
EJS+EJSRL: A FREE JAVA TOOL FOR ADVANCED ROBOTICS
SIMULATION AND COMPUTER VISION PROCESSING

Carlos A. Jara, Francisco A. Candelas, Jorge Pomares, Pablo Gil and Fernando Torres
Physics, Systems Engineering and Signal Theory Department, University of Alicante, Spain

Keywords: Modelling, Robotics simulation, Virtual reality.

Abstract: This paper presents a free Java software platform which enables users to easily create advanced robotic
applications together with image processing. This novel tool is composed of two layers: 1) Easy Java
Simulations (EJS), an open-source tool which provides support for creating applications with a full 2D/3D
interactive graphical interface, and 2) EjsRL, a high-level Java library specifically designed for EJS which
provides a complete functional framework for modeling of arbitrary serial-link manipulators and computer
vision algorithms. The combination of both components sets up a software architecture which contains a
high number of functionalities in the same platform to develop complex simulations in robotics and
computer vision fields.

1 INTRODUCTION

Robotics and Computer Vision (R&CV) systems
have highly complex behaviours. For this reason,
throughout the last two decades there has been a
strong development of simulation tools devoted to
R&CV systems. Some of these tools have been
designed for professional applications, while others
for educational and research purposes. In the field of
industrial Robotics, several graphical software
environments as for example Easy-ROB3D (Easy-
ROB3D, 2004), have been created in the form of
stand-alone business packages for well defined
problems. These are powerful tools, but some of
them lack of resources in some aspects for higher
education. Otherwise, numerous open-source tools
such as GraspIt (Pelossoft et. al, 2004), RoboMosp
(Jaramillo et al., 2006) and Microsoft Robotics
Studio (Jackson, 2007), overcome these deficiencies.
Other open-source tools are in the form of toolboxes
such as SimMechanics (SMC) (Babuska, 2005),
RobotiCad (RBC) (Falconi and Melchiorri, 2008)
and Robotics Toolbox for Matlab (Corke, 1996).
With regard to Computer Vision tools, several
libraries have been developed for education and
research, such as the Open Computer Vision Library
(OpenCV, 2001) and VXL (VXL, 2001), developed
in C++ language, and Java Advanced Imaging (JAI,
2004), written in Java.

However, the majority of the above commented

tools are independent software platforms which have
been developed in a separated way. This feature
represents a drawback when time comes to develop
complex models which combine R&CV systems.
Perhaps, only Robotics/Vision Matlab toolboxes
provide a set of functions suitable for synthesis and
simulation which can be programmed under the
same environment. Nevertheless, both toolboxes do
not provide a user-friendly graphical interface
support for both creating a personalized application
and building 3D virtual environments. Thus,
educators and researches have to spend time and
effort searching the suitable libraries and they must
have programming skills to develop the application.

The approach presented in this paper is a new
tool called EJS+EjsRL, which provides a complete
functional framework for modeling and simulation
of R&CV systems, all embedded in the same
toolbox. In addition, this software platform gives full
2D and 3D graphical support both for creating user
interfaces and complex robotic environments with
computer vision algorithms in an easy and simplified
way. The main novel feature of this approach is that
its software architecture contains a higher number of
functionalities in the same platform than the existing
software applications for that purpose (see table 1).
Most of these functionalities are included as high-
level tools, with the advantage of allowing users to
easily create R&CV applications with a minimum of
programming. The tool presented contains several

153

A. Jara C., A. Candelas F., Pomares J., Gil P. and Torres F. (2010).
EJS+EJSRL: A FREE JAVA TOOL FOR ADVANCED ROBOTICS SIMULATION AND COMPUTER VISION PROCESSING.
In Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics, pages 153-160
Copyright c© SciTePress

features for Robotics such as kinematics,
programming, dynamics, world modeling,
importation of 3D model files, etc. and a higher
number of Computer Vision algorithms than the JAI.

Table 1: Feature comparison with other toolboxes.

Feature SMC RBC Matlab
toolbox

EJS+
EjsRL

Kinematics ● ● ● ●
Dynamics ● ● ● ●
Programming ● ● ●
Importation
VRML/OBJ

 ● ●

World Modeling ●
Computer
Vision

 ● ●

Interface design ●
Software
connection

 ● ●

Another meaningful problem is the platform

dependency. Some C++ tools are not portable for all
the operating systems. EJS+EjsRL is based on Java,
a well-known programming language which is
platform independent.

