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Abstract: This paper tends to provide an answer to a difficult problem: Matching large XML schemas. Scalable 
Matching acquires a long execution time other than decreasing the quality of matches.  In this paper, we 
propose an XML schema decomposition approach as a solution for large schema matching problem. The 
presented approach identifies the common structures between and within XML schemas, and decomposes 
these input schemas.  Our method uses tree mining techniques to identify these common structures and to 
select the most relevant sub-parts of large schemas for matching.  As proved by our experiments in e-
business domain, the proposed approach improves the performance of schema matching and offers a better 
quality of matches in comparison to other existing matching tools. 

1 INTRODUCTION 

Nowadays, within the business area, the industry 
builds large scale distributed systems and 
middlewares that are more and more based on XML 
technology. In fact, there are many databases and 
information sources available through the web 
covering different domains: semantic Web, deep 
Web, E-business, digital libraries, etc. In such 
domains, the generated data (XML schemas, 
ontologies, etc) are heterogeneous and voluminous. 
The presence of vast heterogeneous collections of 
data arises one of the greatest challenges in data 
integration field. For example, real-life E-business 
schemas of catalogs and messages such as BMEcat, 
OAGIS1 or XCBL2  present an “amazing scale” of 
elements (20≈ 10000 elements). One of the most 
critical steps to integrate heterogeneous e-Business 
applications that contain different XML schemas is 
to use large schema matching. 

Matching techniques are solutions to 
automatically search correspondences between these 
data in order to obtain useful information. In fact, 
matching is an operation that takes data as input (e.g 
XML schemas, ontologies, relational database 
schemas) and returns the semantic similarity values 
of their elements.  Schema matching has attracted 

the attention of research community (Do et al., 
2002) (Rahm et al., 2001). However, most matching 
tools are applied on two schemas with human 
intervention, whereas in practice, real world 
schemas are voluminous. Matching these schemas at 
large scale represents a laborious process. Moreover, 
matching the whole input schemas will take long 
execution time. Then, one of the challenges of the 
matching community is to efficiently search for 
correspondences between large schemas and to 
compute reasonable results in a reasonable time. 

Our main motivation is to decrease scalable 
match overload. E-business domain has to deal with 
large schemas. Matching XML business schemas 
have two main characteristics. First, an XML 
business schema may include identical redundant 
structures called intra-schemas structures or shared 
sub-structures. Intra-schemas structures are frequent 
within large XML schemas. In fact, there are many 
shared XML schema components (elements, 
attributes, and types) that are referenced in several 
places (figure 1) in a schema. 

Second, schemas from the same domains may 
share common structures called inter-schemas 
structures (i.e. similar structures in different 
schemas). These structures represent an important 
source of structural and semantic information. 
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Figure 2 shows an example of the inter-schemas 
structures. Both schemas share {Invoice To, 
Contact, Tel, Name, E-mail} and {Deliver To, 
Contact, Tel, Name, E-mail} sub-schemas. 
 

 
Figure 1: Schema tree representation. 

 
Figure 2: Example of inter-schemas structures. 

Motivated by these observations, we propose an 
XML schema decomposition approach based on 
inter-schemas and intra-schemas identification. Our 
approach attempts to find the most similar parts 
between all the schemas, at once. To this end, we 
use tree mining techniques to identify these common 
structures between and within XML schemas.  Tree 
mining is a classical data mining problem which has 
received lots of efforts in this last years.  

Our approach is composed of three steps: 
transforming XML schemas into trees, extracting 
frequent trees from these transformed schemas and 
processing these sub-trees to find the more relevant 
candidates for matching.  

The goal of our paper is then to provide a pre 
matching approach based on decomposing large 
schemas into smaller ones to improve the quality 
and  performance  of  large  schema  matching. Then 
matching will be performed between small schemas.  

