
TECHNIQUES FOR VALIDATION AND CONTROLLED
EXECUTION OF PROCESSES, CODES AND DATA

A Survey

Dipankar Dasgupta, Sudip Saha and Aregahegn Negatu
Department of Computer Science, The University of Memphis, Memphis, TN 38152, U.S.A.

Keywords: Trusted Execution Technology, Trusted Platform Module, Digital Signature, Code Signing, Watermarking,
Integrity Checker, Magic Cookie.

Abstract: Various security mechanisms are available to validate, authenticate and permit codes, data and scripts for
executing in a computing device. Accordingly, different techniques and tools have been developed to
preserve integrity and confidentiality at the process, protocol, system and communication levels. For
example, Trusted Platform Module, Intel Trusted Execution Technology and Windows Vista Kernel Mode
security ensure system level integrity and security, whereas, Digital Signature, Code Signing,
Watermarking, Integrity Checker and Magic Cookies address integrity of data and executables in transit. A
brief survey of these techniques is described here with how these techniques help to secure computing
environment.

1 INTRODUCTION

Many techniques have been proposed and
implemented to address various security issues (Lin
and Loui, 1998, Gong and Schemers, 1998; Gong
and Dageford, 2003). For example, security features
have been implemented at the hardware level as in
Trusted Platform Module (TPM) (Pearson, 2003;
TCG, n.d.), Trusted Execution Technology (TXT)
(Intel, n.d.). Specifically, TPM is a microcontroller
that can securely store artifacts for authentication of
code to run in a device (PC, mobile phones, network
equipment, or any embedded device). These artifacts
can include passwords, certificates, or encryption
keys. The main feature of TPM is that security
credentials are stored in hardware as it can better
protect from cyber attacks. Such storage can hold
platform measurements that help ensuring
trustworthiness of the platform. Authentication and
attestation (a process to prove that the platform has
not been breached) are necessary steps to ensure
safer computing environments. Many PCs and
servers are now shipped with TMP, and many
applications are being developed to establish a
secure execution environment, protect data at rest or
in transit, and demonstrate compliance with
numerous data security regulations. Software and

hardware manufacturers are also finding new ways
to put the TPM to work (TCG, n.d.)
Intel’s TXT (Intel, n.d.) is a set of extensions, which
integrates new security features and capabilities into
the processor, chipset and other platform
components. TXT supports many capabilities
including integrity, confidentiality, measurement,
protection, attestation, and protected execution, at
the hardware level so that a chain of trust for an
execution environment can be built upon.

Prior to the introduction hardware-level security
support (McCune et al, 2008), many system and
application level security techniques have been in
use. Most system level applications use isolation
mechanism also sometimes called Domain
Separation Mechanism (Rushby, 1984). Virtual
machines (VM), such as Xen (Dragovic et al, 2003),
and VMWare (Waldspurger, 2002) provide coarse-
grained isolation, provide address space separation
and restricted external interfaces. Such logically
isolated environments enable applications running as
if on different hardware.

However, other system level isolation techniques
are implemented inside the kernel or at the
application level, via system call interposition.
Kernel Module Security (Conover, 2006; Microsoft,
2006) and Linux Security Module (LSM) (Wright et

77
Dasgupta D., Saha S. and Negatu A. (2010).
TECHNIQUES FOR VALIDATION AND CONTROLLED EXECUTION OF PROCESSES, CODES AND DATA - A Survey.
In Proceedings of the International Conference on Security and Cryptography, pages 77-85
DOI: 10.5220/0002889800770085
Copyright c© SciTePress

al, 2002) are examples of kernel-level security
techniques. System level security via system call
interposition techniques (Goldberg et al 1996;
Garfinkel, 2003; Liang et al 2003) are widely used
and used to create sandboxes, perform intrusion
detection, prevent damages by untrusted code, or
variable tuning of privileges. While kernel
techniques are typically fast, interposition
techniques have the advantage of flexibility.
Sandboxing provides protection at the granularity of
processes. There are many sandboxing based
operating systems. AppArmor (AppArmor, n.d.) is a
sandboxing technique designed as kernel (LSM)
enhancement to better protect Linux operating
systems such as Ubuntu-9. Sandboxing is also
becoming a preferred method as the security model
for application development platforms such as java
(Gong and Dageford, 2003). Sandboxing isolation
mechanism limits the damage from untrusted
programs by reducing a process’s privileges to the
minimum and thwarts threats, whether it comes from
a malicious program or security vulnerability of a
program. Integrity checker is one of the earliest
security techniques to prevent host intrusions such as
detection of Trojan programs and backdoors (e.g.
Rootkits).