The remainder of this paper is organized as
follows: section 2 describes the overall software
architecture of the platform. Section 3 shows a
complete application design. Section 4 shows other
advanced features of the system. Section 5 shows the
simulation capabilities of EJS+EjsRL by means of
several test cases. Finally, some conclusions are
discussed in section 6.

2 SYSTEM DESCRIPTION

2.1 Components

There are two main blocks that represent the
functional core of this software platform: an object-
oriented Java library (EjsRL) which allows users to
model both arbitrary serial-link robots and computer
vision algorithms, and Easy Java Simulations (EJS),
powerful software for developing simulations. The
combination of both tools (EJS+EjsRL) permits to
easily and quickly create R&CV simulations.

EJS is a freeware, open-source tool developed in
Java, specifically created for the creation of
interactive dynamic simulations with higher
graphical support (Esquembre, 2004). EJS has been
designed for people who do not need complex
programming skills. In order to develop a
simulation, the user only provides the most relevant
core of the algorithm and EJS automatically

generates all the Java code needed to create a
complete interactive application. There are a lot of
applications which have been developed with EJS
for research and teaching activities (Jara et al., 2008;
Jara et al., 2009).

EjsRL is a Java library specifically designed for
EJS which provides a complete functional
framework that enables it to model and design
advanced R&CV applications. All the components
belonging to this software layer have been structured
and organized in an object-oriented form. Figure 1
shows a simplified class diagram of EjsRL,
specifying the most important packages and classes.
For a complete description of all the classes, readers
can visit the web page: http://www.aurova.ua.es/rcv.

Figure 1: Package and class diagram of EjsRL.

2.2 Software Architecture

The software design is based on a hierarchical
coordination between EJS and EjsRL. Each of them
is divided into systems which must interchange data
in order to develop R&CV simulations (figure 2).

A specific simulation within the EJS’
environment must include the definition of the
model and the definition of the view or graphical
interface (figure 2). In order to describe the model,
users must write the differential equations that
establish how these variables change in time. For
this last step, EJS offers two options. The first is a
built-in editor of Ordinary Differential Equations
(ODEs) in which users write the system equations in
a similar way to how they would write on a
blackboard. Users can choose different standard
algorithms to numerically solve them (Euler, Runge-
Kutta, etc.). The second facility is a connection with
Matlab/Simulink that lets users to model systems
with the help of these tools (Sanchez et al., 2005)
(see section 5). In relation to the view, EJS provides
a set of standard Java Swing, Java 2D and Java 3D
components to build the interface in a simple drag-
and-drop way. In addition, VRML and OBJ extern
graphic files can be imported to the view. These

ICINCO 2010 - 7th International Conference on Informatics in Control, Automation and Robotics

154

graphical components have certain properties that
the user can connect with the model variables and
set a link between the model and the view.
Therefore, the simulation turns into an interactive
application where users can change the model
variables and observe the simulation behaviour in
the view.

There are three important modules which define
the most high-level API of EjsRL (figure 2):
Robotics, Matrix Computation and Computer
Vision. This library works as an external interface to
give to model variables of EJS the corresponding
value in order to create R&CV applications.

Java Library (EjsRL)

Easy Java Simulations

Model

View

Robotics

Matrix Computation

Computer Vision

ODEs

Java Swing

Java 2D

Java 3D
Kinematics
Dynamics
Programming
Path Planning

IO Fuctions
Vision Tools
Vision Algorithms

OBJ/VRML Import
Object Collision

Euler
Runge-Kutta
Dopri
Fehlberg

Variables/Methods

Interface Controls

Image Control

3D Objects

Code Generation

Java files (*.java, *.jar)
Java applet (*.html)

Java Web Start (*.jnlp)
Figure 2: Software architecture of EJS+EjsRL.

3 DESIGN OF A ROBOTICS
APPLICATION

3.1 Creating the Robot Arm and its
Workspace

The first step in order to create a robotic simulation
is to execute EJS and to insert the library EjsRL as
external resource (figure 3). In this way, all the
methods and classes of EjsRL can be used within
EJS’ environment. Secondly, it is necessary to create
a specific robot in the model part. This action
implicates to define the variables and to program a
robot object specifying a minimum code.