The remainder of this paper is organized as 
follows. Section 2 reviews the research works 

related to the different matching strategies. The aim 
of this study is to show how existing works deal 
with scalability problem. In section 3, we present 
our decomposition approach. Section 4 presents 
experimental evaluation results. Finally, we 
conclude and discuss future works. 

2 RELATED WORK: MATCHING 
STRATEGIES 

Being a central process for several research topics 
like data integration, data transformation, schema 
evolution, etc, matching has attracted much attention 
by research community. Several matching tools have 
been proposed in the literature including different 
strategies to deal with scalability problem. These 
approaches represent an effective attempt to resolve 
large scale matching problem. We distinguish three 
different strategies: fragmentation, clustering and 
statistical approaches. 

• Fragmentation Strategy: This is a divide and 
conquers strategy which decomposes a large 
matching problem into smaller sub-problems by 
matching at the level of fragments. The issue of 
fragmentation large-scale schemas and ontologies 
has been recently addressed by (Hu et al., 2008), 
(Rahm et al., 2004) and (Wang et al., 2006).  The 
authors (Rahm et al., 2004) presented the fragment-
based approach as an effective solution to 
decompose two large schemas into small fragments. 
The fragment can be a schema, or sub-schema that 
represents parts of a schema which can be separately 
instantiated, or shared that is identified by a node 
with multiple parents.  The proposed strategy is 
composed of two matching steps: The first step is 
the fragments identification of two schemas and the 
second step is to match fragments. This approach 
has been implemented in COMA++ tool (Do and 
Rahm, 2007). The authors (Hu et al., 2008) propose 
a method for partition-based block matching that 
considers both linguistic and structural 
characteristics of domain entities based on virtual 
documents for the relatedness measure. Partitioning 
ontologies is achieved by a hierarchical bisection 
algorithm to provide block mappings. Like 
partitioning approach, Modularization-based 
Ontology Matching approach (MOM) (Wang et al., 
2006) decomposes a large matching problem into 
smaller sub-problems by matching at the level of 
ontology modules.  This approach includes sub-steps 
for large ontology partitioning, finding similar 
modules, module matching and result combination. 
This method uses the ε -connection to transform the 
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input ontology into an ε -connection with the largest 
possible number of connected knowledge bases. 

• Clustering Strategy: This approach has been 
proposed by (Pei et al., 2006). First, schemas are 
clustered based on their contextual similarity. 
Second, attributes of the schemas that are in the 
same schema cluster are clustered to find attribute 
correspondences between these schemas. Third, 
attributes are clustered across different schema 
clusters using statistical information gleaned from 
the existing attribute clusters to find attribute 
correspondences between more schemas.  

• Statistical Strategy: This approach has been 
introduced by (He et al., 2003) and (He et al., 2004) 
with MGS (for hypothesis modeling, generation, and 
selection) and a DCM (Dual Correlation Mining) 
framework.  The MGS framework is an approach for 
global evaluation, building upon the hypothesis of 
the existence of a hidden schema model that 
probabilistically generates the schemas we observed. 
This evaluation estimates all possible “models,” 
where a model expresses all attributes matchings. 
Nevertheless, this approach does not take into 
consideration complex mappings. DCM framework 
has been proposed for local evaluation, based on the 
observation that co-occurrence patterns across 
schemas often reveal the complex relationships of 
attributes. However, these approaches suffer from 
noisy data. HSM (Holistic Schema Matching) and 
PSM (Parallel Schema Matching) have been 
proposed by (Su et al., 2006) to find matching 
attributes across a set of Web database schemas of 
the same domain. HSM integrates several steps: 
matching score calculation that measures the 
probability of two attributes being synonymous, 
grouping score calculation that estimates whether 
two attributes are grouping attributes. PSM forms 
parallel schemas by comparing two schemas and 
deleting their common attributes. HSM and PSM are 
purely based on the occurrence patterns of attributes 
and require neither domain-knowledge, nor user 
interaction.  