Security at communication is very hard to
ensure; but sophisticated techniques like digital
signature, code signing, magic cookies etc. go a long
way to secure the process of data communication
and access control. While malicious access and
alteration of resource is important and is addressed
by the methods mentioned so far, it is also important
to secure the right on those resources. Digital
Watermarking handles this issue. To have trusted
computing environment security measures should be
put in place that spans the entire cross section of
information technology (from hardware to
applications and their network transactions). Here
follows a brief description of representative security
modules and techniques.

2 CONTROLLED EXECUTION
ENVIRONMENT

Trusted Platform Module (TPM) often called the
"TPM chip" or "TPM Security Device" is a
hardware device for key management (generation,
creation, encryption and decryption, and storage).
Furthermore, it can perform a hash of a summary of
the current hardware and software configuration of
the machine to ensure that it is sealed, and that no

alteration has been brought to it. It can be used for
full disk encryption as it is fast enough to perform
this seamlessly for the user. Software-wise, it is
unbreakable, as any alteration to software can be
detected and blocked, and the encryption keys are in
kernel-space and hard to reach. It can, however, be
broken by hardware means via a cold-boot attack
(before the information disappears from memory,
the system is booted in a small OS off a USB stick
and the memory dumped; the keys are in system
memory and can be retrieved easily, it has been
proved that this is achievable with no special
equipment). The cold boot attack relies on the
machine being powered on, in sleep mode, or just
been powered off. TPM can be thought of a small
microcontroller that performs system integrity
operation. It has the following capabilities (Bajikar,
2002; Parno, 2008)

 Crypto Capabilities
 RSA Accelerator
 Engine for SHA-1 hash algorithm
 Random number Generator
 Limited NVRAM for TPM contents

The cryptographic computation occurs inside
TPM hardware and outside environment cannot have
access to that execution; only I/O communication is
performed. For authentication, digital signing and
key wrapping operations TPM provides the facility
of RSA encryption/decryption, too. SHA-1
procedure is implemented to provide hashing
facilities. All these features make TPM a powerful
small hardware entity to maintain system security.

TPM maintains an internal hardware protected
storage of sensitive secret information to provide
security facilities. These include keys for PKI
communication, Attestation Identity key and various
certificates. Three types of certificates are stored in
TPM – endorsement certificate, platform certificate
and conformance certificate. The contents are
illustrated in the following diagram of (Bajikar,
2002).

Figure 1: Contents of TPM storage (Bajikar, 2002).

SECRYPT 2010 - International Conference on Security and Cryptography

78

TPM is a useful concept for PCs. But, it is more
important in the context of notebooks because
several threats concerning notebooks are addressed
by TPM. Notebooks have various threats in higher
order than PCs. Physical data theft is one of them.
As notebooks often need to access internet from
outside of the organization firewall, so there is a
higher danger of data communication attack. Here is
a threat matrix described in (Bajikar, 2002) that
indicates how TPM addresses these issues.

Table 1: Threat matrix for notebooks and TPM (adopted
from (Bajikar, 2002)).

Threats Current
Solutions Weakness TPM

Solutions

Data Theft

Data
Encryption
(EFS,
VPN,
Encrypted
email, etc.)

Encryption
keys are
stored on the
hard disk and
are
susceptible to
tampering

Protected
storage of
keys
through
hardware

Unauthorized
access to
platform

Username/
Password
Biometrics
and
external
tokens for
user
authenticat
ion

Subject to
dictionary
attacks
Biometrics
can be
spoofed
Authenticatio
n credentials
not bound to
platform

Protection
of
authenticati
on
credentials
by binding
them to
platform

Unauthorized
access to
network

Windows
network
logon,
IEEE
802.1x

Can be
bypassed
Certification
can be
spoofed
Authenticatio
n data is
stored on the
hard disk and
is susceptible
to tampering

PKI based
method for
platform
authenticati
on
Hardware
protection
of
authenticati
on data

Trusted Execution Technology (TXT): is a
hardware extension to some Intel microprocessors,
meant to improve security. It is made up of two
major components, TMP (as described above) and
DMA (Direct Memory Access) page protection.
Also, it improves upon the previous microprocessor
and chipset technology of Intel such that each
application runs in a concealed environment, which
cannot be accessed by other applications; and data
sent to and from an I/O device can only be read by
the desired recipient. The capabilities of Intel

Trusted Execution Technology include (Greene,
n.d.):

 Protection of execution and memory spaces;
 Sealed storage of encryption keys;
 Attestation which ensures proper invocation of

TXT environment and provides a verified
measurement of the software running in the
protected space.