For creating an arbitrary robot arm object, users
only have to know its Denavit-Hartenberg
parameters, its physical features and the type of
joints. With these data, a Java object variable
defined in the EJS’ environment has to be
initialized using the robot’s constructor of the
Robotics module of EjsRL. Figure 4 shows the Java
code which must be inserted in the model of EJS’

EJS Environment

Model and View

 EjsRL library

Area to insert
the Java code

Figure 3: Overview of the EJS’ environment

environment and the necessary variables to
program a robot of 6 rotational DOF.

//DENAVIT-HARTENBERG variables
/*Fist Column (q)*/ /*Second Column (d)*/ /*Third Column (a)*/ /*Fouth Column (alpha)*/
DHParams[0] = q[0]+Math.PI/2; DHParams[6] = l1; DHParams[12] = 0; DHParams[18] = -Math.PI/2;
DHParams[1] = q[1]-Math.PI/2; DHParams[7] = 0; DHParams[13] = a2; DHParams[19] = 0;
DHParams[2] = q[2]+Math.PI; DHParams[8] = 0; DHParams[14] = 0; DHParams[20] = Math.PI/2;
DHParams[3] = q[3]; DHParams[9] = l4; DHParams[15] = 0; DHParams[21] = -Math.PI/2;
DHParams[4] = q[4]; DHParams[10] = 0; DHParams[16] = 0; DHParams[22] = Math.PI/2;
DHParams[5] = q[5]; DHParams[11] = l6; DHParams[17] = 0; DHParams[23] = 0;

//DHq. Variables that change in the DH table
DHq[0] = 0;DHq[1] = 1;DHq[2] = 2;DHq[3] = 3;
DHq[4] = 4; DHq[5] = 5;

//Geometry
geometry[0]=l1;geometry[1]=a2;geometry[2]=0;
geometry[3]=l4;geometry[4]=0;geometry[5]=l6;

//Robot
char[] type = {'R','R','R','R','R','R'};
robot = new Robot(6, type);
robot.setDHParams(DHParams,DHq);
robot.setGeometry(geometry);
robot.setQLimits(qLimits);
robot.setInitPos(1,1,0);

EJS VARIABLES

Figure 4: Java code for modeling a 6 rotational DOF
robot.

After programming the robot object, the next
step is to develop the interface or view for the final
user. As stated, EJS provides a set of components to
build the interface in a simple drag-and-drop way. In
the case of a robotic simulation, the interface can be
composed by the 3D solid links of the robot and its
workspace, and other standard components to
control the application (panels, buttons, sliders,
plots, etc.). Figure 5 shows the construction of the
interface for the example proposed. The component
drawingPanel3D is the 3D environment where the
robot and its workspace will be displayed. Here, it is
defined each one of the 3D links of the robot by
means of the VRML component, which allows to
import models from existent VRML files. As
mentioned, all the interface components of EJS have
certain properties which are used for the simulation.
Figure 5 shows the properties of the VRML
component (Position and Size, Visibility and
Interaction and Graphical Aspect). The position and
transform fields will be used to move the robot since
they will be connected with the model variables
which define the robot. Figure 5 also shows a dialog

EJS+EJSRL: A FREE JAVA TOOL FOR ADVANCED ROBOTICS SIMULATION AND COMPUTER VISION
PROCESSING

155

(Move Joints) where some sliders controls (q1…q6)
have been added from the view components. These
sliders are connected with the q variable of the robot
model (see figure 4).

VRML
Components

3D Solid

VRML File

Figure 5: Interface construction of a Robotics application.