In our work, we propose a decomposition 
approach which divides XML schemas into small 
sub-schemas with the use of linguistic and tree 
mining techniques. Our approach is similar to the 
fragmentation strategy. The main difference lies in 
the way to find intra-schemas structures called 
shared sub-structures in COMA++ (Do and Rahm, 
2007). More precisely, our approach extends 
fragmentation method to find inter-schemas 
structures in automatic manner and is applied on 
several schemas at once.  

3 XML SCHEMAS 
DECOMPOSITION APPROACH 

We propose a decomposition approach, as a pre-
matching phase, which break down large XML 
schemas into smaller sub-schemas to improve the 
performance of large schema matching. Our 
approach identifies and extracts common structures 
between and within XML schemas (inter and intra-
schemas) and finds the sub-schemas candidates for 
matching. 

As illustrated in figure 3, our proposed approach 
is composed of three phases: (1) converting XML 
schemas in trees, (2) identifying and mining frequent 
sub-trees, (3) finding relevant frequent sub-trees. 

Our approach is based on the following 
observations and assumptions: a) Schemas at large 
scale are various and voluminous, b) Schemas in the 
same domain contain the same domain concepts, and 
c) In one schema, several sub-schemas are 
redundant. 

We discuss in this section the different phases of 
decomposition approach. 

 
Figure 3: Decomposition approach. 

3.1 XML Trees: 
From Schemas to Trees 

The goal of this initial phase is to transform XML 
schemas into trees and to find linguistic relations 
between elements. This aims at improving 
decomposition with considering not only exactly the 
same labels of elements but also the linguistic 
similar elements.  

We firstly need to parse the XML schemas and 
transforming them into trees. The main feature of 
these large schemas is that they contain referential 
constraints. Then parsing these schemas becomes a 
difficult exercise. To cope with these constraints, we 
duplicate the segment which they refer to resolve 
their multiple contexts. We notice that most previous 
match systems focused on simple schemas without 
referential elements.  

An XML schema is then modeled as a labeled 
unordered rooted tree.  Each element or attribute of 

IMPROVING REAL WORLD SCHEMA MATCHING WITH DECOMPOSITION PROCESS

153



 

the schema is translated into a node. The child 
elements and attributes are translated into children of 
the element node. The names, types and constraints 
of elements and attributes represent the labels of the 
nodes. 

We present the formal definition of basic XML 
tree concept. 

Definition 1 (XML Tree). T= (r, N, E,ϕ ) is a 

labeled unordered rooted tree, where r is the root, N 
is a set of nodes (elements or attributes), E is the set 
of edges, and ϕ  is a labeling application  ϕ  : N→  

L assigning a label (element name, type or 
constraint) to each node of the tree, where L is the 
set of labels of nodes. 

Definition 2 (Tree Size and Depth). T= (r, N, E, 
ϕ ) is a labeled unordered rooted tree. The size of T, 

denoted |T| is the number of nodes in T. The depth 
of a node N is the number of ancestors of N. The 
root node is at depth zero.  

Moreover, we parse the element  names and 
gather them into sequences of tokens.  A tokenizer 
identifies punctuation (e.g PARTY_ID  <Party, 
ID>), special symbols, etc. We use WorldNet 
thesaurus to find synonym elements. This analysis 
allows the identification of the most relevant 
elements in the next step.  These elements are then 
mapped into integer representation to make faster 
the mining process.  

3.2 Identifying and Mining Frequent 
Sub-trees 

The main goal of this phase is to decompose the 
input schemas into smaller ones.  To this end, we 
identify and extract the common sub-structures from 
XML schemas describing the same domains. Then 
we distinguish between two sub-structures:  inter 
and intra schemas structures. 