The benefits provided by TXT are modeled by three
strategies.

• Local verification which uses the measurement
capability of TXT environment to make local
user confident about the proper configuration of
the system.

• Remote verification makes remote entities
assured of the platform configuration.

• Multi-level operation takes advantage of TXT
memory protection to run two or more
applications or operating systems safely.

Kernel-Mode Security: The kernel is the most
central part of an operating system. It is the first
piece of code to boot up a computer; it enables the
computer software to talk to the computer hardware;
and it is responsible for low-level OS tasks such as
memory management, multiprocessor
synchronization and scheduling/launching of
processes. Keeping the integrity of the kernel is
critical for the performance, reliability and security
of the entire computer. Windows Vista adds a set of
security measures to prevent the kernel from being
altered, or at least discontinue running once the
kernel had been compromised. The improvements
consist of checks being performed on the files to be
run, based on a signed certificate containing the
correct hashes for the files. As the certificates cannot
be faked, an attacker must attempt to bypass these
rather than trying to break. The kernel
(NTOSKRNL.EXE) is loaded (and can only be
loaded) by WINLOAD.EXE which performs checks
on itself, the kernel, and all the essential and non-
essential boot drivers. The checks on itself and the
non-essential boot drivers can be ignored or disabled
by being in kernel debug mode. NTOSKRNL.EXE
depends on CI.DLL that handles Code Integrity.
This dependency is the essential part of boot drivers
and run-time drivers checked by WINLOAD.EXE.
This file checks that every application that has a
certificate embedded into it has not been altered.
These checks can be disabled by system
administrators if desired. NTOSKRNL.EXE has an
internal part called PatchGuard that performs the
self-check based on a 5-10 min timer that cannot be

TECHNIQUES FOR VALIDATION AND CONTROLLED EXECUTION OF PROCESSES, CODES AND DATA - A
Survey

79

disabled. The kernel does not allow any program in
user space to access physical memory directly.
Windows Vista kernel mode security includes the
following features (Conover, 2006):

 Driver Singing,
 PatchGuard,
 Kernel-mode code integrity checks,
 Optional Support for secure Bootup using a
TPM hardware chip,

 Restricted User mode access to
\Device\Physical Memory.

Driver signing mechanism requires any driver to
be installed in kernel to have a certificate from a
trusted third party. As long the certificate giving
process is secured no malicious driver will be
installed in the kernel. However, if any certificate is
published or compromised, then the overall security
becomes vulnerable.

The PatchGuard is designed to prevent kernel
patching, which degrade security, reliability and
performance. The kernel-mode code integrity check
protects the operating system by verifying system
binaries haven't been tampered with and by ensuring
that there are no unsigned drivers running in kernel
mode. Other security steps e.g. secure bootup and
limited user access to physical memory adds extra
protection to the kernel mode security.

Microsoft, by the integration of these security
features in its OS, has raised the security bar to a
higher level by preventing injection of unsigned,
possibly malicious code. Enforcement of the security
measure rests on the stated impossibility of disabling
these component functions of the Kernel-Mode
Security. But, as Symantec’s research (Conover,
2006) shows, there is limit to the effectiveness of
these security measures. These protections can be
disabled by patching the kernel (NTOSKRNL.EXE).
Once this is patched, WINLOAD.EXE will refuse to
load it, so loader also needs to be patched. During
execution, if PatchGuard manages to perform the
self-check, it will halt Windows as it found the
patched system files, so it needs to be disabled too.
Disabling PatchGuard does not need patching. There
is a subtle way to forcefully disable a timer, which
PatchGuard relies upon to wake up and execute its
checking, so that it never signals an event. This
means, although the kernel-mode security has
enhanced the security of Windows OS to prevent
most of the malicious codes, it does not provide an
iron-clad security.
Sandboxing. Sandboxing (Singh, 2004) is any
technique used to separate running programs. The
term is general, and can refer to virtual machines

such as general purpose machines like VMware or
KVM, or application-specific, such as JVM or CLR
in Windows. It can also refer to protecting system
calls by trapping them and limiting their use to
specific applications; these can be outside the kernel,
and hook into it or loaded as modules. Modern OS
virtual memory also separates processes from each
other by running each of them in a separate address
space.