3.2 Kinematics and Path Planning
Simulation

The implementation of the forward kinematics can
be easily programmed and simulated with
EJS+EjsRL. Figure 6 shows the Java code to resolve
the forward kinematics of the robot proposed. The
joint values are got from the interface Move Joints
for updating the DHParams array of the model.
Afterwards, the homogeneous transformations of
each link are computed using the method
FKinematics of the Robotics module of EjsRL.
Finally, these matrix objects (A01…A06) are inserted
in the property Transform (figure 5) of the VRML
components in order to move them according this
kinematics algorithm.

public void forwardKinematics () {

 //Update the current values of the joints
 DHParams[0] = q[0] + Math.PI/2;
 DHParams[1] = q[1]-Math.PI/2;
 DHParams[2] = q[2]+Math.PI;
 DHParams[3] = q[3];
 DHParams[4] = q[4];
 DHParams[5] = q[5];

 //Compute the forward kinematics
A01 = robot.FKinematics(DHParams[0],1);
A02 = robot.FKinematics(DHParams[1],2);
A03 = robot.FKinematics(DHParams[2],3);
A04 = robot.FKinematics(DHParams[3],4);
A05 = robot.FKinematics(DHParams[4],5);
A06 = robot.FKinematics(DHParams[5],6);

}

q = (-47.6,..,-16.8)

A01..A06

Interface Move Joints

Virtual Environment

Figure 6: Java code for the forward kinematics of a 6
rotational DOF robot.

EjsRL contains some methods to solve the
inverse kinematics problem. Figure 7 shows an
example for solving this based on the Jacobian
operator. The method IKinematics receives the
position and orientation of the end effector (Matrix

T) and the current joint values of the robot (array
q_current) as input parameters. Finally, the robot is
moved to the suitable position using the forward
kinematics method described before.

public void inverseKinematics () {

//Current values of vector q
 double[] q_current = {q[0],q[1],q[2],q[3],q[4], q[5]};

 //Position and orientation of the end effector (X, Y, Z, Xº, Yº, Zº)
 Matrix T = new Matrix(4,4);
T.set(0,3,X); T.set(1,3,Y); T.set(2,3,Z);T.set(3,3,1.0); //Position
T.setMatrix(0,2,0,2,Maths.transRPYtoR(Roll, Pitch, Yaw)); //Orientation

 //Call to the inverse kinematics algorithm
 Solution sol = robot.IKinematics(T,q_current);
 if(sol!=null){
 q[0] = sol.getElemSolution(0); q[1] = sol.getElemSolution(1);
 q[2] = sol.getElemSolution(2); q[3] = sol.getElemSolution(3);
 q[4] = sol.getElemSolution(4); q[5] = sol.getElemSolution(5);

//Move the robot with the updated q values
 forwardKinematics();
 }
}
Figure 7: Java code for the inverse kinematics problem.

With regard to trajectory planning, EJS+EjsRL
allows users to easily perform the simulation of
many path planning algorithms for n-axis robot
arms. The ODEs editor implemented in EJS is
employed to generate the position, velocity and
acceleration values. The Robotics classes of EjsRL
contain a path planning module which computes the
acceleration parameters of several trajectories from
their imposed constrains. Thus, two steps are only
necessary to create a planning algorithm for a n-axis
robot manipulator:

 To write the equations of the basic motion of a
multi-body system. Figure 8 shows these
equations in the ODEs editor of EJS. These
equations compute the sequence values of the
position (q) and velocity (VPlan) of all the
robot joints from the acceleration of the
trajectory (APlan);

 To compute the acceleration of the path
planning algorithm proposed using one of the
functions provided by the Robotics package.
The trajectory planning module returns the
acceleration parameters of several kinds of
trajectories which can be used in the motion
equations;

Figure 8: ODEs of basic robot motion.

ICINCO 2010 - 7th International Conference on Informatics in Control, Automation and Robotics

156

There are a lot of methods implemented in the
Robotics module: splines, cubic interpolators,
synchronous, asynchronous and linear trajectories,
and the 4-3-4 polynomial path planning algorithm.
Figure 9 shows the Java code to program this last
interpolator in order to determinate the acceleration
array for the differential equations.

public void path434 () {

//Input contrains (initial point, final point, maximun velocity)
 double[] qi = {qd1*Rad, qd2*Rad,qd3*Rad,qd4*Rad,qd5*Rad,qd6*Rad};
 double[] qf = {qd1f*Rad,qd2f*Rad,qd3f*Rad,qd4f*Rad,qd5f*Rad,qd6f*Rad};
 double[] vqMax = {vq1max,vq2max,vq3max,vq4max,vq5max,vq6max};

//Time constrains
 double tace = 0.1;
 double tdec = 0.2;

 //Computation of the APlan values
 double[] vSyncro = robot.Synchro(qi,qf,vqMax);
APlan = robot.Coef434(tace,tdec,vSyncro);

 _play();
}

APlan ODEs q values
v values

Kinematics
(simulation)

Plot control

Figure 9: Simulation of a 4-3-4 polynomial trajectory.

