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Abstract: The paper presents a software design method for embedded applications, featuring reconfigurable 
components such as a State Machine (SM) function block operating in conjunction with a composite Signal 
Generator (SG) function block. The method emphasizes separation of concerns, whereby the State Machine 
realizes the reactive aspect of system behaviour in separation from the transformational aspect, which is 
delegated to the Signal Generator. Instances of these function blocks can be used to configure event-driven 
state machines executed periodically in the context of control system tasks (actors). When activated, the SM 
determines the control step that has to be executed in response to a particular event. The control step is then 
indicated to the SG, which generates the corresponding control signals. The SM has been implemented 
using a new Binary Decision Diagram (BDD)-based design pattern, resulting in a simple, yet powerful 
component capable of processing both discrete and continuous signals, which can be used to efficiently 
implement control actors for sequential and hybrid control applications. 

1 INTRODUCTION 

The conventional implementation of state machines 
is based on manual encoding of an abstract model 
representing either the behaviour or the structure of 
the state machine. In the former case, the 
behavioural model, i.e. the state transition graph, is 
converted into code using various kinds of design 
patterns, such as the switch-case design pattern 
(Samek, 2002). In the latter case, the software 
implementation models the hardware structure of the 
state machine. The resulting program computes the 
state transition logic functions and executes the 
actions that are associated with various states. In 
particular, that is how sequential control programs 
are developed for industrial automation systems, 
where control logic is encoded using domain-
specific languages, such as those defined in 
standards IEC 61131-3 (John and Tiegelkamp, 2001) 
and IEC 61499 (Lewis, 2001). 

In both cases, conventional design methods have 
a major shortcoming: the resulting implementation is 
not reusable, because the logic of the state machine 
is built into the code. Consequently, a new program 
has to be developed whenever an application is 
created or modified. This is a time-consuming and 

error-prone process whose complexity grows rapidly 
with the number of states and state transitions. To 
some extent, the situation can be alleviated via 
automated program generation using validated 
models, but code reusability is still a problem.  

This problem can be solved by developing 
reusable state machine components, featuring 
standard state machine drivers operating on re-
configurable data structures (Wang and Shin, 2002), 
(Wagner and Wolstenholme, 2003). The resulting 
software artifact can be viewed as an object of type 
‘state machine’, which may have multiple instances 
defined by the contents of the encapsulated data 
structures (configuration tables). These can be 
configured and re-configured using a dedicated 
configuration tool. In this way, conventional 
software development is replaced by the 
configuration of reusable components and 
consequently, manual coding of state machines can 
be largely reduced and even eliminated.  

This design philosophy has been adopted and 
further refined in a reconfigurable state-machine 
component for embedded control systems (Angelov 
et al., 2005). With that component, it is possible to 
invoke signal-processing function blocks (FBs) 
within the states of the execution control state 
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machine. However, the complexity of the 
component model is relatively high because it 
combines both reactive (state-based) and 
transformational behaviour in the context of hybrid 
control systems. This has motivated the development 
of the master-slave model presented in (Angelov et 
al., 2008) where system tasks (actors) are configured 
using stateful components of lower complexity, i.e. a 
state-machine function block coupled to a modal 
function block.  However, in this model the state 
machine can process only binary event signals that 
are generated by pre-processing function blocks 
such as comparators, counters, timers, etc., which 
may result in increased complexity of the 
corresponding function block networks.  

The above problem has been addressed with a 
design method featuring a new State Machine 
function block operating in conjunction with a 
composite Signal Generator, which is presented in 
this paper. The discussion is illustrated with a 
running example – a state machine used to 
implement one of the control actors of a Medical 
Ventilator Control System (Zhou et al., 2009).  

The rest of the paper is structured as follows: 
Section 2 presents the design model of a state 
machine composed of State Machine and Signal 
Generator components and focuses on the 
implementation of a reconfigurable function block 
of class State Machine, using a design pattern that 
integrates pre-processing and control functions. 
Section 3 presents briefly the design pattern of the 
Signal Generator function block. A summary of the 
proposed software design method and its 
implications is given in the concluding section of the 
paper. 

2 RECONFIGURABLE STATE 
MACHINE FUNCTION BLOCK  

Embedded control system actors may exhibit 
complex stateful behaviour. Such actors can be built 
from reconfigurable software components, i.e. State 
Machine (SM) and Signal Generator (SG) function 
blocks.  This approach emphasizes separation of 
concerns: the SM implements reactive behaviour by 
selecting the control step to be executed in response 
to a transition event defined in terms of one or more 
event signals that are sampled when the host actor is 
triggered. The control step is specified in terms of 
one or more output signals. These are generated by 
invoking a sequence of function blocks inside the 
SG - a composite component, which implements the 

transformational aspect of actor behaviour - from 
input signals to output signals (see Fig. 1). 
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Figure 1: State Machine and Signal Generator function 
blocks. 

