical Server) can
then be divided and tracked down to lowers levels
(e.g.. OLAP Base).

From the presented model we thus have two
ACM implementations, one for the Physical Server
and one for the OLAP Bases. Each of the ACM
implementations corresponds in turn to one the two
heuristics, described further on.

3.1 Self Improvement Heuristic

This heuristic is implemented by OLAP Base ACM,
and has the objective of minimizing the cache
allocations while maintaining the query response
times at acceptable levels. The idea behind this
heuristic is that we can afford to lose a bit in
performances if it spears a chunk of free memory
(and further gain of more performance after
reallocation). With each loop, the caches decrease
and, in function of the ratio between the current
performance level and the previous levels, the new
sizes are either accepted or rejected. For this
heuristic we define two variables: a cache
modification rate Δ and a threshold limit β. The Δ
represents the rate (in percentage) at which the
caches modify with each loop passage and the
threshold β represents the maximum accepted
impact that a cache change can have on the
performances. Over this limit a Δ change in cache is
no longer accepted.

The self-improvement heuristic is described in
Figure 6. It is composed of seven successive steps
over the ACM loop phases.

ONTOLOGY-BASED AUTONOMIC COMPUTING FOR RESOURCE SHARING BETWEEN DATA WAREHOUSES
IN DECISION SUPPORT SYSTEMS

203

Figure 6: Self-improvement heuristic over the ACM loop
phases.

An ontology rules description example of the
analysis phase, Step 4 and 5, is shown below:

RULE 1 tests for an OLAP base, whether the

current day corresponds or not to a reallocation
action (no reallocation over the server). If this is not
the case, it passes the base into a decrease cache
state allowing it to continue the analysis. Next,
RULE 2 follows and tests if a base is in the decrease
state (so self-improvement heuristic can be applied)
and if the decrease is possible (the cache value
remains over the minimum cache threshold). If the
minimum threshold is reached then the
DecreaseCache state is deleted from the base and the
algorithm stops.

The efficiency of this heuristic is measured in the
time (number of days – loop passages) needed to
stabilize itself (stop the algorithm), thus its
performance is based on the time to converge. By
successive repetitions at a certain point Step 7 is
reached and the algorithm stops.

3.2 The Reallocation Heuristic

This heuristic is implemented by the Physical Server
managed element (thus the superior tree level). Its
objective is to reallocate periodically the freed
memory from the self-improvement heuristic,
towards the non performing bases, so that the
average of QRT ratios is improved globally on the
server. A base is considered non-performing for the
server, if its average QRT is greater than the average
QRT of the server (averages of the base averages
QRT). Otherwise, the base is considered performing.

The idea here is that in parallel with the first
heuristic, it allows by the small sacrifice of certain
bases to gain important performance on others.

The reallocation heuristic is triggered either
periodically (i.e. each x days) or whenever there is a
change in the utilization periods. The reallocation
heuristic is described in Figure 7. It is composed of
four successive steps over the ACM loop phases.

Figure 7: Reallocation heuristic over the ACM loop
phases.

Again, an example of implementation with
ontology rules is given below for Step 3:

RULE 1 adds an adjustment state to the base if

the server does a memory reallocation (is in the
reallocate memory state). RULE 2 looks at the
amount of free available memory that the server can
redistribute and the number of non performing
bases. It divides equally the available memory, thus
the non-performing bases gain more cache memory.

4 EXPERIMENTAL RESULTS

We present further in this section the conducted
experiments, which reflect the differences between
our approach and the current existing situations
throughout enterprises, when faced with the shared
resource reallocation issue. First we describe the test
protocol and then we present the obtained results.