The generated joint values are automatically
given to the kinematics model to simulate the robot
movement (method _play). In addition, EJS plot
controls can be used to visualize the trajectory
variables (figure 9).

3.3 Dynamics Features

The Robotics module of EjsRL implements
numerical methods to solve the forward and inverse
dynamics problems (Newton-Euler and Walker-
Orin, respectively). Figure 10 shows an example
which obtains the inverse dynamics with an external
force. Mass, inertias and friction properties must be
known in order to solve this algorithm. The array
variables VPlan and APlan belong to the velocity
and acceleration of the path planning previously
computed.

public void inverseDynamics(){

//Set the dynamics parameters of the robot
 robot.setMassRobot(mass);
 robot.setInertiaRobot(new Matrix(Inertia));
 robot.setVisFriction(friction);

//External force
 double mExternal = 1.0;
 double IxxExt, IyyExt, IzzExt;
 IxxExt = mExternal*0.3*0.3*0.167;
 IzzExt = IyyExt = IxxExt;
 Matrix IExternal = new Matrix(1,3,0.0);
 IExternal.set(0,0,IxxExt);IExternal.set(0,1,IyyExt);IExternal.set(0,2,IzzExt);
 robot.setExternalInertia(mExternal, IExternal);

//Newton-Euler computation
Tau = robot.NewtonEulerAlgorithm(VPlan, APlan);

}

EJS VARIABLES

Figure 10: Programming the inverse dynamics with an
external force.

3.4 Using Computer Vision Features

The Computer Vision classes of EjsRL provide a
complete library for the development of image
processing algorithms within EJS’ environment.
There are approximately fifty different functions
implemented in this module, ranging from basic
operations (format conversion, image adjustment,
histogram, etc.) to image feature extraction (point
and edge features). As example, authors implement a
computer vision algorithm in the virtual robotic
environment previously created. The aim is to
perform an Eye-In-Hand (EIH) vision based control
using four corner features in the control loop.

First of all, it is necessary to obtain a view
projection from the end effector of the robot. For
that end, EJS has an option which allows users to
create a virtual camera in the 3D robotic
environment. Figure 12 shows the appearance of the
interface developed where the window “Virtual
Camera” shows the projection of the EIH virtual
camera. Secondly, this projection must be processed
in order to extract the corner features of the object.
Figure 11 shows the Java code which computes
corner detection in the virtual camera’s image (this
code can also be used for real images). Initially, the
image of the virtual camera control is obtained
(variable vcamera) and the image objects are
created. Afterwards, the processing algorithm is
defined by means of the ImageFunction interface.
Finally, the image is processed (processImag
method), the point features are detected using one of
the implemented algorithms, for example the
SUSAN method (Smith and Brady, 1997), and these
are returned as an array variable. These point
features can be seen in the window “Virtual Image”
of the figure 12.

public ArrayList Corner_Detection(){

 //Get the Virtual Camera component
 ControlElement vcamera = _view.getElement("virtualCamera");

 //Create the image objects
 ImageObject initial_Image = new ImageObject(vcamera.getImage());
 ImageObject result_Image = null;

 //Proccess the image and extract the point features
 ImageFunction f1 = new FColorToGray(); //Function Color_to_Gray
 ImageFunction f2 = new FSusan(); //Function Corner detector
 result_Image = new ImageObject(f2.processImg (f1.processImg(initialImage)));
ArrayList pointsSusan = ((FSusan)f2).getPoints();

 return pointsSusan;
}

Figure 11: Java code for detecting corner features in the
virtual image.