The SM function block can be implemented 
using a new version of the State Logic Controller 
(SLC) design pattern originally introduced in 
(Angelov et al., 2005). The SLC employs a data 
structure that represents the state transition graph of 
a Moore machine realizing the desired control 
behaviour. It can be efficiently encoded as a table 
containing binary decision diagrams that represent 
the next-state mappings of various states s in the set 
of states S, and the corresponding control steps, in 
accordance with the state transition graph. 

The next-state mapping of a state s is defined as 
the subset Fs = {s’} involving those states that are 
immediate successors of s. Hence, a state transition 
graph can be symbolically represented by specifying 
the next-state mappings of all states s ∈ S, whereby 
the transition arcs are defined as tuples (s, s’ | 
s’ ∈ Fs) that are associated with the corresponding 
transition events and event-priority symbols.  

 

init

close_IV

open_EV

close_EV

pid_controlinspFlag

inspFlag

expFlag

s1

s2

s3

s4

s5 1

2

s0

Y1

Y2

Y3

Y4

Y5

 
Figure 2: Medical Ventilator Control System: control actor 
state machine. 

This technique will be illustrated with a running 
example, i.e. a control state machine encapsulated in 
the Volume Control Ventilation (VCV) actor of a 
Medical Ventilator Machine (Zhou et al., 2009), see 
Fig. 2. Its state transition graph can be represented as 
follows: 
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Fs0  =  s1 / Y1 [c] 
Fs1  =  s2 /  Y2 [c] 
Fs2  =  s3 / Y3 [c] 
Fs3  =  s4 / Y4 [e1], s3 / NOP [!e1] 
Fs4  =  s5 / Y5 [c] 
Fs5  =  s2 / Y2 [e2, 1], s5 / Y5 [e1, 2],  
            s5 / NOP [!e1, !e2], 

 

 
where s0 denotes the initial pseudo-state, s1 –  s5  
denote operational states; Y1 – Y5 denote the 
corresponding control steps – initialization (init),  
close inspiration valve (close_IV), open expiration 
valve (open_EV) close expiration valve (close_EV), 
PID control of inspiration valve (PID_control); e1 
and e2 denote events represented by signals inspFlag 
and expFlag respectively, and c denotes the default 
clock event;  bracketed expressions denote the 
corresponding triggering events or   <event – event-
priority> pairs (when necessary). 

Next-state mappings can be conveniently 
represented by means of binary decision diagrams, 
as shown in Fig. 3 for the example state machine. In 
these diagrams, circular nodes denote event signals 
that have to be tested in order to determine the 
current state/step to be executed from among the 
subset of successors of the previous state/step. These 
are tested in a predefined sequence that reflects the 
priority of the corresponding transitions. 
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Figure 3: Binary decision diagrams for next state (step) 
mappings. 

For example, it is possible to make a transition 
from s5 to either s2 or s5, whereby the former 
transition has higher importance, i.e. lower event 
priority than the other one. That is encoded in the 
BDD whereby the event signal e2 is checked first 

and the transition to s2 – taken if e2 is true; the 
transition to s5 will be taken only if e2 is false and e1 
– true. In case neither of the event signals is present, 
the parsing of the BDD ends up in a no-operation 
(NOP) node, meaning that no transition is taken and 
the previous state has to be maintained in the current 
period without executing a control action. 

Table 1: Step Sequence Table (the BDD Table). 

 Node SuccTrue / 
NextStateM SuccFalse Mapping 

0 Y1 1 x FS0 
1 Y2 2 x FS1 
2 Y3 3 x FS2 
3 e1 4 5 

FS3 4 Y4 6 x 

5 NOP 3 x 

6 Y5 7 x FS4 
7 e2 1 8 

FS5 8 e1 6 9 
9 NOP 7 x 

 
The binary decision diagrams of the next-state 

mappings can be encoded in a Step Sequence Table, 
(also called the BDD Table) as shown in Table 1. It 
consists of the columns Node, successorTrue / 
NextStateMapping and successorFalse, whereby the 
first column contains symbols denoting BDD nodes, 
and the other two columns – pointers to rows 
containing the corresponding BDD elements. The 
rows are grouped into segments containing the next-
state mappings of states s0 – s5. 