Java development environment uses sandboxing
to incorporate security measures. JVM could run
local as well as remote (usually applets) executable
codes. The sandbox provides a restricted
environment in which limitations are enforced on the
system resources untrusted code can access or
request. So, as used in other platforms, sandbox in
Java is used for safe running of untrusted code,
which comes from untrusted source. In Java 2
security model (Sun, 1997), untrusted code does not
imply just applets; security check is extended to all
java programs including applications. Java 2 allows
fine-grained access control with easily configurable
security policy as well as easily extensible access
control structures.

As such Java 2 does not just a sandbox with a
fixed boundary but provides multiple sandboxing
environments each with different access control
settings or permissions. Java’s overall security is
enforced via three-tier defense: a) bytecode verifier
– along with the JVM, ensures legitimacy of
bytecode and guarantees language safety and
baseline security at run time; b) class loader –
provide an important security feature of separating
name spaces for various software classes and using
separate class loaders, a degree of isolation is
established between the instances of classes; c)
security management – this is a mechanism (security
manager, access controller) for applications to check
the current effective policy and perform access
control states.

Figure 2 depicts the java sandboxing mechanism.
The important concept in the mechanism is the
protection domain, which is a domain that encloses
classes whose instance objects that are directly
accessible by a principal (an entity – individual,
corporation, login ID) to which a set of permissions
are granted. Security policy is a mapping from
classes (and their instances) to protection domains,
which in turn is mapped to corresponding set of
permissions. Protection domains can be bound to
static set of permission that is granted despite the
current dynamic policy setting. The protection
domain can also be initialized to use the static
permission as well as the dynamic security policy

SECRYPT 2010 - International Conference on Security and Cryptography

80

(editable by a policy tool). Protection domains fall
into two distinct categories: system domain through
which all protected external resources such as file
and network I/Os must be accessed; and application
domain that encloses rest of the resources. The
protection domain and its associated set of
permission define a specific sandbox. The
CodeSource (the URL of a class and certificate used
in code signing) binds an application (bytecode) to a
sandbox. An executable that runs in the sandbox
environment under defined policy, gets access to the
granted application and system domain resources.

Figure 2: Sandboxing Mechanism of Java 2.

3 VERIFICATION AND
VALIDATION METHODS

Digital Signature (Lysyanskaya, 2002). It is a
digital code that is attached to an electronic
document which uniquely identifies the sender and
ensures integrity. It is like a hand written signature,
which is used to check the authenticity of the sender
of a document. Digital signature can be used on any
document once it is stored digitally. For example,
emails and digital contracts use this scheme
extensively. Particularly for ecommerce transactions
digital signature is very important.

Digital signature is realized by cryptographic
techniques. Three processes are involved: key
generation, signing and signature verification. The

key generation process produces a public-private
key pair. The sender signs the document with the
private key. The receiver verifies it by using the
corresponding public key. Several cryptographic
algorithms are used in this regard, e.g., RSA, DSA
and ECDSA. A diagram illustrating digital
signature by RSA is shown in Figure 3
(Lysyanskaya, 2002).

Figure 3: Signing and Verification in RSA digital
signature (Lysyanskaya, 2002).

Digital signature is being widely used to ensure
authenticity of documents. The first highly used
software package offering digital signature was
IBM’s Lotus Notes 1.0 released in 1989.
Code Signing. Digital Signature when applied on
codes is called code signing. It is a form of verifying
authenticity of codes. The author digitally signs
executables and scripts so that the end user can
confirm the author of the code and make sure it has
not been corrupted after deployment. In this way, the
process ensures security of codes while deploying.
Usually, it works by a public key infrastructure
(PKI). The author signs the document with a secret
private key. The end user uses the public key to
verify the signature. Many publicly available
executables are distributed after code signing. For
example, Linux and Windows update services use
code signing to ensure that malicious updates or
patches are not installed at client system. The
processes of code signing and code verification are

TECHNIQUES FOR VALIDATION AND CONTROLLED EXECUTION OF PROCESSES, CODES AND DATA - A
Survey

81

illustrated in (Fleischman, n.d.) are shown in Figures
4(a) and Figure 4(b).