The control action and the interaction matrix
used in this control algorithm are based on a

EJS+EJSRL: A FREE JAVA TOOL FOR ADVANCED ROBOTICS SIMULATION AND COMPUTER VISION
PROCESSING

157

3D Trajectory
1

2 3

4
1

23

4

|Vz|

|Vy|
|Vx|

Point features’
detection

Point features’
extraction

Virtual Camera

Virtual Camera projection

Figure 12: Simulation of a visual-servoing task using point features.

classical 2D visual servoing task, according to the
following expressions:

()*
c s

ˆ= λ− −+v L s s (1)

2
i i i i i i i

si 2
i i i i i i i

1/ Z 0 x / Z x y (1 x) yˆ
0 1/ Z y / Z 1 y x y x

⎡ ⎤− − +
= ⎢ ⎥− + − −⎣ ⎦

L (2)

T
s s1 s2 s3 s4

ˆ ˆ ˆ ˆ ˆ⎡ ⎤= ⎣ ⎦L L L L L (3)

where s are the current visual features, s* are the

desired visual features, and λ is the proportional
controller; (xi, yi) are the point coordinates of each
feature; and Zi is the current distance from the
camera to the each feature. The evolution of both
velocity module and point features are showed in
figure 12, which validate the correct convergence of
the visual servo task.

4 ADVANCED FEATURES

EJS has a connection with Matlab/Simulink which
lets users specify and solve their models with the
help of these tools (Sanchez et al., 2005). Next,
authors show a decoupled control of a 3 rotational
DOF robot where the electrical model is computed
by a Simulink diagram and the 3D graphical
interface is developed using EJS+EjsRL. Figure 13
shows the appearance of the application.

In the upper part of this figure, it can be seen the
simulation of the robot with its respective plot
controls, which show the input and the output

values. Simulink diagram is set up by the PID
control of each DOF, the power amplifier stage and
the engine blocks with the model of a DC motor.
The torque values are transferred to the forward
dynamics method of EjsRL to compute the
acceleration for the path planning algorithm.
Feedback variables q and v are values obtained
directly from the path planning and connected with
the Simulink blocks.

Feedback values

PID Controls

DC Motors

Forward
Dynamics

ODEs
Path Planning

Acceleration

Plot Controls

Amplifiers

Simulink model

Torques

3D Simulation

q1=π/2

q2=π/3

q3= - π/4DH Systems
q1

q2

q3

q ,v

Figure 13: Position control of a robot using EJS+EjsRL
and Simulink.

5 EXPERIMENTAL EXAMPLES

5.1 A Virtual and Remote Laboratory

Authors have developed with EJS+EjsRL a virtual
and remote laboratory for training in Robotics. This

ICINCO 2010 - 7th International Conference on Informatics in Control, Automation and Robotics

158

system, called RobUALab.ejs (Jara et al., 2008),
allows users to simulate path planning algorithms in
a virtual robotic environment, as well as execute
remote commands in a real robotic plant.

Programming classes of EjsRL (figure 1,
package “Programming”) enable users to develop
Java routines in a robotic simulation. Figure 14
shows a programming experiment which consists of
doing pick-and-place operations of virtual objects
located in the conveyor belt using synchronous
trajectories (parameter “Syn” in the method moveJ).

Frame 1 Frame 2

Frame 3 Frame 4

Frame 5 Frame 6

Frame 7 Frame 8

void main () {
double [] onBeltJ={27, 84.25 ,20.30 ,-9.73,-61};
double [] beltJ={27, 98 ,5.82 ,-9,-61};
double [] onTableJ={80.10, 52.54, 31, 11.8, 90 };
double [] tableJ={80.11, 59.48, 42.3, -6.43, 90 };
double [] homeJ={0,0,0,0,90};
double [] time1={3.0};
double [] time2={1.0};
int dataObject; double plus = 10.0;

DECLARATION OF
THE VARIABLES

posJ onBelt = new posJ(onBeltJ);
posJ belt = new posJ(beltJ);
posJ onTable = new posJ(onTableJ);
posJ table = new posJ(tableJ);
posJ home = new posJ(homeJ);

CREATION OF THE
OBJECTS posJ

for(int i=0; i<dataObject; i++) {
 belt();
 moveJ("Syn",onBelt,1,time1);
 open();
 moveJ("Syn",belt,0,time2);
 close();
 moveJ("Syn",onBelt,1,time2);
 moveJ("Syn",home,1,time1);
 moveJ("Syn",onTable,1,time1);
 table.setValue(table.getValue(0)+plus*i, 0);
 moveJ("Syn",table,1,time2);
 open();
 moveJ("Syn",onTable,0,time2);
 close();
 }
moveJ("Syn",home,1,time1);
}

ORDER
MOVEMENTS

dataObject = getNumberObj();NUMBER OF
OBJECTS

Figure 14: States of the virtual robot during the execution
of the programming experiment.