The Step Sequence Table can be interpreted 
much in the same way as its graphical counterpart. 
This can be done by a standard routine – a State 
Machine Driver (SMD), which is activated 
periodically by the host actor. Within each cycle, the 
SMD processes the BDD segment containing the 
successor states/steps of the state visited in the 
previous cycle, in order to determine the current 
state/step. If a state transition has taken place, the 
control step index variable is updated accordingly, 
and the associated Signal Generator function block 
is subsequently invoked to execute the 
corresponding control step. However, it is executed 
only when the state is visited for the first time; it will 
not be executed in subsequent cycles if the state is 
maintained, unless a self-transition is explicitly 
specified (execute-once semantics).  

The above discussion is based on the assumption 
that event signals are Boolean variables supplied by 
external components, e.g. pre-processing function 
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blocks such as digital and analogue signal 
comparators, timers, event counters, etc. However, 
this may result in relatively complex function block 
networks modelling application actors. That problem 
can be eliminated by executing pre-processing 
operations as internal functions of the state machine 
function block.  In that case, the condition nodes of 
the BDD may be interpreted as various types of 
compare, event counting and timer operations whose 
result is tested in order to make a branching decision 
within the BDD. 

Each node of the BDD is thus associated with an 
operation that has to be executed by the State 
Machine Driver when processing the node. To that 
end, an operation code is used to specify the node 
operation, e.g. a control step executed in a state 
node. Likewise, it is necessary to specify operation 
codes (or function pointers) for various Boolean test, 
compare, and counter/timer operations executed in 
condition-testing nodes of the BDD. 

The BDD table of the state machine function 
block can be encoded using records of the following 
format: 
 
BDD_Record  = Operation, CondTest | 
              Operation, ControlStep; 
 
Operation   = CondOp1 | ... | CondOpk| 
 CtrlStepOp; 
 
CondTest   =  Operand1, Operand2,  
              SuccessorTrue,  
              SuccessorFalse; 
 
ControlStep = ControlStepIndex,  
              NextStateMapping; 
 
where the Operation code specifies one of the 
following node-processing operations:  
 Boolean operations 
 Compare Integer operations 
 Compare Real operations 
 Count Events operation 
 Control Step operation 

 
In case of condition evaluation, the CondTest 

part of the BDD record contains operand fields, 
which are interpreted in the context of the executed 
node-processing operation as follows: 
 Boolean operations use Operand1 and 

Operand2 as pointers to the tested variable 
locations. 

 Compare Integer and Compare Real operations 
use Operand1 as a pointer to the first 
compared variable and Operand2 – as a 

pointer to the second compared variable or 
constant. 

 The Count Events operation uses Operand1 as a 
pointer to the counted event variable. The 
initial value of the event counter and the event 
counter itself are passed as parameters via the 
Operand2 field.  

 
The remaining two items of the condition-test 

record are used to implement branching decisions, as 
follows: 
 Successor1 is used as a pointer to the next line 

to be processed if the test/compare/counter 
operation returns True.  

 Successor0 is a pointer to the next line to be 
processed if the test/compare/counter 
operation returns False. 

 
In case of control step execution, the Operation 

field is accompanied by a ControlStep field 
comprising: 
 ControlStepIndex – an index of the control step 

that has to be executed in the current state.  A 
NOP encoding of the control step index 
denotes no operation. 

 NextStateMapping – a pointer to the first line of 
the corresponding next-state mapping. 

 
The above operations are executed by the State 

Machine Driver while processing binary decision 
diagrams, as follows: 

Boolean operations and compare operations are 
implemented by means of C-library compare 
routines, which return True or False depending on 
the result. 

The Count Events operation interprets Operand1 
as a pointer to the input variable of the event 
counter. If that is a NULL pointer, the event counter 
is driven by the periodic timing events triggering the 
host actor, and operates as a timer measuring time 
intervals that are multiples of the actor period. The 
initial value of the event counter and the counter 
itself are passed as a pointer to a dedicated data 
structure in the second operand field. The operation 
returns False if [counter] != 0 after decrementing the 
counter; if [counter] = 0, the operation re-initializes 
the counter and returns True. 

The control step index is supplied to the SG as an 
input parameter used to invoke the corresponding 
sequence of function blocks in order to generate the 
required control signals. If the SM state in the 
current cycle is the same as in the previous one 
(NOP BDD node), a NOP control step index is 
generated, in accordance with the adopted execute-
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once semantics. However, a self loop may be used if 
a control step has to be executed repeatedly in 
successive periods (e.g. PID in state s5 of Fig. 2). 