 Inter-schemas: They are the common structures 
between different XML schemas. They represent an 
important source of structural and semantic 
information 

 Intra-schemas: They are the frequent structures 
within an XML schema. Identifying such structures 
plays a key role for decomposition. 
The problem of discovering these structures can be 
defined as follows: 
 

Frequent Tree Mining. Given a set of trees F (also 
called the forest) and a user defined thresholdσ , the 
problem is to find all the sub-trees included at least 
σ  times in F. The solutions are called the frequent 
trees of F w.r.t. σ . 

Definition 3 (Tree Inclusion). Let T1 = (r1, N1, E1, 
ϕ 1) be a labeled unordered sub-tree and T2 = (r2, N2, 

E2, ϕ 2) be a labeled unordered tree. T1 is included 

into T2 (noted T1 ⊆   T2) if there exists an injective 
mapping M: N1→N2   that satisfies the following 
rules: 

R1 : M   preserves the labels : ∀ u ∈  N1 ,  ϕ 1  

(u)=  ϕ 2 (M (u)) (ϕ  : N→  L is an application that 

assigns a label to each node). 
R2 : M  preserves  the parent (a) and ancestor 

relationship (b) :  
(a)  ∀ u, v∈  N1  , (u, v) ∈  E 1  ⇔  (M(u), 

M (v)) ∈E 2 
(b) ∀ u, v∈  N1  si (u, v) ∈  E 1 ⇔    (M(u), 

M (v)) ∈E 2
 + 

 

 
Figure 4: Example of tree inclusion. 

We consider the tree inclusion as shown in 
Figure 4 T1 = (r1, N1, E1, ϕ 1) and T2 = (r2, N2, E2, ϕ 2 

) are two trees.  
T1 ⊆  T2  means That: 

R1: ∃ u∈  N1  | ϕ 1 (u)= Contact ⇒  ϕ 1 (u)= ϕ 2 

(M (u))= Contact 
R2: ∃ u, v∈  N1  |  (u, v)  ∈  E 1  ⇔  (M(u), M (v)) 
∈E2

+ 
 

The frequency is computed using the notion of 
frequency support. The support of a tree X is noted 
Support(X,F). The basic definitions of these 
concepts are listed as follows: 
 

Definition 4 (Frequency Support). Let F = {T1, 
T2,… Tn} be a set of trees (or forest). 

The frequency Support of a tree X noted 
Support(X,F) is defined as: 

Support(X,F) = ∑
=

n

i 1

 intra-support( X,Ti) 

Where intra-support( X, Ti) is the number of 
occurrence of X in Ti Note that this support 
definition considers both intra and inter-schemas.  
 

Definition 5 (Frequent Tree). A tree X is said to be 
frequent in a forest F w.r.t. a minimum support  
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threshold σ  iff Support(X,F) ≥ σ . 
The set of all frequent trees of a forest is noted FT = 
{FT1, FT2, …, FTi} and FTi = {FTi1, FTi2, …, FTin}  
represents the set of elements in the frequent tree FTi  
 

 
Figure 5: Example of frequent tree mining. 

Figure 5 illustrates an example of frequent tree 
mining. For a threshold σ =2, the sub-tree X 
containing the nodes {Contact, Tel, Name and E-
mail} appears in T1, T2 and T3. The intra-support of 
X in T1, T2 and T3 is respectively 2, 1 and 2. 
Consequently, Support (X, F) = 5 � σ  and X is a 
frequent tree FT. 

We propose to use tree mining techniques to 
identify these common structures. More precisely, 
we use the algorithm proposed by (Termier et al., 
2004). Tree mining is a classical pattern mining 
problem (an important class of data mining problem) 
which aims at discovering automatically sub-trees 
that appear frequently in a set of trees.  

3.3 Relevant Frequent Sub-trees 
Calculus 

The focus of this phase is to identify the sub-trees 
candidates for matching. This aims at reducing 
match effort by only matching relevant parts from 
the other schemas. These sub-schemas are then 
selected for matching.  
     This pre-matching phase includes two main steps: 

3.3.1 Selection of Maximal Sub-trees 

The goal of this operation is to find the maximal  
frequent trees to avoid redundant calculation 
between the same nodes. Our approach pruned out 
all the minimal ones (FTmin) (see Def. 6). 
 