5.2 A Multi-robot System

EjsRL allows users the instantiation of different
robot objects. Thus, it is possible to developed
multi-robot simulations in an easy way. As example,
a multi-robotic system composed by a PA-10 robot
of 7 rotational DOF and a 3 rotational DOF robot
(RRR) is presented here. This last serial robot is
attached to a link of the upper part of the PA-10
(figure 15). In addition, the robot RRR has a virtual
camera at the end as an EIH configuration. Figure 15
shows the interface of the application developed: on
the left, the 3D virtual environment of the
workspace; on the right, the virtual projection of the
EIH camera located at RRR.

6 CONCLUSIONS

In this paper, a free Java-based software platform for
the creation of advanced R&CV applications has
been presented. EJS+EjsRL is a suitable tool to
develop research and educational simulations in
R&CV systems. The paper has showed several

Figure 15: Appearance of the interface of a multi-robot
simulation.

high-level applications which illustrate a part of the
possibilities of EJS+EjsRL. More information can be
obtained from http://www.aurova.ua.es/rcv, where
readers can also execute a lot of test examples.

ACKNOWLEDGEMENTS

The work presented in this paper is supported by the
Spanish Ministry of Education and Science (MEC)
through the research project DPI2008-02647.

REFERENCES

Babuska, R. (2005). Design Environment for Robotic
Manipulators. In Proceedings of the 16th IFAC World
Congress, vol. 16, Prague.

Corke, P. (1996). A Robotics Toolbox for MATLAB.
IEEE Robotics and Automation Magazine, 3(1): 24-
32.

Easy-ROB Software (2004). http://www.easy-rob.com/.
Esquembre, F. (2004). Easy Java Simulations: A software

tool to create scientific simulations in Java. Computer
Physics Communications, 156(2): 199-204.

Falconi, R. and Melchiorri, C. (2008). Roboticad: An
Educational Tool for Robotics. In Proceedings of the
17th IFAC World Congress, vol. 17, Seoul.

Gourdeau, R. (1997). Object-oriented programming for
robotic manipulator simulation. IEEE Robotics &
Automation Magazine, 4(1): 21-29.

Jackson, J. (2007). Microsoft Robotics studio: A technical
introduction. IEEE Robotics & Automation Magazine,
14(1): 82-87.

Jara, C., Candelas, F. and Torres, F. (2008). An advanced
interactive interface for Robotics e-learning.
International Journal of On-line Engineering, 4(1):
17-25.

Jara, C., Candelas F., Torres, F., Esquembre, F., Dormido,
S. and Reinoso, O. (2009). Real-time collaboration of
virtual laboratories through the Internet. Computers &
Education, 52(1): 126-140.

EJS+EJSRL: A FREE JAVA TOOL FOR ADVANCED ROBOTICS SIMULATION AND COMPUTER VISION
PROCESSING

159

Jaramillo, A., Matta, A., Correa, F. and Perea, W. (2006).
ROBOMOSP. IEEE Robotics & Automation
Magazine, 13(1): 62-73.

Java Advanced Imaging library (JAI) (2004).
http://java.sun.com/products/javamedia/jai.

Open Source Computer Vision Library (2001).
http://www.intel.com/research/mrl/research/opencv.

Pelossof, R., Miller, A., Allen, P and Jebara, T. (2004). An
SVM learning approach to robotic grasping. In
Proceedings of the IEEE International Conference on
Robotics and Automation, vol. 21, Taiwan.

Sanchez, J., Esquembre, F., Martín, C., Dormido, S.,
Dormido-Canto, S., Canto, R., Pastor, R. and Urquia,
A. (2005). Easy Java Simulations: an open-source tool
to develop interactive virtual laboratories using
MATLAB/Simulink. International Journal of
Engineering Education, 21(5): 789-813.

Smith, S. and Brady, J. (1997). SUSAN: a new approach
to low level image processing. International Journal
of Computer Vision, 23(1): 45-78.

VXL libraries (2001). http://vxl.sourceforge.net/.

ICINCO 2010 - 7th International Conference on Informatics in Control, Automation and Robotics

160