4.1 Experimental Protocol

With our tests we wanted to prove the first benefits
of this approach. We focused on two specific tests
that isolate the DWs from any other factors than the
ones presented here. On a physical server machine
with 1GB of RAM, we have taken six Oracle
Hyperion Essbase (Oracle 2010) bases, each of them
with a size of 640MB. This means a requirement of

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

204

3.8GB of RAM memory in contrast to the only 1GB
of RAM available. We considered the bases to be
identical in size and data, to isolate our experiments.
Yet the bases differ with their utilization periods,
which are different for each of the 6 bases (over a
period of one month). So we have days during which
all the 6 bases are used, and others in which only
one is. Next we have taken a pool of 10 queries,
which are run on each base every day, in order to
simulate the activity, thus having the same activity
on each base every day. An example of such query,
as an Essbase report, can be seen below. It demands
the data of all the possible scenarios for the first
quarter of each year, for a product from a specified
market.

The average response time for such a query, if

the information is not stored into caches is 10
seconds. With the data cached, it goes down to 2
seconds.

The test protocol is described in Figure 8 as
follows

Figure 8: Test protocol steps over the ACM loop phases.

Over this protocol, we have carried out two
different tests. We wanted to emphasize the
difference between the evolutions of the levels of
service when taking in consideration the technical
performance indicator only (average QRT) and
when integrating the objective QRT (QoS).

The first test, technical, ran the heuristics while
taking the average QRT as performance indicator for
the heuristics.

The second test, service, ran under the same
conditions, but this time the performance indicator
used in the heuristics was the goal performance
indicator, or a service QRT. We propose a definition
of the level of satisfaction, a QoS indicator, based on
the objective QRT expressed by Codd for the OLAP
bases. Thus we consider the objective performance
QRT at 1 second, and compute the level of user

satisfaction in rapport with this level. The further an
average QRT is from 1 second, the lower the
satisfaction and the level of service. Therefore we
proposed a formalization of the levels of service and
define the QoS = AvgQRTtarget / AvgQRTcurrent. (with
AvgQRTtarget = 1).

4.2 Results

Using the two test scenario above, we present in
Figure 9 the results obtained. The graph is done for a
period of 21 days (one working month). The vertical
lines indicate a utilization period change for any of
the OLAP bases. After each such change, the
performances greatly increase from the reallocation
heuristic, and then slightly decrease from the self-
improvement one.

Figure 9: QoS comparison between a common constant
configuration, heuristics over technical indicators and
heuristics over service levels.

We analyze each of the three situations from
Figure 9.

In the first one, a normal situation that happens
today in enterprises, where configurations don’t
change and usage periods are not taken into
consideration, thus the QoS remains the same.

In the second situation we see the results with
our proposal where usage periods are taken into
consideration. Here we can see an improvement over
the QoS, as taking into consideration usage periods
renders the bases that are in activity more important.
This allows them to have more resources and thus
increased QoS. Still the heuristics performance
indicator remains the technical QRT.

The third situation shows the results with our
approach where we: (a) take into consideration
usage periods, (b) modify the query response times
according to these usage periods, and (c) integrate
the heuristics performance indicator as the user

ONTOLOGY-BASED AUTONOMIC COMPUTING FOR RESOURCE SHARING BETWEEN DATA WAREHOUSES
IN DECISION SUPPORT SYSTEMS

205

perceived service QRT. In this case we can see even
a higher improvement in the QoS, starting from the
7th day. Up to this point, as there is no reallocation,
the technical and service QRT is identical, thus the
QoS is identical. The QoS starts improving from that
day, when the reallocation is made in function of the
service QRT.

5 CONCLUSIONS

In this paper we have presented an approach to
managing decision support systems via data
warehouse cache allocations by using autonomic
computing and semantic web technologies. By
considering the specifications and characteristics of
DSS, we showed how AC adoption can be enabled
with DW resource allocation. We have presented
two heuristics for AC adoption and have based our
approach on semantic web technologies by using
ontologies for DSS system modeling and ontology
based rules for heuristics and ACM loop
implementation.

With the results we have shown that taking into
consideration QoS over raw technical indicators is a
must and one important step forward with AC
adoptions over DSS.