Figure 4(a): Code-Signing Process (Fleischman, n.d.).

Figure 4(b): Code Verification Process (Fleischman, n.d.).

Digital Watermarking (Cox et al, 2008): is the
process of embedding additional information into a
digital signal, e.g., image, audio or video. The
information that is embedded is a bit pattern that
infers its validity or copyright information. The
term was derived from faintly visible watermarks of
producer information seen on stationary products.
Unlike this printed watermarking, invisible signal is
embedded in case of digital watermarking. It is
invisible in case of image or video clips, it is
inaudible in case of audio clips.

Figure 5: Diagram showing steps involved in
watermarking (WolfGang and Podilchuk, 1999).

When a file being watermarked is copied, the
watermark information is also copied and the
watermark can be retrieved from that copied file. A

robust watermark should sustain malicious
modification made by a copier, so that it can be
retrieved. Watermarking has important applications
in copyright protection and stegonography (hidden
message).
Integrity Checker: is simple application software
that checks the integrity of files. At first the known
size of a file is stored. A hash is computed from the
contents of the file and it is also stored. Later, if a
file violates these two data kept by the Integrity
Checker, then a flag pops up that indicates probable
file integrity violation. There exists many host-based
integrity checking or change auditing tools, which
include Tripwire, AIDE, AFICK and Samhain. Here,
we will briefly discuss the former two.
Tripwire: is an integrity verification tool which
automatically detects unauthorized or unintended
changes of critical system files and allows system
administrators to immediately be aware of the
compromise so that remedial steps can be taken. In
general, it is a process of detecting changes by
comparing an image of a system with an optimal
baseline security setting to the image of the same
system running at any operational state. Tripwire’s
basic configuration and operations are shown in the
figure 6 below. The first step is to setup a baseline
secure system with tripwire installed on it and
identify the files that need to be checked for
integrity. Second, edit and save general Tripwire
configuration (location of database, number of
reports, etc) and Tripwire policy (what and how to
monitor). Once the initializations of the reference
database with the pristine or baseline information of
the monitored files are configured, the Tripwire
system is ready for integrity checking. The checking
process involves the comparison of current copies of
files with that in the reference database. After
installation of new software or change of system
configuration, the system administrator should
update the reference database and this is done by
updating the reference database with a new snap-
shot of the monitored files. Enterprise Tripwire, the
commercial version, provides quicker remediation
and alert by detecting, reconciling and reporting
changes over large quantity and type of data
elements.
AIDE (Advanced Intrusion Detection Environment):
is another open-source competition to Tripwire but
with additional features: a) its database stores
various file attributes including permissions, inode
number, user, group, file size, mtime and ctime,
atime, growing size, number of links and link name
as well as an easy way of mixing attributes for

SECRYPT 2010 - International Conference on Security and Cryptography

82

Figure 6: Integrity checking process.

setting up different set of monitoring policies; and b)
creates hash of each file using one or a combination
of its many message digest algorithms. Except these
enhancements, AIDE is similar to Tripwire in
editing configuration and monitoring policy,
initializing and updating of databases, checking of
integrity, and the qualitative nature of reporting.
Security Content Automation Protocol (SCAP):
System administrators and security managers spend
many man hours in the identification, remediation,
and reporting of system security vulnerabilities.
While many organizations implement well defined
processes to enhance security, most processes still
involve manual processing. To enhance efficiency
and quality of information security, a set of standard
approaches and their integration process has been
devised. In the past, Department of Defense (DoD)
has been using a vulnerability management process
(with a number of manual tasks) called IANA -
Information Assurance Vulnerability Alerts (Martin,
2005). This process encompasses the steps: i)
discovering the new software security flaw (New
IAVA requirement); ii) assessment of the flaw; iii)
deporting the status of the flaw; iv) remediation of
the flaw; and v) implementing the change and
subsequent return to complaint state. Without
standards and automatic processing, it is difficult for
big organizations to maintain and streamlined
vulnerability control and removal.