The algorithm given below can be used to 
implement a state machine driver for a reusable and 
reconfigurable function block of class State 
Machine: 
 
void StateMachineDriver(void *FB) 
{  
  // Restore execution history 
  BDD_Record *r = FB->tableRecord; 
   
  // Determine current step and update       

// output 
  do { 
    // Condition-testing node? 
    if (r->operation != CTRL_STEP_OP)  
    {                            
      if ((r->operation)(r->operand1,      
                         r->operand2))  
      { // True                            
        r = r->successorTrue;                                        
      } 
      else { // False                                                                        
        r = r->successorFalse; 
      } 
    } 
    else {               
      // Control step node? 
      // Update control step index                                                
      FB->ctrlStepIndex =  
                      r->ctrlStepIndex; 

      // Save execution history 
      if ( r->ctrlStepIndex != NOP )              
        FB->tableRecord =  
                   r->nextStateMapping; 
         
      return; // Leave the driver  
    } 
  } while( TRUE ); 
} 
 

The SM function block instance is invoked with 
a pointer to an execution record of type 
StateMachine denoted as FB, which contains 
relevant data, such as output buffer for the control 
step index variable as well as a tableRecord history 
variable, i.e. a pointer to the first line of the next-
state mapping segment, to be processed during the 
next activation of the SM function block. 

 
 
 

3 SIGNAL GENERATOR 
FUNCTION BLOCK 

The Signal Generator is a composite function block 
containing instances of function blocks that are to be 
invoked within statically defined execution 
schedules - control step (CS) sequences, in order to 
generate the control signals associated with the 
corresponding control steps.  

To that end, the control step index generated by 
the SM is used to access a table containing records 
such as < CSsequenceStart, CSsequenceLength >, 
where each line corresponds to one particular control 
step. These two parameters are used to access a 
Function Block Table (FBT) where each line 
corresponds to a function block instance specified by 
the record < FBfunction, FBinstance >.  

In particular, the CSsequenceStart is used to 
access a FBT record specifying the first function 
block instance of a control step sequence, and 
CSsequnceLength – the number of function block 
instances that have to be invoked in order to execute 
the control step. Hence, the FBT can be viewed as a 
concatenation of control step sequences that are 
specified by the corresponding sub-networks of the 
function block network encapsulated in the Signal 
Generator.  

It is possible that several control steps generate 
one and the same continuous control signal, e.g. a 
control signal that is generated in both manual and 
automatic mode of operation. In that case, a 
Multiplexor FB shall be used, whereby different 
Multiplexor functions are invoked to switch the 
corresponding input signals to the multiplexor 
output.  

Discrete (on/off) control signals can be generated 
by means of another kind of function block that may 
be invoked within the Signal Generator – the 
Discrete Control Function Block (DCFB). The 
DCFB employs the concept of control memory 
storing binary control words: a particular word is 
accessed using the corresponding control step index, 
and is subsequently stored in the DCFB output 
buffer. 

Discrete control signals can also be generated by 
means of a digital multiplexor function block. In this 
case, the control step index is used to select an input 
binary word to be switched to the multiplexor output 
in order to generate the corresponding on/off control 
signals. This solution is preferable for applications 
featuring a small number of discrete control steps, as 
is the case with the example state machine of Fig. 1. 
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Figure 4: Control actor state machine implementation. 

The Signal Generator of the example state 
machine is shown in Fig. 4. It incorporates two 
function block instances, i.e. a Multiplexor FB 
instance generating on/off control signals for the 
control steps open_EV and close_EV, and a PID FB 
instance generating the signal pid_control and 
close_IV. The PID function block encapsulates three 
functions: initialize(), PID() and stop(). The first one 
is invoked when executing the init control step and 
the other two – when executing the control steps 
pid_control and close_IV (by applying a zero 
voltage to the inspiration valve of the ventilator).  

The combination of state machine and signal 
generator can be used to engineer sequential and 
modal continuous control systems, as well as 
systems generating continuous control signals in 
some states and discrete on/off control signals in 
other states, as shown in the example.  

4 CONCLUSIONS 

The paper presents a software design method for 
embedded control applications, which employs two 
types of reconfigurable component that can be used 
to configure control system tasks (actors) – State 
Machine and Signal Generator function blocks. The 
State Machine function block realizes the reactive 
(control flow) aspect of actor behaviour, in 

separation from the transformational (data flow) 
aspect, which is assigned to the Signal Generator.  

The presented version of the State Machine 
function block is capable of processing any kind of 
input signal – Boolean, binary-coded or analogue in 
order to compute Boolean event variables needed to 
implicitly select the state to be activated, and to 
explicitly select the control step to be executed in 
that state. The index of the control step is then 
indicated to the Signal Generator, in order to activate 
the corresponding FB sequence used to generate the 
corresponding control signals.  

The State Machine has been implemented as a 
reusable and reconfigurable function block using a 
new BDD-based State Logic Controller design 
pattern, resulting in a simple, yet powerful 
component that can be combined with a  
reconfigurable Signal Generator to efficiently 
implement state machines of arbitrary complexity 
for a broad range of sequential and hybrid control 
applications.  
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