In the next future we intend to extend the notions
of SLA in order to study further how performance
and QoS are influenced when using more SLA
considerations. We also want to extend the influence
factors over the activity of the DWs, by extending
the perimeter of resource allocation (i.e. CPU
charge, disk usage etc.) and the perimeter of
performance measure such as calculation times.

REFERENCES

Codd, E. F., Codd, S. & Salley, C. (1993), ‘Providing olap
to user-analysts: An it mandate’.

Frolick, M. N. & Lindsey, K. (2003), ‘Critical factors for
data warehouse failure’, Business Intelligence Journal
8(3), 48–54.

Ganek, A. G. & Corbi, T. A. (2003), ‘The dawning of the
autonomic computing era’, IBM Systems Journal
43(1), 5–18.

Huebscher, M. & McCann, J. (2008), ‘A survey on
autonomic computing – degrees, models and
applications’, ACM Computing Surveys 40(3), 1–28.

IBM (2001), An architectural blueprint for autonomic
computing, IBM Corporation.

Inmon, W. H. (1995), Tech topic: what is a data
warehouse?, Prism solutions, Volume 1.

Inmon, W. H. (2005), Building the data warehouse, fourth
edition, Wiley Publishing.

Lightstone, S. S., Lohman, G. & Zilio, D. (2002), ‘Toward
autonomic computing with db2 universal database’,
ACM SIGMOD Record 31(3), 55–61.

Liu, L. & Özsu, M. T. (2008), Encyclopedia of Database
Systems, Springer-Verlag.
http://tomgruber.org/writing/ontology-definition-
2007.htm

Maedche, A., Motik, B., Stojanovic, L., Studer, R. &
Volz, R. (2003), ‘Ontologies for enterprise knowledge
management’, IEEE Intelligent Systems 18(2), 26–33.

Markl, V., Lohman, G. M. & Raman, V. (2003), ‘Leo : An
autonomic optimizer for db2’, IBM Systems Journal
42(1), 98–106.

Mateen, A., Raza, B. & Hussain, T. (2008), Autonomic
computing in sql server, in ‘Proceedings of the 7th
IEEE/ACIS International Conference on Computer
and Information Science, ICIS 2008’, 113–118.

Nicolicin-Georgescu, V., Benatier, V., Lehn, R. & Briand,
H. (2009), An ontology-based autonomic system for
improving data warehouse performances, in
‘Knowledge-Based and Intelligent Information and
Engineering Systems, 13th International Conference,
KES2009’, 261–268.

Oracle (2010), ‘Oracle Hyperion Essbase’.
http://www.oracle.com/technology/products/bi/essbase
/index.html

Parshar, M. & Hariri, S. (2007), Autonomic Computing:
Concepts, Infrastructure and Applications, CRC Press,
Taylor & Francis Group.

Saharia, A. N. & Babad, Y. M. (2000), ‘Enhancing data
warehouse performance through query caching’, The
DATA BASE Advances in Informatics Systems
31(2), 43–63.

Sirin, E., Grau, B., Grau, B. C., Kalyanpur, A. & Katz, Y.
(2007), ‘Pellet: A practical owl-dl reasoner’, Web
Semantics: Science, Services and Agents on the World
Wide Web 5(2), 51–53.

Stanford Center for Biomedical Informatics Research
(2010), http://protege.stanford.edu/

Stojanovic, L., Schneider, J. M., Maedche, A. D.,
Libischer, S., Studer, R., Lumpp, T., Abecker, A.,
Breiter, G. & Dinger, J. (2004), ‘The role of
ontologies in autonomic computing systems’, IBM
Systems Journal 43(3), 598–616.

Vassev, E. & Hinchey, M. (2009), ‘Assl: A software
engineering approach to autonomic computing’,
Computer 42(6), 90–93.

Vassiliadis, P., Bouzeghoub, M. & Quix, C. (1999),
Towards quality-oriented data warehouse usage and
evolution, in ‘Proceedings of the 11th International
Conference on Advanced Information Systems
Engineering, CAISE 99’, 164–179.

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

206