Security Content Automation Protocol (SCAP) is
a method for using specific standards to enforce
policy compliance evaluation and automated
vulnerability management (CVE, n.d.; CPE, n.d.;
CCE, n.d.; CVSS, nd.). It consists of a number of
open standards that are used to determine the
number of software flaws and configuration issues
related to security. These standards measure
systems’ vulnerabilities and offer methods to
evaluate the possible impact. Accordingly, SCAP

can be used for maintaining the security of the
enterprise systems. In particular, it can be used to
automate the verification of patch installation,
checking system security configuration settings, and
examining the overall system. SCAP validates the
specific versions of vendor products based on the
platforms they support. It reconciles software flaws
from US CERT and MITRE repositories. The
Information Assurance Vulnerability Alerts (IAVA)
process (Martin, 2005) that had been used by DoD
earlier are streamlined and automated by
transforming the IANA process using a set of SCAP
standards, which enable secure information flow
between machines.
Magic Cookies: Are tokens or tickets that are
passed between communicating parties for
performing some operation. Cookies are used for
authentication in communication. A server leaves a
cookie on the client side first time the client
authenticates and accesses it. That cookie serves as a
token of authentication. Later, the client shows this
cookie to avoid authentication again. The content of
the cookie is opaque to the client but the server uses
it for its purpose. It is encrypted so that no
unauthorized party can pretend with its own cookie.
At present, magic cookies are important part of
worldwide web. When cookies are stored on user’s
computer by the web browser it is called http cookie.
An illustration of http cookie is shown in Figure 7.

Figure 7: HTTP Cookie: Interaction between web browser
and server (Lin and Loui, 1998).

4 SUMMARY

Ensuring computer security depends on securing it
in all aspects such as execution, storage,
communication. This survey puts forward the most
common techniques/tools that try to provide the
secure environment in computing (Austin and Durbi,
2003) – application security, file security, process
security, and system level security. In order to
harden systems from sophisticated attacks, it is very
important to know the available techniques to
protect systems in a layered fashion and thus to

TECHNIQUES FOR VALIDATION AND CONTROLLED EXECUTION OF PROCESSES, CODES AND DATA - A
Survey

83

Table 2: Summary of various techniques and their applicability in securing computing systems.

At which Layer Name of tool/Technique Example Vendors Validation mechanism

Application
TXT (Greene, n.d.) Intel Multi-level operation

Cryptographic hashing through PKI Code Signing (Dean, 1999) VeriSign

System

TPM (Bajikar, 2002)
Trusted Computing
group

Encryption mechanisms

Local verification

Driver signing, PatchGuard, Kernel mode
integrity checks, Restricted access to
physical memory

TXT (Greene, n.d.) Intel

Kernel Mode Security (Conover, 2006) Windows Vista

Process/
executables/
scripts

Sandboxing (Singh, 2004) VMware, JVM, CLR Mechanism of separation

Cryptographic hashing through PKI Code Signing (Dean, 1999) VeriSign

Network/Traffic

TPM (Bajikar, 2002)
Trusted Computing
Group

PKI based methods

Remote Verification

Token-based security operations
TXT (Greene, n.d.) Intel

Magic Cookies (Magic Cookies, n.d.) X Windows System

Data/File/
Directory

TPM (Bajikar, 2002)
Trusted Computed
Group

Protected storage of keys and encryption
mechanism

Cryptographic signing and verification
process

Embedding copyright information
cryptographically

Storing hash and other relevant
information for change detection

Digital Signature (Lysyanskaya, 2002) IBM

Digital Watermarking (Wolfgang and
Podilchuk, 1999)

Digimarc, ISAN

Integrity Checker (Dean, 2006) Tripwire, AIDE

enhance security to both wider and deeper extents.
Table 2 summarizes various validation and
verification techniques described thus far and
indicates the layer specific role of various security
and validation mechanisms. Some of these
mechanisms are generally used in combination,
while others are special-purpose.

REFERENCES

AppArmor, Linux Application Security, http://www.
novell.com/linux/security/apparmor//overview.html

Austin , R. D., Darby, C. A., 2003. The Myth of Secure
Computing. Harv Bus Rev. ed 81(6).

Bajikar, S., 2002. Trusted platform module (TPM) based
security on notebook PCs, Intel White Paper.

CCE, http://cce.mitre.org
Conover, M., 2006. Assessment of Windows Vista

Kernel-Mode Security, Symantec Advanced threat
research.