Definition 6 (Minimal Frequent Sub-tree). A 
frequent sub-tree is said to be minimal (FTmin) 
⇔ ¬∃  FT ⊆  FTmin / FT is a frequent sub-tree 

3.3.2 Finding Similar Sub-trees 

The goal of this step is to identify the most similar 
sub-trees (FTSim ) for matching. This is done in two 
phases:  

 

a) Testing the Linguistic Similarity between 
Element Sub-trees to Find the Most Related Nodes 
The objective is to find similar nodes between the 
frequent sub-trees.  This similarity (Simedit) is done 
with the use of edit distance function (Cohen et al., 
2003). 
Simedit (FTsi, FTTj) = 1- (edit_distance (FTsi, FTTj) / 
max (length (FTsi), length (FTTj))) 

 

b) Computing the Similarity Measure between 
Frequent Trees: 

 

Definition 7 (Frequent Tree Similarity). Let FTS 
and FTT  two frequent trees source and target  

Nc   represents the set of all the common and 
similar element pairs between FTS and FTT :   Nc = 
{(FTsi, FTTj) | Simedit (FTsi, FTTj) ≥  0.4 } 

The similarity (Sims) between FTs and FTT   is:  
Sims (FTS , FTT )=  | Nc| / | FTs  ∪  FTT | 

where   Sims  (FTS , FTT )  value is included in [0,1].  
        | Nc |: represents the cardinality of Nc 

3.3.3 Pre-matching Algorithm 

 
Figure 6: Pseudo-code of pre-matching phase. 
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3.4 Matching Sub-schemas 

In this phase, the resulted sub-schemas of 
decomposition approach are selected for matching. 
Then matching large schemas is reduced to the 
matching of much smaller ones.  For every pair of 
schemas of FTcand set, we apply our matching 
algorithm called EXSMAL (Chukmol et al., 2005) to 
discover semantic and structural correspondences 
between pair of schema elements (figure 7). Our 
algorithm considers the element types, descriptions 
(basic similarity) and structural similarities. 
Structural similarity is very important because, the 
same element may appear in many different 
contexts, for example, DeliverTo.Address and 
BillTo.Address which should be differentiated for a 
correct matching.  

Algorithm EXSMAL 
Input: FTS, FTT : two XML sub-schemas source and 
target 
Ouput: set of triplets < FTsi  ,  FTTj , Vsim> 
             With     FTsi  ,  an element of  FTs,   

             FTTj ,  an element of  FTTj 
  Vsim   the similarity value between FTsi  and FTTj 

 

 
Figure 7: Short description of EXSMAL algorithm. 

4 EVALUATION 

We conducted our experiments on real XML 
schemas (XCBL1 and OAGIS²). XCBL (XML 
Common Business Library) is a set of XML 
schemas for business-to-business e-commerce. The 
standard OAGIS (Open Application Group Inc.) 
represents a set of business process schemas. The 
main goal of our experiments is to show that our 
approach deals with both quality and performance of 
large schema matching. We have implemented the 
XML schema parser, the decomposition approach in 
our PLASMA (Platform for LArge Schema 
MAtching) prototype. Firstly, we evaluate the 
performance of schema parsing comparing to 
COMA++ tool and schema matching execution. 
Secondly, we determine the quality of matching that 
we  use  to  compare  with  fragmentation  results  of 

COMA++ tool.  
 

Experimental Environment. Our experiments were 
conducted on a Windows machine with a 2.80GHz 
Intel Pentium and 2Go RAM. 
Table 1 summarizes the major characteristics E-
business schemas 

Table 1: Characteristics of E-business schemas. 

 
1 www.xcbl.org, 2www.oagi.org 

4.1 Parsing XML Schemas Evaluation 

We have evaluated the time elapsed in loading and 
parsing XML schemas by our parser implemented 
within PLASMA and compared in the same 
conditions with the time elapsed by COMA++. This 
experience was done on medium schemas with 245 
elements (154ko), large schemas with 630 elements 
(330ko) and very large with 3796 elements (950ko). 
Parsing schemas depends on elements number and 
on files size. Figure 8 illustrates these results 
showing clearly a better performance of the 
PLASMA parser. In fact, COMA++ loads schemas 
in a repository before parsing. This step is very low 
and can spent several minutes for very large 
schemas. 
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Figure 8: Parsing XML schemas by PLASMA and 
COMA++. 

4.2 Performance of Decomposition 
Approach 

We have evaluated the performance of the 
decomposition approach applied on different size of 
schemas (medium, large and very large) and 
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compare it with the approach without decomposition 
(direct matching with EXSMAL). The performance 
is described in terms of the execution time gain 
(figure 9) defined as follows: 

Execution_time_gain =  

iondecompositwithoutexecutiontime
iondecompositexecutiontimeiondecompositwithoutexecutiontime

___
_____ −  

 

 
Figure 9: Execution time gain with decomposition 
approach. 

We have observed that using our decomposition 
approach, we optimize the EXSMAL matcher’s 
execution (e.g 65.67% for the very large schemas). 
Note that, in our experimentations, the execution 
time of the tree mining algorithm is only few 
seconds. 

4.3 Quality of Matching 

To determine the quality of a decomposition 
approach, we use the three metrics namely precision, 
recall and f-measure (Do et al., 2002).  We 
compared our decomposition results with those of 
fragmentation COMA++ approach. PLASMA and 
COMA ++ have been tested within the same 
experimental conditions. Furthermore, COMA ++ is 
configured to be as close as possible to PLASMA. 

 
Figure 10: Precision obtained by decomposition approach 
in PLASMA and fragmentation approach in COMA++. 

Figure 10 shows the precision for the PLASMA 
decomposition and COMA++ fragmentation 
approaches. In the medium schemas, PLASMA and 
COMA++ achieve a higher precision value. 

However, precision decreases with growing schema 
size.  

 
Figure 11: Recall obtained by decomposition approach in 
PLASMA and fragmentation approach in COMA++. 

Figure 11 depicts the recall of the both matching 
strategies in PLASMA and COMA++. The results 
proved that our decomposition approach 
outperforms the fragmentation approach. This is due 
to limitation of the fragmentation approach to find 
only the shared fragments (or intra-schemas). Unlike 
our approach, fragmentation does not cover all the 
possible matches. F-measure is given in figure 12. 
Due to its previous recall results, COMA++ obtains 
a lowest f-measure than PLASMA. 

 
Figure 12: F-measure obtained by decomposition approach 
in PLASMA and fragmentation approach in COMA++. 

5 CONCLUSIONS 

In this paper we have proposed a decomposition 
approach as a first attempt to reduce large scale 
matching problem. Our approach identifies common 
structures between and within XML schemas and 
tries to break down these input schemas. Our aim is 
to find the most similar sub-schemas between large 
input schemas using scalable and efficient 
techniques. Then we have described the way to 
effectively decompose large XML schemas using 
tree mining and our proposed pre-matching 
algorithms. The originality of our work w.r.t. 
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existing approaches is the techniques used to 
decompose several schemas at once in a scalable and 
automatic manner. Our experiments confirm that the 
most of schemas from the same sub-domains share 
an important rate of common structures and 
matching is more efficient. Moreover, experiments 
show that decomposition approach provides a better 
quality of matching in comparison to the 
fragmentation approach in COMA++.   

In the future, we plan to do further experiments 
with more XML schemas and complete our 
PLASMA system implementation with Wordnet and 
edit distance function. 
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