Conover, M., 2006. Analysis of the Windows Vista
Security Model,

Cox, I. J., Miller, M. L., Bloom, J. A., Fridrich, J., Kalker,
T., 2008. Digital Watermarking and Steganography,
Morgan Kaufmann, 2nd Edition.

CPE, http://cpe.mitre.org
CVE, http://cve.mitre.org
CVSS, http://www.first.org/cvss
Dean, R. D., 1999. Formal Aspects of Mobile Code

Security," PhD thesis, Princeton University.
Dean, S., 2006. Integrity Checker, http://www.

sdean12.org/IntegrityChecker.htm
Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A.,

Pratt, I., Warfield, A., Barham, P., Neugebauer, R.,
2003. Xen and the art of virtualization. In Proceedings
of the ACM Symposium on Operating Systems
Principles.

Fleischman, E., Code Signing, The Internet Protocol
Journal, Vol 5, No 1.

Garfinkel, T., 2003. Traps and pitfalls: Practical problems
in system call interposition based security tools. In
Proc. Network and Distributed Systems Security
Symposium.

SECRYPT 2010 - International Conference on Security and Cryptography

84

Goldberg, I., Wagner, D., Thomas, R., Brewer, E. A.,
1996. A secure environment for untrusted helper
applications (confining the wily hacker). In Proc. of
the USENIX Security Symposium, San Jose, California.

Gong, L., Schemers, R., 1998. Signing, Sealing, and
Guarding Java™ Objects, Book chapter, Springer
Verlag.

Gong, L., Ellison, G., Dageford, M., 2003. Inside Java 2
Platform Security: Architecture, API Design and
Implementation, 2nd Edition.

Greene, J., Intel Trusted Execution Technology, Intel
Technology Whitepaper.

Intel®, Trusted Execution Technology Architectural
Overview, http://www.Intel.com/technology/security

Liang, Z., Venkatakrishnan, V. N., Sekar, R., 2003.
Isolated program execution: An application
transparent approach for executing untrusted
programs. In ACSAC, pp 182–191.

Lin, D., Loui M. C., 1998. Taking the bite out of cookies:
privacy, consent, and the Web, ACM SIGCAS
Computers and Society, Volume 28 , Issue 2 pp.
39 – 51.

Lysyanskaya, A., 2002. Signature Schemes and
Applications to Cryptographic Protocol Design, PhD
thesis, MIT.

Magic Cookies, Wikipedia, http://en.wikipedia.org/
wiki/Magic_cookie

Martin, R. A., 2005. Transformational Vulnerability
Management Through Standards.

McCune, J. M., Parno, B., Perrig, A., Reiter, M., Seshadri,
A., 2008. How Low Can You Go? Recommendations
for Hardware-Supported Minimal TCB Code
Execution, In Proceedings of the ACM Conference on
Architectural Support for Programming Languages
and Operating Systems (ASPLOS), ACM.

Microsoft, 2006, First Look: New Security Features in
Windows Vista, TechNet, http://www.microsoft.com/
technet/technetmag/issues/2006/05/FirstLook/default.a
spx

Parno, B., 2008. Bootstrapping trust in a "trusted"
platform. In Proceedings of the 3rd Conference on Hot
Topics in Security (San Jose, CA), USENIX
Association, Berkeley, CA, 1-6.

Pearson S., 2003. Trusted Computing Platforms: TCPA
Technology in Context, Prentice Hall PTR.

Rushby, J., 1984. A Trusted Computing Base for
Embedded Systems. In Proceedings of the 7th
DoD/NBS Computer Security Conference,
Gaithersburg, Maryland, pp. 294-311

Singh, A., 2004. A Taste of Computer Security.
Sun Microsystems, 1997. Java Security Model.
TCG, Enterprise Security: Putting the TPM to Work.
Waldspurger, C., 2002. Memory resource management in

VMware ESX server. In Fifth Symposium on
Operating Systems Design and Implementation.

Wolfgang, R. B., Podilchuk, C. I., 1999. Perceptual
Watermarks for Digital Images and Video, In
Proceedings of the IEEE, Vol 87, No 7.

Wright, M., Cowan, C., Morris, J., Smalley, S., Kroah-
Hartman G., 2002. Linux Security Modules: General
Security Support for the Linux Kernel, In Proceedings
of the 11th USENIX Security Symposium.

TECHNIQUES FOR VALIDATION AND CONTROLLED EXECUTION OF PROCESSES, CODES AND DATA - A
Survey

85

